Advertisement

HERC1 Ubiquitin Ligase Is Required for Normal Axonal Myelination in the Peripheral Nervous System

  • Sara Bachiller
  • María Angustias Roca-Ceballos
  • Irene García-Domínguez
  • Eva María Pérez-Villegas
  • David Martos-Carmona
  • Miguel Ángel Pérez-Castro
  • Luis Miguel Real
  • José Luis Rosa
  • Lucía Tabares
  • José Luis Venero
  • José Ángel Armengol
  • Ángel Manuel Carrión
  • Rocío Ruiz
Article

Abstract

A missense mutation in HERC1 provokes loss of cerebellar Purkinje cells, tremor, and unstable gait in tambaleante (tbl) mice. Recently, we have shown that before cerebellar degeneration takes place, the tbl mouse suffers from a reduction in the number of vesicles available for release at the neuromuscular junction (NMJ). The aim of the present work was to study to which extent the alteration in HERC1 may affect other cells in the nervous system and how this may influence the motor dysfunction observed in these mice. The functional analysis showed a consistent delay in the propagation of the action potential in mutant mice in comparison with control littermates. Morphological analyses of glial cells in motor axons revealed signs of compact myelin damage as tomacula and local hypermyelination foci. Moreover, we observed an alteration in non-myelinated terminal Schwann cells at the level of the NMJ. Additionally, we found a significant increment of phosphorylated Akt-2 in the sciatic nerve. Based on these findings, we propose a molecular model that could explain how mutated HERC1 in tbl mice affects the myelination process in the peripheral nervous system. Finally, since the myelin abnormalities found in tbl mice are histological hallmarks of neuropathic periphery diseases, tbl mutant mice could be considered as a new mouse model for this type of diseases.

Keywords

Inherited peripheral neuropathies Myelin Proteasome Charcot-Marie-tooth Neuromuscular junction 

Notes

Acknowledgements

This work was supported by grants to AMC and RR from the Fundación Ramón Areces—Spain—and DGICYT—Spain (Departamento Gubernamental de Investigaciones Científicas y Tecnológicas: BFU2011-27207); RR [Juan de la Cierva contract JCI-2011-08888 from the Ministerio de Economía y Competitividad (MINECO) and VPPI-US from the University of Seville]; JLV and RRL (MINECO: SAF2015-64171-R); JAA (Spanish Junta de Andalucía BIO-122 and DGICYT BFU2015-64536-R), and SB was supported by the Fundación Ramón Areces fellowships; LMR is the recipient of a grant from the Servicio Andaluz de Salud de la Junta de Andalucía (C-0009-2015). We are grateful to Juan Luis Ribas, Cristina Vaquero, and Asunción Fernández for their helpful technical supports (CITIUS, University of Seville) and to Drs. Manuel Sarmiento and Karin Neukam for their helpful comments and for editorial assistance.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interests.

Supplementary material

12035_2018_1021_Fig9_ESM.gif (700 kb)
Supplementary Figure 1

In transverse sections of the Ranvier node, the aspect of Schwann cells’ microvilli surrounding the nodal membrane (A) (see [41]) was substituted in tbl axons by irregular concentric myelin figs. (B, arrow). Electron microphotographs of transverse sections of tbl sciatic nerve showed: Increased periaxonal space (C, arrow) and anomalous inner mesaxon (D, arrows) together to tomacula of different sizes (E, asterisks). Less affected tbl small and medium size myelinated axons do not show great signs of hypermyelination (H-I) as compared with control axons (F-G) of the same diameter. The number of axons (J) and the percentage (K) per Remak fiber are higher in tbl mice. Scale bars: 5 μm (B), 2 μm (A, E), 1 μm (C, D), 0.5 μm (F, H), and 0.2 μm (G, I). **P < 0.005; ***P < 0.0005. (GIF 700 kb)

12035_2018_1021_MOESM1_ESM.eps (286.3 mb)
High resolution image (EPS 293196 kb)

