Advertisement

The Synthetic Steroid Tibolone Decreases Reactive Gliosis and Neuronal Death in the Cerebral Cortex of Female Mice After a Stab Wound Injury

  • Andrea Crespo-Castrillo
  • Natalia Yanguas-Casás
  • Maria Angeles Arevalo
  • Iñigo Azcoitia
  • George E. Barreto
  • Luis M. Garcia-Segura
Article
  • 161 Downloads

Abstract

Previous studies have shown that estradiol reduces reactive gliosis after a stab wound injury in the cerebral cortex. Since the therapeutic use of estradiol is limited by its peripheral hormonal effects, it is of interest to determine whether synthetic estrogenic compounds with tissue-specific actions regulate reactive gliosis. Tibolone is a synthetic steroid that is widely used for the treatment of climacteric symptoms and/or the prevention of osteoporosis. In this study, we have assessed the effect of tibolone on reactive gliosis in the cerebral cortex after a stab wound brain injury in ovariectomized adult female mice. By 7 days after brain injury, tibolone reduced the number of glial fibrillary acidic protein (GFAP) immunoreactive astrocytes, the number of ionized calcium binding adaptor molecule 1 (Iba1) immunoreactive microglia, and the number of microglial cells with a reactive phenotype in comparison to vehicle-injected animals. These effects on gliosis were associated with a reduction in neuronal loss in the proximity to the wound, suggesting that tibolone exerts beneficial homeostatic actions in the cerebral cortex after an acute brain injury.

Keywords

Astrocytes Microglia Neuroinflammation Neuroprotection Steroid receptors Brain trauma 

Notes

Acknowledgements

We thank Elisa Baides Rosell for excellent technical assistance.

Funding

This work was supported by grants from Ministerio de Economía, Industria y Competitividad (MINECO), Spain (grant numbers BFU2014–51836-C2-1-R and BFU2017-82754-R), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), and Instituto de Salud Carlos III, Madrid, Spain and Fondos Feder.

