Bexarotene Modulates Retinoid-X-Receptor Expression and Is Protective Against Neurotoxic Endoplasmic Reticulum Stress Response and Apoptotic Pathway Activation

  • Yogita Dheer
  • Nitin Chitranshi
  • Veer Gupta
  • Mojdeh Abbasi
  • Mehdi Mirzaei
  • Yuyi You
  • Roger Chung
  • Stuart L. Graham
  • Vivek Gupta
Article

Abstract

Retinoid X-receptors (RXRs) are members of the ligand-dependent transcription factor family of nuclear receptors that have gained recent research focus as potential targets for neurodegenerative disorders. Bexarotene is an RXR pharmacological agonist that is shown to be neuroprotective through its effects in promoting amyloid beta (Aβ) uptake by the glial cells in the brain. This study aimed to evaluate the dose-dependent effects of bexarotene on RXR expression in SH-SY5Y neuroblastoma cells and validate the drug effects in the brain in vivo. The protein expression studies were carried out using a combination of various drug treatment paradigms followed by expression analysis using Western blotting and immunofluorescence. Our study demonstrated that bexarotene promoted the expression of RXR α, β and γ isoforms at optimal concentrations in the cells and in the mice brain. Interestingly, a decreased RXR expression was identified in Alzheimer’s disease mouse model and in the cells that were treated with Aβ. Bexarotene treatment not only rescued the RXR expression loss caused by Aβ treatment (p < 0.05) but also protected the cells against Aβ-induced ER stress (p < 0.05) and pro-apoptotic BAD protein activation (p < 0.05). In contrast, higher concentrations of bexarotene upregulated the ER stress proteins and led to BAD activation. Our study revealed that these downstream neurotoxic effects of high drug concentrations could be prevented by pharmacological targeting of the TrkB receptor. The ER stress and BAD activation induced by high concentrations of bexarotene were rescued by the TrkB agonist, 7,8 dihydroxyflavone (p < 0.05) while TrkB inhibitor CTX-B treatment further exacerbated these effects. Together, these findings suggest a cross-talk of TrkB signalling with downstream effects of bexarotene toxicity and indicate that therapeutic targeting of RXRs could prevent the Aβ-induced molecular neurotoxic effects.

Keywords

Retinoid-X-receptor Bexarotene TrkB ER stress Amyloid beta 

Notes

Acknowledgements

We acknowledge funding support from NHMRC Australia, Ophthalmic Research Institute of Australia (ORIA), Hillcrest foundation and Macquarie University.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

12035_2018_1041_Fig11_ESM.gif (34 kb)
Supplementary Fig. 1

Immunoblot analysis of RXR (α, β and γ) protein expression in SH-SY5Y cells within a narrow range of bexarotene treatment: a,c and e) SH-SY5Y cells were treated with bexarotene (0.01–2.5 μM) for 12 h. After exposure to different concentrations of bexarotene, the expression of RXRs (α, β and γ) was detected by western blotting. The equivalent loading of proteins in each well was confirmed by probing with β-actin antibody. b,d and f) Densitometric quantification of immunoblots relative to β-actin showing alterations in RXR α, β and γ expression in response to treatment with indicated concentrations of the drug treatment. (GIF 33 kb)

12035_2018_1041_MOESM1_ESM.tif (4.5 mb)
High resolution image (TIFF 4565 kb)