References

  1. 1.
    Mashimo T, Hadjebi O, Amair-Pinedo F, Tsurumi T, Langa F, Serikawa T, Sotelo C, Guenet JL et al (2009) Progressive Purkinje cell degeneration in tambaleante mutant mice is a consequence of a missense mutation in HERC1 E3 ubiquitin ligase. PLoS Genet 5(12):e1000784CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rossi F, Jankovski A, Sotelo C (1995) Target neuron controls the integrity of afferent axon phenotype: a study on the Purkinje cell-climbing fiber system in cerebellar mutant mice. J Neurosci 15(3 Pt 1):2040–2056PubMedGoogle Scholar
  3. 3.
    Wassef M, Sotelo C, Cholley B, Brehier A, Thomasset M (1987) Cerebellar mutations affecting the postnatal survival of Purkinje cells in the mouse disclose a longitudinal pattern of differentially sensitive cells. Dev Biol 124(2):379–389CrossRefPubMedGoogle Scholar
  4. 4.
    Porras-Garcia ME, Ruiz R, Perez-Villegas EM, Armengol JA (2013) Motor learning of mice lacking cerebellar Purkinje cells. Front Neuroanat 7:4CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bachiller S, Rybkina T, Porras-Garcia E, Perez-Villegas E, Tabares L, Armengol JA, Carrion AM, Ruiz R (2015) The HERC1 E3 Ubiquitin Ligase is essential for normal development and for neurotransmission at the mouse neuromuscular junction. Cell Mol Life Sci 72(15):2961–2971CrossRefPubMedGoogle Scholar
  6. 6.
    Hegde AN, Upadhya SC (2007) The ubiquitin-proteasome pathway in health and disease of the nervous system. Trends Neurosci 30(11):587–595CrossRefPubMedGoogle Scholar
  7. 7.
    van Tijn P, Hol EM, van Leeuwen FW, Fischer DF (2008) The neuronal ubiquitin-proteasome system: murine models and their neurological phenotype. Prog Neurobiol 85(2):176–193CrossRefPubMedGoogle Scholar
  8. 8.
    Sanchez-Tena S, Cubillos-Rojas M, Schneider T, Rosa JL (2016) Functional and pathological relevance of HERC family proteins: a decade later. Cell Mol Life Sci 73(10):1955–1968CrossRefPubMedGoogle Scholar
  9. 9.
    Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, Yang Y, Fecto F et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477(7363):211–215CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dlamini N, Josifova DJ, Paine SM, Wraige E, Pitt M, Murphy AJ, King A, Buk S et al (2013) Clinical and neuropathological features of X-linked spinal muscular atrophy (SMAX2) associated with a novel mutation in the UBA1 gene. Neuromuscul Disord 23(5):391–398CrossRefPubMedGoogle Scholar
  11. 11.
    Ramser J, Ahearn ME, Lenski C, Yariz KO, Hellebrand H, von Rhein M, Clark RD, Schmutzler RK et al (2008) Rare missense and synonymous variants in UBE1 are associated with X-linked infantile spinal muscular atrophy. Am J Hum Genet 82(1):188–193CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rusmini P, Sau D, Crippa V, Palazzolo I, Simonini F, Onesto E, Martini L, Poletti A (2007) Aggregation and proteasome: the case of elongated polyglutamine aggregation in spinal and bulbar muscular atrophy. Neurobiol Aging 28(7):1099–1111CrossRefPubMedGoogle Scholar
  13. 13.
    Aghamaleky Sarvestany A, Hunter G, Tavendale A, Lamont DJ, Llavero Hurtado M, Graham LC, Wishart TM, Gillingwater TH (2014) Label-free quantitative proteomic profiling identifies disruption of ubiquitin homeostasis as a key driver of Schwann cell defects in spinal muscular atrophy. J Proteome Res 13(11):4546–4557CrossRefPubMedGoogle Scholar
  14. 14.
    Bogdanik LP, Sleigh JN, Tian C, Samuels ME, Bedard K, Seburn KL, Burgess RW (2013) Loss of the E3 ubiquitin ligase LRSAM1 sensitizes peripheral axons to degeneration in a mouse model of Charcot-Marie-Tooth disease. Dis Model Mech 6(3):780–792CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Saifi GM, Szigeti K, Wiszniewski W, Shy ME, Krajewski K, Hausmanowa-Petrusewicz I, Kochanski A, Reeser S et al (2005) SIMPLE mutations in Charcot-Marie-Tooth disease and the potential role of its protein product in protein degradation. Hum Mutat 25(4):372–383CrossRefPubMedGoogle Scholar