Compliance with Ethical Standards

All procedures involving animals were approved by the CSIC institutional animal use and care committee and by the Comunidad de Madrid (PROEX 134/17) and followed the European Parliament and Council Directive (2010/63/EU) and the Spanish regulation (Ley 6/2013, 11th June) on the protection of animals for experimental use.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Petrone AB, Simpkins JW, Barr TL (2014) 17beta-estradiol and inflammation: implications for ischemic stroke. Aging Dis 5(5):340–345.  https://doi.org/10.14336/AD.2014.0500340 PubMedPubMedCentralGoogle Scholar
  2. 2.
    Arevalo MA, Azcoitia I, Garcia-Segura LM (2015) The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci 16(1):17–29.  https://doi.org/10.1038/nrn3856 CrossRefPubMedGoogle Scholar
  3. 3.
    Sohrabji F (2015) Estrogen-IGF-1 interactions in neuroprotection: ischemic stroke as a case study. Front Neuroendocrinol 36:1–14.  https://doi.org/10.1016/j.yfrne.2014.05.003 CrossRefPubMedGoogle Scholar
  4. 4.
    Thakkar R, Sareddy GR, Zhang Q, Wang R, Vadlamudi RK, Brann D (2018) PELP1—a key mediator of estrogen signaling and actions in the brain. J Neuroendocrinol 30:e12484.  https://doi.org/10.1111/jne.12484 CrossRefGoogle Scholar
  5. 5.
    Day NL, Floyd CL, D'Alessandro TL, Hubbard WJ, Chaudry IH (2013) 17beta-estradiol confers protection after traumatic brain injury in the rat and involves activation of G protein-coupled estrogen receptor 1. J Neurotrauma 30(17):1531–1541.  https://doi.org/10.1089/neu.2013.2854 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lu H, Ma K, Jin L, Zhu H, Cao R (2018) 17beta-estradiol rescues damages following traumatic brain injury from molecule to behavior in mice. J Cell Physiol 233(2):1712–1722.  https://doi.org/10.1002/jcp.26083 CrossRefPubMedGoogle Scholar
  7. 7.
    Garcia-Estrada J, Del Rio JA, Luquin S, Soriano E, Garcia-Segura LM (1993) Gonadal hormones down-regulate reactive gliosis and astrocyte proliferation after a penetrating brain injury. Brain Res 628(1–2):271–278CrossRefPubMedGoogle Scholar
  8. 8.
    Barreto G, Veiga S, Azcoitia I, Garcia-Segura LM, Garcia-Ovejero D (2007) Testosterone decreases reactive astroglia and reactive microglia after brain injury in male rats: role of its metabolites, oestradiol and dihydrotestosterone. Eur J Neurosci 25(10):3039–3046.  https://doi.org/10.1111/j.1460-9568.2007.05563.x CrossRefPubMedGoogle Scholar
  9. 9.
    Lopez Rodriguez AB, Mateos Vicente B, Romero-Zerbo SY, Rodriguez-Rodriguez N, Bellini MJ, Rodriguez de Fonseca F, Bermudez-Silva FJ, Azcoitia I et al (2011) Estradiol decreases cortical reactive astrogliosis after brain injury by a mechanism involving cannabinoid receptors. Cereb Cortex 21(9):2046–2055.  https://doi.org/10.1093/cercor/bhq277 CrossRefPubMedGoogle Scholar
  10. 10.
    Perez-Alvarez MJ, Mateos L, Alonso A, Wandosell F (2015) Estradiol and progesterone administration after pMCAO stimulates the neurological recovery and reduces the detrimental effect of ischemia mainly in hippocampus. Mol Neurobiol 52(3):1690–1703.  https://doi.org/10.1007/s12035-014-8963-7 CrossRefPubMedGoogle Scholar
  11. 11.
    Perez-Alvarez MJ, Maza Mdel C, Anton M, Ordonez L, Wandosell F (2012) Post-ischemic estradiol treatment reduced glial response and triggers distinct cortical and hippocampal signaling in a rat model of cerebral ischemia. J Neuroinflammation 9:157.  https://doi.org/10.1186/1742-2094-9-157 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Vegeto E, Belcredito S, Ghisletti S, Meda C, Etteri S, Maggi A (2006) The endogenous estrogen status regulates microglia reactivity in animal models of neuroinflammation. Endocrinology 147(5):2263–2272.  https://doi.org/10.1210/en.2005-1330 CrossRefPubMedGoogle Scholar
  13. 13.
    Arevalo MA, Santos-Galindo M, Bellini MJ, Azcoitia I, Garcia-Segura LM (2010) Actions of estrogens on glial cells: implications for neuroprotection. Biochim Biophys Acta 1800(10):1106–1112.  https://doi.org/10.1016/j.bbagen.2009.10.002 CrossRefPubMedGoogle Scholar
  14. 14.