References

  1. 1.
    Goldsworthy MR, Vallence A-M (2013) The role of β-amyloid in Alzheimer's disease-related neurodegeneration. J Neurosci 33:12910–12911CrossRefPubMedGoogle Scholar
  2. 2.
    Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R et al (2008) Long-term effects of Abeta42 immunisation in Alzheimer's disease: Follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223CrossRefPubMedGoogle Scholar
  3. 3.
    Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer’s disease: Clinical trials and drug development. Lancet Neurol 9:702–716CrossRefPubMedGoogle Scholar
  4. 4.
    Rosenblum WI (2014) Why Alzheimer trials fail: Removing soluble oligomeric beta amyloid is essential, inconsistent, and difficult. Neurobiol Aging 35:969–974CrossRefPubMedGoogle Scholar
  5. 5.
    Gupta V, Gupta VB, Chitranshi N, Gangoda S, Vander Wall R, Abbasi M, Golzan M, Dheer Y et al (2016) One protein, multiple pathologies: Multifaceted involvement of amyloid beta in neurodegenerative disorders of the brain and retina. Cell Mol Life Sci 73:4279–4297CrossRefPubMedGoogle Scholar
  6. 6.
    Gupta VK, Chitranshi N, Gupta VB, Golzan M, Dheer Y, Wall RV, Georgevsky D, King AE et al (2016) Amyloid beta accumulation and inner retinal degenerative changes in Alzheimer's disease transgenic mouse. Neurosci Lett 623:52–56CrossRefPubMedGoogle Scholar
  7. 7.
    Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, Schwartz M, Farkas DL (2011) Identification of amyloid plaques in retinas from Alzheimer's patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. NeuroImage 54(Suppl 1):S204–S217CrossRefPubMedGoogle Scholar
  8. 8.
    Gupta VB, Laws SM, Villemagne VL, Ames D, Bush AI, Ellis KA, Lui JK, Masters C et al (2011) Plasma apolipoprotein E and Alzheimer disease risk: The AIBL study of aging. Neurology 76:1091–1098CrossRefPubMedGoogle Scholar
  9. 9.
    Lefebvre P, Benomar Y, Staels B (2010) Retinoid X receptors: Common heterodimerization partners with distinct functions. Trends Endocrinol Metab 21:676–683CrossRefPubMedGoogle Scholar
  10. 10.
    Barsony J, Prufer K (2002) Vitamin D receptor and retinoid X receptor interactions in motion. Vitam Horm 65:345–376CrossRefPubMedGoogle Scholar
  11. 11.
    Wang L, Hara K, Van Baaren JM, Price JC, Beecham GW, Gallins PJ, Whitehead PL, Wang G et al (2012) Vitamin D receptor and Alzheimer's disease: A genetic and functional study. Neurobiol Aging 33:1844 e1841–1849PubMedGoogle Scholar
  12. 12.
    Chiang MY, Misner D, Kempermann G, Schikorski T, Giguere V, Sucov HM, Gage FH, Stevens CF et al (1998) An essential role for retinoid receptors RARbeta and RXRgamma in long-term potentiation and depression. Neuron 21:1353–1361CrossRefPubMedGoogle Scholar
  13. 13.
    Wietrzych M, Meziane H, Sutter A, Ghyselinck N, Chapman PF, Chambon P, Krezel W (2005) Working memory deficits in retinoid X receptor gamma-deficient mice. Learn Mem 12:318–326CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mangelsdorf DJ, Borgmeyer U, Heyman RA, Zhou JY, Ong ES, Oro AE, Kakizuka A, Evans RM (1992) Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev 6:329–344CrossRefPubMedGoogle Scholar
  15. 15.
    Goodman AB (2006) Retinoid receptors, transporters, and metabolizers as therapeutic targets in late onset Alzheimer disease. J Cell Physiol 209:598–603CrossRefPubMedGoogle Scholar
  16. 16.
    Ding Y, Qiao A, Wang Z, Goodwin JS, Lee ES, Block ML, Allsbrook M, McDonald MP et al (2008) Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer's disease transgenic mouse model. J Neurosci 28:11622–11634CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Etchamendy N, Enderlin V, Marighetto A, Pallet V, Higueret P, Jaffard R (2003) Vitamin a deficiency and relational memory deficit in adult mice: Relationships with changes in brain retinoid signalling. Behav Brain Res 145:37–49CrossRefPubMedGoogle Scholar