  16. 16.
    Ylikallio E, Poyhonen R, Zimon M, De Vriendt E, Hilander T, Paetau A, Jordanova A, Lonnqvist T et al (2013) Deficiency of the E3 ubiquitin ligase TRIM2 in early-onset axonal neuropathy. Hum Mol Genet 22(15):2975–2983CrossRefPubMedGoogle Scholar
  17. 17.
    Lobsiger CS, Cleveland DW (2007) Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci 10(11):1355–1360CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Colomar A, Robitaille R (2004) Glial modulation of synaptic transmission at the neuromuscular junction. Glia 47(3):284–289CrossRefPubMedGoogle Scholar
  19. 19.
    Rousse I, Robitaille R (2006) Calcium signaling in Schwann cells at synaptic and extra-synaptic sites: active glial modulation of neuronal activity. Glia 54(7):691–699CrossRefPubMedGoogle Scholar
  20. 20.
    Hunter G, Aghamaleky Sarvestany A, Roche SL, Symes RC, Gillingwater TH (2014) SMN-dependent intrinsic defects in Schwann cells in mouse models of spinal muscular atrophy. Hum Mol Genet 23(9):2235–2250CrossRefPubMedGoogle Scholar
  21. 21.
    Ilieva H, Polymenidou M, Cleveland DW (2009) Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 187(6):761–772CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hunter G, Powis RA, Jones RA, Groen EJ, Shorrock HK, Lane FM, Zheng Y, Sherman DL, Brophy PJ, Gillingwater TH (2016) Restoration of SMN in Schwann cells reverses myelination defects and improves neuromuscular function in spinal muscular atrophy. Hum Mol GenetGoogle Scholar
  23. 23.
    Erzen I, Cvetko E, Obreza S, Angaut-Petit D (2000) Fiber types in the mouse levator auris longus muscle: a convenient preparation to study muscle and nerve plasticity. J Neurosci Res 59(5):692–697CrossRefPubMedGoogle Scholar
  24. 24.
    Ruiz R, Casanas JJ, Torres-Benito L, Cano R, Tabares L (2010) Altered intracellular Ca2+ homeostasis in nerve terminals of severe spinal muscular atrophy mice. J Neurosci 30(3):849–857CrossRefPubMedGoogle Scholar
  25. 25.
    Ruiz R, Biea IA, Tabares L (2014) alpha-Synuclein A30P decreases neurodegeneration and increases synaptic vesicle release probability in CSPalpha-null mice. Neuropharmacology 76 Pt A:106–117CrossRefPubMedGoogle Scholar
  26. 26.
    Ruiz R, Casanas JJ, Sudhof TC, Tabares L (2008) Cysteine string protein-alpha is essential for the high calcium sensitivity of exocytosis in a vertebrate synapse. Eur J Neurosci 27(12):3118–3131CrossRefPubMedGoogle Scholar
  27. 27.
    Ruiz R, Tabares L (2014) Neurotransmitter release in motor nerve terminals of a mouse model of mild spinal muscular atrophy. J Anat 224(1):74–84CrossRefPubMedGoogle Scholar
  28. 28.
    Ruiz R, Cano R, Casanas JJ, Gaffield MA, Betz WJ, Tabares L (2011) Active zones and the readily releasable pool of synaptic vesicles at the neuromuscular junction of the mouse. J Neurosci 31(6):2000–2008CrossRefPubMedGoogle Scholar
  29. 29.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  30. 30.
    Burguillos MA, Svensson M, Schulte T, Boza-Serrano A, Garcia-Quintanilla A, Kavanagh E, Santiago M, Viceconte N, Oliva-Martin MJ, Osman AM, Salomonsson E, Amar L, Persson A, Blomgren K, Achour A, Englund E, Leffler H, Venero JL, Joseph B, Deierborg T (2015) Microglia-secreted Galectin-3 acts as a toll-like receptor 4 ligand and contributes to microglial activation. Cell RepGoogle Scholar
  31. 31.
