Delivery of Brain-Derived Neurotrophic Factor by 3D Biocompatible Polymeric Scaffolds for Neural Tissue Engineering and Neuronal Regeneration

Abstract

Biopolymers are increasingly employed for neuroscience applications as scaffolds to drive and promote neural regrowth, thanks to their ability to mediate the upload and subsequent release of active molecules and drugs. Synthetic degradable polymers are characterized by different responses ranging from tunable distension or shrinkage to total dissolution, depending on the function they are designed for. In this paper we present a biocompatible microfabricated poly-ε-caprolactone (PCL) scaffold for primary neuron growth and maturation that has been optimized for the in vitro controlled release of brain-derived neurotrophic factor (BDNF). We demonstrate that the designed morphology confers to these devices an enhanced drug delivery capability with respect to monolithic unstructured supports. After incubation with BDNF, micropillared PCL devices progressively release the neurotrophin over 21 days in vitro. Moreover, the bioactivity of released BDNF is confirmed using primary neuronal cultures, where it mediates a consistent activation of BDNF signaling cascades, increased synaptic density, and neuronal survival. These results provide the proof-of-principle on the fabrication process of micropatterned PCL devices, which represent a promising therapeutic option to enhance neuronal regeneration after lesion and for neural tissue engineering and prosthetics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156. https://doi.org/10.1038/nrn1326

    CAS  Article  Google Scholar 

  2. 2.

    Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49(6):377–391

    CAS  Article  Google Scholar 

  3. 3.

    Orive G, Anitua E, Pedraz JL, Emerich DF (2009) Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci 10(9):682–692. https://doi.org/10.1038/nrn2685

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Huang L, Wang G (2017) The effects of different factors on the behavior of neural stem cells. Stem Cells Int 2017:9497325. https://doi.org/10.1155/2017/9497325

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Lancaster MA, Corsini NS, Wolfinger S, Gustafson EH, Phillips AW, Burkard TR, Otani T, Livesey FJ et al (2017) Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol 35(7):659–666. https://doi.org/10.1038/nbt.3906

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Wang LL, Zhang CL (2018) Engineering new neurons: in vivo reprogramming in mammalian brain and spinal cord. Cell Tissue Res 371(1):201–212. https://doi.org/10.1007/s00441-017-2729-2

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Faustino C, Rijo P, Reis CP (2017) Nanotechnological strategies for nerve growth factor delivery: therapeutic implications in Alzheimer’s disease. Pharmacol Res 120:68–87. https://doi.org/10.1016/j.phrs.2017.03.020

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Tam RY, Fuehrmann T, Mitrousis N, Shoichet MS (2014) Regenerative therapies for central nervous system diseases: a biomaterials approach. Neuropsychopharmacology 39(1):169–188. https://doi.org/10.1038/npp.2013.237

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12):2077–2082

    CAS  Article  Google Scholar 

  10. 10.

    Kim HJ, Lee JH, Im GI (2010) Chondrogenesis using mesenchymal stem cells and PCL scaffolds. J Biomed Mater Res A 92(2):659–666. https://doi.org/10.1002/jbm.a.32414

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Mathews A, Colombus S, Krishnan VK, Krishnan LK (2012) Vascular tissue construction on poly(epsilon-caprolactone) scaffolds by dynamic endothelial cell seeding: effect of pore size. J Tissue Eng Regen Med 6(6):451–461. https://doi.org/10.1002/term.449

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Shirian S, Ebrahimi-Barough S, Saberi H, Norouzi-Javidan A, Mousavi SM, Derakhshan MA, Arjmand B, Ai J (2016) Comparison of capability of human bone marrow mesenchymal stem cells and endometrial stem cells to differentiate into motor neurons on electrospun poly(epsilon-caprolactone) scaffold. Mol Neurobiol 53(8):5278–5287. https://doi.org/10.1007/s12035-015-9442-5

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Limongi T, Miele E, Shalabaeva V, Rocca RL, Schipani R, Malara N, Angelis FD, Giugni A, Fabrizio ED (2015) Development, characterization and cell cultural response of 3D biocompatible micro-patterned poly-ε-caprolactone scaffolds designed and fabricated integrating lithography and micromolding fabrication techniques. J Tissue Sci Eng

  14. 14.

    Cesca F, Limongi T, Accardo A, Rocchi A, Orlando M, Shalabaeva V, Di Fabrizio E, Benfenati F (2014) Fabrication of biocompatible free-standing nanopatterned films for primary neuronal cultures. RSC Adv 4(86):45696–45702. https://doi.org/10.1039/C4RA08361J

    CAS  Article  Google Scholar 

  15. 15.