  18. 18.
    Mandrekar-Colucci S, Landreth GE (2011) Nuclear receptors as therapeutic targets for Alzheimer's disease. Expert Opin Ther Targets 15:1085–1097CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cramer PE, Cirrito JR, Wesson DW, Lee CY, Karlo JC, Zinn AE, Casali BT, Restivo JL et al (2012) ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science 335:1503–1506CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM, Thaller C (1992) 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68:397–406CrossRefPubMedGoogle Scholar
  21. 21.
    LaClair KD, Manaye KF, Lee DL, Allard JS, Savonenko AV, Troncoso JC, Wong PC (2013) Treatment with bexarotene, a compound that increases apolipoprotein-E, provides no cognitive benefit in mutant APP/PS1 mice. Mol Neurodegener 8:18CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lane MA, Bailey SJ (2005) Role of retinoid signalling in the adult brain. Prog Neurobiol 75:275–293CrossRefPubMedGoogle Scholar
  23. 23.
    Mingaud F, Mormede C, Etchamendy N, Mons N, Niedergang B, Wietrzych M, Pallet V, Jaffard R et al (2008) Retinoid hyposignaling contributes to aging-related decline in hippocampal function in short-term/working memory organization and long-term declarative memory encoding in mice. J Neurosci 28:279–291CrossRefPubMedGoogle Scholar
  24. 24.
    Price RD, Milne SA, Sharkey J, Matsuoka N (2007) Advances in small molecules promoting neurotrophic function. Pharmacol Ther 115:292–306CrossRefPubMedGoogle Scholar
  25. 25.
    Edsjo A, Lavenius E, Nilsson H, Hoehner JC, Simonsson P, Culp LA, Martinsson T, Larsson C et al (2003) Expression of trkB in human neuroblastoma in relation to MYCN expression and retinoic acid treatment. Lab Investig 83:813–823CrossRefPubMedGoogle Scholar
  26. 26.
    Matsumoto K, Wada RK, Yamashiro JM, Kaplan DR, Thiele CJ (1995) Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res 55:1798–1806PubMedGoogle Scholar
  27. 27.
    Lucarelli E, Kaplan DR, Thiele CJ (1995) Selective regulation of TrkA and TrkB receptors by retinoic acid and interferon-gamma in human neuroblastoma cell lines. J Biol Chem 270:24725–24731CrossRefPubMedGoogle Scholar
  28. 28.
    Minichiello L (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10:850–860CrossRefPubMedGoogle Scholar
  29. 29.
    Jeronimo-Santos A, Vaz SH, Parreira S, Rapaz-Lerias S, Caetano AP, Buee-Scherrer V, Castren E, Valente CA et al (2015) Dysregulation of TrkB receptors and BDNF function by amyloid-beta peptide is mediated by Calpain. Cereb Cortex 25:3107–3121CrossRefPubMedGoogle Scholar
  30. 30.
    Peng S, Wuu J, Mufson EJ, Fahnestock M (2005) Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer's disease. J Neurochem 93:1412–1421CrossRefPubMedGoogle Scholar
  31. 31.
    Devi L, Ohno M (2012) 7,8-dihydroxyflavone, a small-molecule TrkB agonist, reverses memory deficits and BACE1 elevation in a mouse model of Alzheimer's disease. Neuropsychopharmacology 37:434–444CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang Z, Liu X, Schroeder JP, Chan CB, Song M, Yu SP, Weinshenker D, Ye K (2014) 7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology 39:638–650CrossRefPubMedGoogle Scholar
  33. 33.
    Ulrich JD, Burchett JM, Restivo JL, Schuler DR, Verghese PB, Mahan TE, Landreth GE, Castellano JM et al (2013) In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis. Mol Neurodegener 8:13CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Boehm MF, Zhang L, Zhi L, McClurg MR, Berger E, Wagoner M, Mais DE, Suto CM et al (1995) Design and synthesis of potent retinoid X receptor selective ligands that induce apoptosis in leukemia cells. J Med Chem 38:3146–3155CrossRefPubMedGoogle Scholar
  35. 35.