    De Marinis E, Acaz-Fonseca E, Arevalo MA, Ascenzi P, Fiocchetti M, Marino M, Garcia-Segura LM (2013) 17beta-Oestradiol anti-inflammatory effects in primary astrocytes require oestrogen receptor beta-mediated neuroglobin up-regulation. J Neuroendocrinol 25(3):260–270.  https://doi.org/10.1111/jne.12007 CrossRefPubMedGoogle Scholar
  15. 15.
    Chuffa LG, Lupi-Junior LA, Costa AB, Amorim JP, Seiva FR (2017) The role of sex hormones and steroid receptors on female reproductive cancers. Steroids 118:93–108.  https://doi.org/10.1016/j.steroids.2016.12.011 CrossRefPubMedGoogle Scholar
  16. 16.
    Smith CL, O'Malley BW (2004) Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 25(1):45–71.  https://doi.org/10.1210/er.2003-0023 CrossRefPubMedGoogle Scholar
  17. 17.
    Tapia-Gonzalez S, Carrero P, Pernia O, Garcia-Segura LM, Diz-Chaves Y (2008) Selective oestrogen receptor (ER) modulators reduce microglia reactivity in vivo after peripheral inflammation: potential role of microglial ERs. J Endocrinol 198(1):219–230.  https://doi.org/10.1677/JOE-07-0294 CrossRefPubMedGoogle Scholar
  18. 18.
    Cerciat M, Unkila M, Garcia-Segura LM, Arevalo MA (2010) Selective estrogen receptor modulators decrease the production of interleukin-6 and interferon-gamma-inducible protein-10 by astrocytes exposed to inflammatory challenge in vitro. Glia 58(1):93–102.  https://doi.org/10.1002/glia.20904 CrossRefPubMedGoogle Scholar
  19. 19.
    Arevalo MA, Diz-Chaves Y, Santos-Galindo M, Bellini MJ, Garcia-Segura LM (2012) Selective oestrogen receptor modulators decrease the inflammatory response of glial cells. J Neuroendocrinol 24(1):183–190.  https://doi.org/10.1111/j.1365-2826.2011.02156.x CrossRefPubMedGoogle Scholar
  20. 20.
    Barreto GE, Santos-Galindo M, Garcia-Segura LM (2014) Selective estrogen receptor modulators regulate reactive microglia after penetrating brain injury. Front Aging Neurosci 6:132.  https://doi.org/10.3389/fnagi.2014.00132 PubMedPubMedCentralGoogle Scholar
  21. 21.
    Li R, Xu W, Chen Y, Qiu W, Shu Y, Wu A, Dai Y, Bao J et al (2014) Raloxifene suppresses experimental autoimmune encephalomyelitis and NF-kappaB-dependent CCL20 expression in reactive astrocytes. PLoS One 9(4):e94320.  https://doi.org/10.1371/journal.pone.0094320 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mosquera L, Colon JM, Santiago JM, Torrado AI, Melendez M, Segarra AC, Rodriguez-Orengo JF, Miranda JD (2014) Tamoxifen and estradiol improved locomotor function and increased spared tissue in rats after spinal cord injury: their antioxidant effect and role of estrogen receptor alpha. Brain Res 1561:11–22.  https://doi.org/10.1016/j.brainres.2014.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ishihara Y, Itoh K, Ishida A, Yamazaki T (2015) Selective estrogen-receptor modulators suppress microglial activation and neuronal cell death via an estrogen receptor-dependent pathway. J Steroid Biochem Mol Biol 145:85–93.  https://doi.org/10.1016/j.jsbmb.2014.10.002 CrossRefPubMedGoogle Scholar
  24. 24.
    Jordan VC (2007) Chemoprevention of breast cancer with selective oestrogen-receptor modulators. Nat Rev Cancer 7(1):46–53.  https://doi.org/10.1038/nrc2048 CrossRefPubMedGoogle Scholar
  25. 25.
    Reed MJ, Kloosterboer HJ (2004) Tibolone: a selective tissue estrogenic activity regulator (STEAR). Maturitas 48(Suppl 1):S4–S6.  https://doi.org/10.1016/j.maturitas.2004.02.013 CrossRefPubMedGoogle Scholar
  26. 26.
    Kloosterboer HJ (2001) Tibolone: a steroid with a tissue-specific mode of action. J Steroid Biochem Mol Biol 76(1–5):231–238CrossRefPubMedGoogle Scholar
  27. 27.
    Kloosterboer HJ (2004) Tissue-selectivity: the mechanism of action of tibolone. Maturitas 48(Suppl 1):S30–S40.  https://doi.org/10.1016/j.maturitas.2004.02.012 CrossRefPubMedGoogle Scholar
  28. 28.
    Behl C, Skutella T, Lezoualc'h F, Post A, Widmann M, Newton CJ, Holsboer F (1997) Neuroprotection against oxidative stress by estrogens: structure-activity relationship. Mol Pharmacol 51(4):535–541CrossRefPubMedGoogle Scholar
  29. 29.