    Ruiz R, Perez-Villegas EM, Bachiller S, Rosa JL, Armengol JA (2016) HERC 1 ubiquitin ligase mutation affects neocortical, CA3 hippocampal and spinal cord projection neurons: an ultrastructural study. Front Neuroanat 10:42CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682CrossRefPubMedGoogle Scholar
  33. 33.
    Murinson BB, Griffin JW (2004) C-fiber structure varies with location in peripheral nerve. J Neuropathol Exp Neurol 63(3):246–254CrossRefPubMedGoogle Scholar
  34. 34.
    Orita S, Henry K, Mantuano E, Yamauchi K, De Corato A, Ishikawa T, Feltri ML, Wrabetz L et al (2013) Schwann cell LRP1 regulates remak bundle ultrastructure and axonal interactions to prevent neuropathic pain. J Neurosci 33(13):5590–5602CrossRefPubMedGoogle Scholar
  35. 35.
    Arnold AS, Gill J, Christe M, Ruiz R, McGuirk S, St-Pierre J, Tabares L, Handschin C (2014) Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1alpha. Nat Commun 5:3569CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Datyner NB, Gage PW (1980) Phasic secretion of acetylcholine at a mammalian neuromuscular junction. J Physiol 303:299–314CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sabatini BL, Regehr WG (1996) Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384(6605):170–172CrossRefPubMedGoogle Scholar
  38. 38.
    Ludwin SK, Kosek JC, Eng LF (1976) The topographical distribution of S-100 and GFA proteins in the adult rat brain: an immunohistochemical study using horseradish peroxidase-labelled antibodies. J Comp Neurol 165(2):197–207CrossRefPubMedGoogle Scholar
  39. 39.
    Griffin JW, Thompson WJ (2008) Biology and pathology of nonmyelinating Schwann cells. Glia 56(14):1518–1531CrossRefPubMedGoogle Scholar
  40. 40.
    Scherer SS, Wrabetz L (2008) Molecular mechanisms of inherited demyelinating neuropathies. Glia 56(14):1578–1589CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Trapp BD, Kidd GJ (2004) Structure of the myelinated axon, vol 1. Myelin biology and disorders. Elsevier, AmsterdamGoogle Scholar
  42. 42.
    Nagai J, Uchida H, Matsushita Y, Yano R, Ueda M, Niwa M, Aoki J, Chun J et al (2010) Autotaxin and lysophosphatidic acid1 receptor-mediated demyelination of dorsal root fibers by sciatic nerve injury and intrathecal lysophosphatidylcholine. Mol Pain 6:78CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chong-Kopera H, Inoki K, Li Y, Zhu T, Garcia-Gonzalo FR, Rosa JL, Guan KL (2006) TSC1 stabilizes TSC2 by inhibiting the interaction between TSC2 and the HERC1 ubiquitin ligase. J Biol Chem 281(13):8313–8316CrossRefPubMedGoogle Scholar
  44. 44.
    Domenech-Estevez E, Baloui H, Meng X, Zhang Y, Deinhardt K, Dupree JL, Einheber S, Chrast R et al (2016) Akt regulates axon wrapping and myelin sheath thickness in the PNS. J Neurosci 36(16):4506–4521CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Angaut-Petit D, McArdle JJ, Mallart A, Bournaud R, Pincon-Raymond M, Rieger F (1982) Electrophysiological and morphological studies of a motor nerve in 'motor endplate disease' of the mouse. Proc R Soc Lond B Biol Sci 215(1198):117–125CrossRefPubMedGoogle Scholar
  46. 46.
    Edwards JP, Lee CC, Duchen LW (1994) The evolution of an experimental distal motor axonopathy. Physiological studies of changes in neuromuscular transmission caused by cycloleucine, an inhibitor of methionine adenosyltransferase. Brain 117(Pt 5):959–974CrossRefPubMedGoogle Scholar
  47. 47.
    Feng Z, Koirala S, Ko CP (2005) Synapse-glia interactions at the vertebrate neuromuscular junction. Neuroscientist 11(5):503–513CrossRefPubMedGoogle Scholar
  48. 48.