    Gniadecki R, Assaf C, Bagot M, Dummer R, Duvic M, Knobler R, Ranki A, Schwandt P et al (2007) The optimal use of bexarotene in cutaneous T-cell lymphoma. Br J Dermatol 157:433–440CrossRefPubMedGoogle Scholar
  36. 36.
    McFarland K, Spalding TA, Hubbard D, Ma JN, Olsson R, Burstein ES (2013) Low dose bexarotene treatment rescues dopamine neurons and restores behavioral function in models of Parkinson's disease. ACS Chem Neurosci 4:1430–1438CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Riancho J, Ruiz-Soto M, Berciano MT, Berciano J, Lafarga M (2015) Neuroprotective effect of Bexarotene in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Front Cell Neurosci 9:250CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cornejo VH, Hetz C (2013) The unfolded protein response in Alzheimer's disease. Semin Immunopathol 35:277–292CrossRefPubMedGoogle Scholar
  39. 39.
    Fonseca ACRG, Ferreiro E, Oliveira CR, Cardoso SM, Pereira CF (2013) Activation of the endoplasmic reticulum stress response by the amyloid-beta 1-40 peptide in brain endothelial cells. Biochim Biophys Acta (BBA) - Mol Basis Dis 1832:2191–2203CrossRefGoogle Scholar
  40. 40.
    Liao Y, Fung TS, Huang M, Fang SG, Zhong Y, Liu DX (2013) Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway. J Virol 87:8124–8134CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Oyadomari S, Mori M (2003) Roles of CHOP//GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389CrossRefGoogle Scholar
  42. 42.
    Budgin JB, Richardson SK, Newton SB, Wysocka M, Zaki MH, Benoit B, Rook AH (2005) Biological effects of bexarotene in cutaneous T-cell lymphoma. Arch Dermatol 141:315–321CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang C, Hazarika P, Ni X, Weidner DA, Duvic M (2002) Induction of apoptosis by bexarotene in cutaneous T-cell lymphoma cells: Relevance to mechanism of therapeutic action. Clin Cancer Res 8:1234–1240PubMedGoogle Scholar
  44. 44.
    Chen G, Fan Z, Wang X, Ma C, Bower KA, Shi X, Ke ZJ, Luo J (2007) Brain-derived neurotrophic factor suppresses tunicamycin-induced upregulation of CHOP in neurons. J Neurosci Res 85:1674–1684CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ma R, Zhang J, Liu X, Yue S, Zhao Q, Xu Y (2016) 7,8-DHF treatment induces Cyr61 expression to suppress hypoxia induced ER stress in HK-2 cells. Biomed Res Int 2016:5029797PubMedPubMedCentralGoogle Scholar
  46. 46.
    Fitz NF, Cronican AA, Lefterov I, Koldamova R (2013) Comment on “ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models”. Science 340:924-cCrossRefPubMedGoogle Scholar
  47. 47.
    Price AR, Xu G, Siemienski ZB, Smithson LA, Borchelt DR, Golde TE, Felsenstein KM (2013) Comment on “ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models”. Science 340:924-dCrossRefPubMedGoogle Scholar
  48. 48.
    Tesseur I, Lo AC, Roberfroid A, Dietvorst S, Van Broeck B, Borgers M, Gijsen H, Moechars D et al (2013) Comment on “ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models”. Science 340:924-eCrossRefPubMedGoogle Scholar
  49. 49.
    Veeraraghavalu K, Zhang C, Miller S, Hefendehl JK, Rajapaksha TW, Ulrich J, Jucker M, Holtzman DM et al (2013) Comment on “ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models”. Science 340:924-fCrossRefPubMedGoogle Scholar
  50. 50.