    Victorio SC, Havton LA, Oliveira AL (2010) Absence of IFNγ expression induces neuronal degeneration in the spinal cord of adult mice. J Neuroinflammation 7:77. https://doi.org/10.1186/1742-2094-7-77

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Zhang L, Ma Z, Smith GM, Wen X, Pressman Y, Wood PM, Xu XM (2009) GDNF-enhanced axonal regeneration and myelination following spinal cord injury is mediated by primary effects on neurons. Glia 57(11):1178–1191. https://doi.org/10.1002/glia.20840

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173. https://doi.org/10.1146/annurev-chembioeng-073009-100847

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Dash TK, Konkimalla VB (2012) Polymeric modification and its implication in drug delivery: poly-epsilon-caprolactone (PCL) as a model polymer. Mol Pharm 9(9):2365–2379. https://doi.org/10.1021/mp3001952

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Sanna V, Siddiqui IA, Sechi M, Mukhtar H (2013) Resveratrol-loaded nanoparticles based on poly(epsilon-caprolactone) and poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) blend for prostate cancer treatment. Mol Pharm 10(10):3871–3881. https://doi.org/10.1021/mp400342f

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Siafaka PI, Barmpalexis P, Lazaridou M, Papageorgiou GZ, Koutris E, Karavas E, Kostoglou M, Bikiaris DN (2015) Controlled release formulations of risperidone antipsychotic drug in novel aliphatic polyester carriers: data analysis and modelling. Eur J Pharm Biopharm 94:473–484. https://doi.org/10.1016/j.ejpb.2015.06.027

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Limongi T, Cesca F, Gentile F, Marotta R, Ruffilli R, Barberis A, Dal Maschio M, Petrini EM et al (2013) Nanostructured superhydrophobic substrates trigger the development of 3D neuronal networks. Small 9(3):402–412. https://doi.org/10.1002/smll.201201377

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Limongi T, Pagliari G, Allione P, Candeloro FD (2017) Fabrication and applications of micro/nanostructured devices for tissue engineering. Nano-Micro Letters 9(1)

  23. 23.

    Garraway SM, Huie JR (2016) Spinal plasticity and behavior: BDNF-induced neuromodulation in uninjured and injured spinal cord. Neural Plast 2016:9857201. https://doi.org/10.1155/2016/9857201

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Cesca F, Yabe A, Spencer-Dene B, Scholz-Starke J, Medrihan L, Maden CH, Gerhardt H, Orriss IR et al (2012) Kidins220/ARMS mediates the integration of the neurotrophin and VEGF pathways in the vascular and nervous systems. Cell Death Differ 19(2):194–208. https://doi.org/10.1038/cdd.2011.141

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Yoshii A, Constantine-Paton M (2010) Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol 70(5):304–322. https://doi.org/10.1002/dneu.20765

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64(2):238–258. https://doi.org/10.1124/pr.111.005108

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Limongi T, Giugni A, Tan H, Bukhari EM, Torre B, Allione M, Marini M, Tirinato L et al (2015) Fabrication, mercury intrusion porosimetry characterization and in vitro qualitative analysis of biocompatibility of various porosities polycaprolactone scaffolds. J Tissue Sci Eng 6. https://doi.org/10.4172/2157-7552.1000159

  28. 28.

    Kelamangalath L, Smith GM (2013) Neurotrophin treatment to promote regeneration after traumatic CNS injury. Front Biol (Beijing) 8(5):486–495. https://doi.org/10.1007/s11515-013-1269-8

    CAS  Article  Google Scholar 

  29. 29.

    Wilhelm JC, Xu M, Cucoranu D, Chmielewski S, Holmes T, Lau KS, Bassell GJ, English AW (2012) Cooperative roles of BDNF expression in neurons and Schwann cells are modulated by exercise to facilitate nerve regeneration. J Neurosci 32(14):5002–5009. https://doi.org/10.1523/JNEUROSCI.1411-11.2012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Revest JM, Le Roux A, Roullot-Lacarriere V, Kaouane N, Vallee M, Kasanetz F, Rouge-Pont F, Tronche F et al (2014) BDNF-TrkB signaling through Erk1/2 MAPK phosphorylation mediates the enhancement of fear memory induced by glucocorticoids. Mol Psychiatry 19(9):1001–1009. https://doi.org/10.1038/mp.2013.134

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Chikar JA, Hendricks JL, Richardson-Burns SM, Raphael Y, Pfingst BE, Martin DC (2012) The use of a dual PEDOT and RGD-functionalized alginate hydrogel coating to provide sustained drug delivery and improved cochlear implant function. Biomaterials 33(7):1982–1990. https://doi.org/10.1016/j.biomaterials.2011.11.052

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Quigley AF, Bulluss KJ, Kyratzis IL, Gilmore K, Mysore T, Schirmer KS, Kennedy EL, O'Shea M et al (2013) Engineering a multimodal nerve conduit for repair of injured peripheral nerve. J Neural Eng 10(1):016008. https://doi.org/10.1088/1741-2560/10/1/016008

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by the King Abdullah University of Science and Technology start-up funding and by research grants from the European Union FP7 “Neuroscaffolds” (grant number 604263 to FB), Compagnia di San Paolo-Italy (to FC).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Fabio Benfenati or Enzo Di Fabrizio.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interest.

Additional information

F. Benfenati and E. Di Fabrizio are senior authors and corresponders.

Electronic supplementary material

ESM 1

(DOCX 153 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Limongi, T., Rocchi, A., Cesca, F. et al. Delivery of Brain-Derived Neurotrophic Factor by 3D Biocompatible Polymeric Scaffolds for Neural Tissue Engineering and Neuronal Regeneration. Mol Neurobiol 55, 8788–8798 (2018). https://doi.org/10.1007/s12035-018-1022-z

Download citation

Keywords

  • Microfabrication
  • Biopolymer
  • Drug delivery
  • Primary neurons
  • BDNF
  • Neural tissue engineering