    Ko CP, Robitaille R (2015) Perisynaptic Schwann cells at the neuromuscular synapse: adaptable, multitasking glial cells. Cold Spring Harb Perspect Biol 7(10):a020503CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Reddy LV, Koirala S, Sugiura Y, Herrera AA, Ko CP (2003) Glial cells maintain synaptic structure and function and promote development of the neuromuscular junction in vivo. Neuron 40(3):563–580CrossRefPubMedGoogle Scholar
  50. 50.
    Fernandez-Chacon R, Wolfel M, Nishimune H, Tabares L, Schmitz F, Castellano-Munoz M, Rosenmund C, Montesinos ML et al (2004) The synaptic vesicle protein CSP alpha prevents presynaptic degeneration. Neuron 42(2):237–251CrossRefPubMedGoogle Scholar
  51. 51.
    Patton BL, Chiu AY, Sanes JR (1998) Synaptic laminin prevents glial entry into the synaptic cleft. Nature 393(6686):698–701CrossRefPubMedGoogle Scholar
  52. 52.
    Voigt T, Meyer K, Baum O, Schumperli D (2010) Ultrastructural changes in diaphragm neuromuscular junctions in a severe mouse model for spinal muscular atrophy and their prevention by bifunctional U7 snRNA correcting SMN2 splicing. Neuromuscul Disord 20(11):744–752CrossRefPubMedGoogle Scholar
  53. 53.
    Mirsky R, Woodhoo A, Parkinson DB, Arthur-Farraj P, Bhaskaran A, Jessen KR (2008) Novel signals controlling embryonic Schwann cell development, myelination and dedifferentiation. J Peripher Nerv Syst 13(2):122–135CrossRefPubMedGoogle Scholar
  54. 54.
    Herbert AL, Monk KR (2017) Advances in myelinating glial cell development. Curr Opin Neurobiol 42:53–60CrossRefPubMedGoogle Scholar
  55. 55.
    Herskovitz S, Scelsa S, Schaumburg H. (2014) Electrodiagnostic, imaging, nerve, and skin biopsy investigation in peripheral nerve disease. Peripheral neuropathies in clinical practice. Oxford University Press, OxfordGoogle Scholar
  56. 56.
    Perez-Villegas EM, Negrete-Diaz JV, Porras-Garcia ME, Ruiz R, Carrion AM, Rodriguez-Moreno A, Armengol JA (2017) Mutation of the HERC 1 ubiquitin ligase impairs associative learning in the lateral amygdala. Mol NeurobiolGoogle Scholar
  57. 57.
    Adlkofer K, Frei R, Neuberg DH, Zielasek J, Toyka KV, Suter U (1997) Heterozygous peripheral myelin protein 22-deficient mice are affected by a progressive demyelinating tomaculous neuropathy. J Neurosci 17(12):4662–4671PubMedGoogle Scholar
  58. 58.
    Goebbels S, Oltrogge JH, Kemper R, Heilmann I, Bormuth I, Wolfer S, Wichert SP, Mobius W et al (2010) Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J Neurosci 30(26):8953–8964CrossRefPubMedGoogle Scholar
  59. 59.
    Goebbels S, Oltrogge JH, Wolfer S, Wieser GL, Nientiedt T, Pieper A, Ruhwedel T, Groszer M et al (2012) Genetic disruption of Pten in a novel mouse model of tomaculous neuropathy. EMBO Mol Med 4(6):486–499CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Beirowski B, Wong KM, Babetto E, Milbrandt J (2017) mTORC1 promotes proliferation of immature Schwann cells and myelin growth of differentiated Schwann cells. Proc Natl Acad Sci U S A 114(21):E4261–E4270CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Figlia G, Norrmen C, Pereira JA, Gerber D, Suter U (2017) Dual function of the PI3K-Akt-mTORC1 axis in myelination of the peripheral nervous system. elife 6Google Scholar
  62. 62.
    Maurel P, Salzer JL (2000) Axonal regulation of Schwann cell proliferation and survival and the initial events of myelination requires PI 3-kinase activity. J Neurosci 20(12):4635–4645PubMedGoogle Scholar
  63. 63.
    Ogata T, Iijima S, Hoshikawa S, Miura T, Yamamoto S, Oda H, Nakamura K, Tanaka S (2004) Opposing extracellular signal-regulated kinase and Akt pathways control Schwann cell myelination. J Neurosci 24(30):6724–6732CrossRefPubMedGoogle Scholar
  64. 64.