    Brazda P, Krieger J, Daniel B, Jonas D, Szekeres T, Langowski J, Toth K, Nagy L et al (2014) Ligand binding shifts highly mobile retinoid X receptor to the chromatin-bound state in a coactivator-dependent manner, as revealed by single-cell imaging. Mol Cell Biol 34:1234–1245CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mounier A, Georgiev D, Nam KN, Fitz NF, Castranio EL, Wolfe CM, Cronican AA, Schug J et al (2015) Bexarotene-activated retinoid X receptors regulate neuronal differentiation and dendritic complexity. J Neurosci 35:11862–11876CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Tai LM, Koster KP, Luo J, Lee SH, Wang YT, Collins NC, Ben Aissa M, Thatcher GR et al (2014) Amyloid-beta pathology and APOE genotype modulate retinoid X receptor agonist activity in vivo. J Biol Chem 289:30538–30555CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Cummings JL, Zhong K, Kinney JW, Heaney C, Moll-Tudla J, Joshi A, Pontecorvo M, Devous M et al (2016) Double-blind, placebo-controlled, proof-of-concept trial of bexarotene Xin moderate Alzheimer's disease. Alzheimers Res Ther 8:4CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kuntz M, Candela P, Saint-Pol J, Lamartiniere Y, Boucau MC, Sevin E, Fenart L, Gosselet F (2015) Bexarotene promotes cholesterol efflux and restricts apical-to-basolateral transport of amyloid-beta peptides in an in vitro model of the human blood-brain barrier. J Alzheimers Dis 48:849–862CrossRefPubMedGoogle Scholar
  55. 55.
    Mariani MM, Malm T, Lamb R, Jay TR, Neilson L, Casali B, Medarametla L, Landreth GE (2017) Neuronally-directed effects of RXR activation in a mouse model of Alzheimer’s disease. Sci Rep 7:42270CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Bachmeier C, Beaulieu-Abdelahad D, Crawford F, Mullan M, Paris D (2013) Stimulation of the retinoid X receptor facilitates Beta-amyloid clearance across the blood–brain barrier. J Mol Neurosci 49:270–276CrossRefPubMedGoogle Scholar
  57. 57.
    Bomben V, Holth J, Reed J, Cramer P, Landreth G, Noebels J (2014) Bexarotene reduces network excitability in models of Alzheimer's disease and epilepsy. Neurobiol Aging 35:2091–2095CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Boehm-Cagan A, Michaelson DM (2014) Reversal of apoE4-driven brain pathology and behavioral deficits by Bexarotene. J Neurosci 34:7293–7301CrossRefPubMedGoogle Scholar
  59. 59.
    Nam KN, Mounier A, Fitz NF, Wolfe C, Schug J, Lefterov I, Koldamova R (2016) RXR controlled regulatory networks identified in mouse brain counteract deleterious effects of Aβ oligomers. Sci Rep 6:24048CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ho YS, Yang X, Lau JC, Hung CH, Wuwongse S, Zhang Q, Wang J, Baum L et al (2012) Endoplasmic reticulum stress induces tau pathology and forms a vicious cycle: Implication in Alzheimer’s disease pathogenesis. J Alzheimers Dis 28:839–854PubMedGoogle Scholar
  61. 61.
    Rozpędek W, Nowak A, Pytel D, Lewko D, Diehl JA, Majsterek I (2016) The role of the Amyloid Precursor Protein mutations and PERK-dependent signaling pathways in the pathogenesis of Alzheimer’s disease. Folia Biol Oecol 12:48Google Scholar
  62. 62.
    Zode GS, Sharma AB, Lin X, Searby CC, Bugge K, Kim GH, Clark AF, Sheffield VC (2014) Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma. J Clin Invest 124:1956–1965CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Paschen W, Mengesdorf T (2005) Endoplasmic reticulum stress response and neurodegeneration. Cell Calcium 38:409–415CrossRefPubMedGoogle Scholar
  64. 64.
    Kawahara K, Suenobu M, Ohtsuka H, Kuniyasu A, Sugimoto Y, Nakagomi M, Fukasawa H, Shudo K et al (2014) Cooperative therapeutic action of retinoic acid receptor and retinoid x receptor agonists in a mouse model of Alzheimer's disease. J Alzheimers Dis 42:587–605PubMedGoogle Scholar
  65. 65.
    Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13:184–190CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Ding W, Yang L, Zhang M, Gu Y (2012) Reactive oxygen species-mediated endoplasmic reticulum stress contributes to aldosterone-induced apoptosis in tubular epithelial cells. Biochem Biophys Res Commun 418:451–456CrossRefPubMedGoogle Scholar
  68. 68.