    Verheul HA, Kloosterboer HJ (2006) Metabolism of exogenous sex steroids and effect on brain functions with a focus on tibolone. J Steroid Biochem Mol Biol 102(1–5):195–204.  https://doi.org/10.1016/j.jsbmb.2006.09.037 CrossRefPubMedGoogle Scholar
  30. 30.
    Pinto-Almazan R, Segura-Uribe JJ, Farfan-Garcia ED, Guerra-Araiza C (2017) Effects of tibolone on the central nervous system: clinical and experimental approaches. Biomed Res Int 2017:8630764:1–9.  https://doi.org/10.1155/2017/8630764 CrossRefGoogle Scholar
  31. 31.
    Beltran-Campos V, Diaz-Ruiz A, Padilla-Gomez E, Aguilar Zavala H, Rios C, Diaz Cintra S (2015) Effect of tibolone on dendritic spine density in the rat hippocampus. Neurologia 30(7):401–406.  https://doi.org/10.1016/j.nrl.2014.03.002 CrossRefPubMedGoogle Scholar
  32. 32.
    Qiu J, Bosch MA, Ronnekleiv OK, Kloosterboer HJ, Kelly MJ (2008) Tibolone rapidly attenuates the GABAB response in hypothalamic neurones. J Neuroendocrinol 20(12):1310–1318.  https://doi.org/10.1111/j.1365-2826.2008.01789.x CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Genazzani AR, Bernardi F, Pluchino N, Giretti MS, Begliuomini S, Casarosa E, Luisi M, Kloosterboer HJ (2006) Effect of tibolone administration on central and peripheral levels of allopregnanolone and beta-endorphin in female rats. Menopause 13(1):57–64.  https://doi.org/10.1097/01.gme.0000191372.79052.d3 CrossRefPubMedGoogle Scholar
  34. 34.
    Gibbs RB, Nelson D, Anthony MS, Clarkson TB (2002) Effects of long-term hormone replacement and of tibolone on choline acetyltransferase and acetylcholinesterase activities in the brains of ovariectomized, cynomologus monkeys. Neuroscience 113(4):907–914CrossRefPubMedGoogle Scholar
  35. 35.
    Pinto-Almazan R, Calzada-Mendoza CC, Campos-Lara MG, Guerra-Araiza C (2012) Effect of chronic administration of estradiol, progesterone, and tibolone on the expression and phosphorylation of glycogen synthase kinase-3beta and the microtubule-associated protein tau in the hippocampus and cerebellum of female rat. J Neurosci Res 90(4):878–886.  https://doi.org/10.1002/jnr.22808 CrossRefPubMedGoogle Scholar
  36. 36.
    Aguiar RB, Dickel OE, Cunha RW, Monserrat JM, Barros DM, Martinez PE (2006) Estradiol valerate and tibolone: effects on memory. Pharmacol Biochem Behav 85(4):689–696.  https://doi.org/10.1016/j.pbb.2006.10.023 CrossRefPubMedGoogle Scholar
  37. 37.
    Farfan-Garcia ED, Castillo-Hernandez MC, Pinto-Almazan R, Rivas-Arancibia S, Gallardo JM, Guerra-Araiza C (2014) Tibolone prevents oxidation and ameliorates cholinergic deficit induced by ozone exposure in the male rat hippocampus. Neurochem Res 39(9):1776–1786.  https://doi.org/10.1007/s11064-014-1385-0 CrossRefPubMedGoogle Scholar
  38. 38.
    Vergouwen MD, Anderson RE, Meyer FB (2000) Gender differences and the effects of synthetic exogenous and non-synthetic estrogens in focal cerebral ischemia. Brain Res 878(1–2):88–97CrossRefPubMedGoogle Scholar
  39. 39.
    Avila Rodriguez M, Garcia-Segura LM, Cabezas R, Torrente D, Capani F, Gonzalez J, Barreto GE (2014) Tibolone protects T98G cells from glucose deprivation. J Steroid Biochem Mol Biol 144 Pt B:294–303.  https://doi.org/10.1016/j.jsbmb.2014.07.009 CrossRefPubMedGoogle Scholar
  40. 40.
    Avila-Rodriguez M, Garcia-Segura LM, Hidalgo-Lanussa O, Baez E, Gonzalez J, Barreto GE (2016) Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol 433:35–46.  https://doi.org/10.1016/j.mce.2016.05.024 CrossRefPubMedGoogle Scholar
  41. 41.
    Hidalgo-Lanussa O, Avila-Rodriguez M, Baez-Jurado E, Zamudio J, Echeverria V, Garcia-Segura LM, Barreto GE (2017) Tibolone reduces oxidative damage and inflammation in microglia stimulated with palmitic acid through mechanisms involving estrogen receptor Beta. Mol Neurobiol  https://doi.org/10.1007/s12035-017-0777-y
  42. 42.
    Li CY, Song MY, Huang M, Li JC, Xiao JY, Zhao H (2015) Estradiol suppresses neuronal firing activity and c-Fos expression in the lateral habenula. Mol Med Rep 12(3):4410–4414.  https://doi.org/10.3892/mmr.2015.3942 CrossRefPubMedGoogle Scholar
  43. 43.
    Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic PressGoogle Scholar
  44. 44.