    Bolis A, Coviello S, Bussini S, Dina G, Pardini C, Previtali SC, Malaguti M, Morana P et al (2005) Loss of Mtmr2 phosphatase in Schwann cells but not in motor neurons causes Charcot-Marie-Tooth type 4B1 neuropathy with myelin outfoldings. J Neurosci 25(37):8567–8577CrossRefPubMedGoogle Scholar
  65. 65.
    Tersar K, Boentert M, Berger P, Bonneick S, Wessig C, Toyka KV, Young P, Suter U (2007) Mtmr13/Sbf2-deficient mice: an animal model for CMT4B2. Hum Mol Genet 16(24):2991–3001CrossRefPubMedGoogle Scholar
  66. 66.
    Golan N, Kartvelishvily E, Spiegel I, Salomon D, Sabanay H, Rechav K, Vainshtein A, Frechter S et al (2013) Genetic deletion of Cadm4 results in myelin abnormalities resembling Charcot-Marie-Tooth neuropathy. J Neurosci 33(27):10950–10961CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lee SM, Sha D, Mohammed AA, Asress S, Glass JD, Chin LS, Li L (2013) Motor and sensory neuropathy due to myelin infolding and paranodal damage in a transgenic mouse model of Charcot-Marie-Tooth disease type 1C. Hum Mol Genet 22(9):1755–1770CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Adlkofer K, Martini R, Aguzzi A, Zielasek J, Toyka KV, Suter U (1995) Hypermyelination and demyelinating peripheral neuropathy in Pmp22-deficient mice. Nat Genet 11(3):274–280CrossRefPubMedGoogle Scholar
  69. 69.
    Murakami T, Garcia CA, Reiter LT, Lupski JR (1996) Charcot-Marie-Tooth disease and related inherited neuropathies. Medicine (Baltimore) 75(5):233–250CrossRefGoogle Scholar
  70. 70.
    Pareyson D (1999) Charcot-marie-tooth disease and related neuropathies: molecular basis for distinction and diagnosis. Muscle Nerve 22(11):1498–1509CrossRefPubMedGoogle Scholar
  71. 71.
    Aggarwal S, Bhowmik AD, Ramprasad VL, Murugan S, Dalal A (2016) A splice site mutation in HERC1 leads to syndromic intellectual disability with macrocephaly and facial dysmorphism: Further delineation of the phenotypic spectrum. Am J Med Genet A 170(7):1868–1873CrossRefPubMedGoogle Scholar
  72. 72.
    Nguyen LS, Schneider T, Rio M, Moutton S, Siquier-Pernet K, Verny F, Boddaert N, Desguerre I et al (2016) A nonsense variant in HERC1 is associated with intellectual disability, megalencephaly, thick corpus callosum and cerebellar atrophy. Eur J Hum Genet 24(3):455–458CrossRefPubMedGoogle Scholar
  73. 73.
    Ortega-Recalde O, Beltran OI, Galvez JM, Palma-Montero A, Restrepo CM, Mateus HE, Laissue P (2015) Biallelic HERC1 mutations in a syndromic form of overgrowth and intellectual disability. Clin Genet 88(4):e1–e3CrossRefPubMedGoogle Scholar
  74. 74.
    Utine GE, Taskiran EZ, Kosukcu C, Karaosmanoglu B, Guleray N, Dogan OA, Kiper PO, Boduroglu K, Alikasifoglu M (2017) HERC1 mutations in idiopathic intellectual disability. Eur J Med GenetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sara Bachiller
    • 1
  • María Angustias Roca-Ceballos
    • 2
  • Irene García-Domínguez
    • 2
  • Eva María Pérez-Villegas
    • 1
  • David Martos-Carmona
    • 1
  • Miguel Ángel Pérez-Castro
    • 2
  • Luis Miguel Real
    • 3
  • José Luis Rosa
    • 4
  • Lucía Tabares
    • 5
  • José Luis Venero
    • 2
  • José Ángel Armengol
    • 1
  • Ángel Manuel Carrión
    • 1
  • Rocío Ruiz
    • 1
    • 2
  1. 1.Department of Physiology, Anatomy and Cellular BiologyUniversity of Pablo de OlavideSevilleSpain
  2. 2.Department of Biochemistry and Molecular Biology, School of PharmacyUniversity of Seville, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
  3. 3.Unit of Infectious Diseases and MicrobiologyValme University HospitalSevilleSpain
  4. 4.Departament de Ciències Fisiològiques II, IDIBELL, Campus de BellvitgeUniversitat de BarcelonaBarcelonaSpain
  5. 5.Department of Medical Physiology and Biophysics, School of MedicineUniversity of SevilleSevilleSpain

Personalised recommendations