    Alvarez AR, Sandoval PC, Leal NR, Castro PU, Kosik KS (2004) Activation of the neuronal c-Abl tyrosine kinase by amyloid-β-peptide and reactive oxygen species. Neurobiol Dis 17:326–336CrossRefPubMedGoogle Scholar
  69. 69.
    Cancino GI, Toledo EM, Leal NR, Hernandez DE, Yévenes LF, Inestrosa NC, Alvarez AR (2008) STI571 prevents apoptosis, tau phosphorylation and behavioural impairments induced by Alzheimer's β-amyloid deposits. Brain 131:2425–2442CrossRefPubMedGoogle Scholar
  70. 70.
    Dummer R, Beyer M, Hymes K, Epping MT, Bernards R, Steinhoff M, Sterry W, Kerl H et al (2012) Vorinostat combined with bexarotene for treatment of cutaneous T-cell lymphoma: In vitro and phase I clinical evidence supporting augmentation of retinoic acid receptor/retinoid X receptor activation by histone deacetylase inhibition. Leuk Lymphoma 53:1501–1508CrossRefPubMedGoogle Scholar
  71. 71.
    Huuskonen MT, Loppi S, Dhungana H, Keksa-Goldsteine V, Lemarchant S, Korhonen P, Wojciechowski S, Pollari E et al (2016) Bexarotene targets autophagy and is protective against thromboembolic stroke in aged mice with tauopathy. Sci Rep 6:33176CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Chitranshi N, Dheer Y, Gupta V, Abbasi M, Mirzaei M, You Y, Chung R, Graham SL et al (2017) PTPN11 induces endoplasmic stress and apoptosis in SH-SY5Y cells. Neuroscience 364:175–189CrossRefPubMedGoogle Scholar
  73. 73.
    Gupta VK, You Y, Gupta VB, Klistorner A, Graham SL (2013) TrkB receptor Signalling: Implications in neurodegenerative, psychiatric and proliferative disorders. Int J Mol Sci 14:10122–10142CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Gupta VK, You Y, Li JC, Klistorner A, Graham SL (2013) Protective effects of 7,8-Dihydroxyflavone on retinal ganglion and RGC-5 cells against Excitotoxic and oxidative stress. J Mol Neurosci 49:96–104CrossRefPubMedGoogle Scholar
  75. 75.
    Nguyen N, Lee SB, Lee YS, Lee KH, Ahn JY (2009) Neuroprotection by NGF and BDNF against neurotoxin-exerted apoptotic death in neural stem cells are mediated through Trk receptors, activating PI3-kinase and MAPK pathways. Neurochem Res 34:942–951CrossRefPubMedGoogle Scholar
  76. 76.
    Wu CH, Hung TH, Chen CC, Ke CH, Lee CY, Wang PY, Chen SF (2014) Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS One 9:e113397CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Cazorla M, Jouvenceau A, Rose C, Guilloux JP, Pilon C, Dranovsky A, Premont J (2010) Cyclotraxin-B, the first highly potent and selective TrkB inhibitor, has anxiolytic properties in mice. PLoS One 5:e9777CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Gupta V, Chitranshi N, You Y, Gupta V, Klistorner A, Graham S (2014) Brain derived neurotrophic factor is involved in the regulation of glycogen synthase kinase 3beta (GSK3beta) signalling. Biochem Biophys Res Commun 454:381–386CrossRefPubMedGoogle Scholar
  79. 79.
    Gupta V, You Y, Li J, Gupta V, Golzan M, Klistorner A, van den Buuse M, Graham S (2014) BDNF impairment is associated with age-related changes in the inner retina and exacerbates experimental glaucoma. Biochim Biophys Acta 1842:1567–1578CrossRefPubMedGoogle Scholar
  80. 80.
    Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, Wang L, Blesch A et al (2009) Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nat Med 15:331–337CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Strober W (2015) Trypan blue exclusion test of cell viability. Curr Protoc Immunol 111:A3 B 1–A3 B 3CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Medicine and Health SciencesMacquarie UniversityNorth RydeAustralia
  2. 2.School of Medical SciencesEdith Cowan UniversityPerthAustralia
  3. 3.Department of Chemistry and Biomolecular SciencesMacquarie UniversityNorth RydeAustralia
  4. 4.Save Sight InstituteSydney UniversitySydneyAustralia

Personalised recommendations