    Barreto G, Santos-Galindo M, Diz-Chaves Y, Pernia O, Carrero P, Azcoitia I, Garcia-Segura LM (2009) Selective estrogen receptor modulators decrease reactive astrogliosis in the injured brain: effects of aging and prolonged depletion of ovarian hormones. Endocrinology 150(11):5010–5015.  https://doi.org/10.1210/en.2009-0352 CrossRefPubMedGoogle Scholar
  45. 45.
    Hatton WJ, von Bartheld CS (1999) Analysis of cell death in the trochlear nucleus of the chick embryo: calibration of the optical disector counting method reveals systematic bias. J Comp Neurol 409(2):169–186CrossRefPubMedGoogle Scholar
  46. 46.
    Howard CV, Reed MG (1998) Unbiased stereology. Three-dimensional measurement in microscopy. BIOS Scientific Publishers LimitedGoogle Scholar
  47. 47.
    Kloss CU, Bohatschek M, Kreutzberg GW, Raivich G (2001) Effect of lipopolysaccharide on the morphology and integrin immunoreactivity of ramified microglia in the mouse brain and in cell culture. Exp Neurol 168(1):32–46.  https://doi.org/10.1006/exnr.2000.7575 CrossRefPubMedGoogle Scholar
  48. 48.
    Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33(3):256–266CrossRefPubMedGoogle Scholar
  49. 49.
    Diz-Chaves Y, Pernia O, Carrero P, Garcia-Segura LM (2012) Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice. J Neuroinflammation 9:71.  https://doi.org/10.1186/1742-2094-9-71 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Schwarz JM, Bilbo SD (2012) Sex, glia, and development: interactions in health and disease. Horm Behav 62(3):243–253.  https://doi.org/10.1016/j.yhbeh.2012.02.018 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lenz KM, Nugent BM, Haliyur R, McCarthy MM (2013) Microglia are essential to masculinization of brain and behavior. J Neurosci 33(7):2761–2772.  https://doi.org/10.1523/JNEUROSCI.1268-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Villapol S, Byrnes KR, Symes AJ (2014) Temporal dynamics of cerebral blood flow, cortical damage, apoptosis, astrocyte-vasculature interaction and astrogliosis in the pericontusional region after traumatic brain injury. Front Neurol 5:82.  https://doi.org/10.3389/fneur.2014.00082 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Miyake T, Hattori T, Fukuda M, Kitamura T, Fujita S (1988) Quantitative studies on proliferative changes of reactive astrocytes in mouse cerebral cortex. Brain Res 451(1–2):133–138CrossRefPubMedGoogle Scholar
  54. 54.
    Hozumi I, Aquino DA, Norton WT (1990) GFAP mRNA levels following stab wounds in rat brain. Brain Res 534(1–2):291–294CrossRefPubMedGoogle Scholar
  55. 55.
    Fernaud-Espinosa I, Nieto-Sampedro M, Bovolenta P (1993) Differential activation of microglia and astrocytes in aniso- and isomorphic gliotic tissue. Glia 8(4):277–291.  https://doi.org/10.1002/glia.440080408 CrossRefPubMedGoogle Scholar
  56. 56.
    Hampton DW, Rhodes KE, Zhao C, Franklin RJ, Fawcett JW (2004) The responses of oligodendrocyte precursor cells, astrocytes and microglia to a cortical stab injury, in the brain. Neuroscience 127(4):813–820.  https://doi.org/10.1016/j.neuroscience.2004.05.028 CrossRefPubMedGoogle Scholar
  57. 57.
    Potter KA, Buck AC, Self WK, Capadona JR (2012) Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses. J Neural Eng 9(4):046020.  https://doi.org/10.1088/1741-2560/9/4/046020 CrossRefPubMedGoogle Scholar
  58. 58.
    Goc J, Liu JY, Sisodiya SM, Thom M (2014) A spatiotemporal study of gliosis in relation to depth electrode tracks in drug-resistant epilepsy. Eur J Neurosci 39(12):2151–2162.  https://doi.org/10.1111/ejn.12548 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE (2016) Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol 144:5–26.  https://doi.org/10.1016/j.pneurobio.2016.06.002 CrossRefPubMedGoogle Scholar
  60. 60.
    Sofroniew MV (2014) Astrogliosis. Cold Spring Harb Perspect Biol 7(2):a020420.  https://doi.org/10.1101/cshperspect.a020420 CrossRefPubMedGoogle Scholar
  61. 61.
    Michell-Robinson MA, Touil H, Healy LM, Owen DR, Durafourt BA, Bar-Or A, Antel JP, Moore CS (2015) Roles of microglia in brain development, tissue maintenance and repair. Brain 138(Pt 5):1138–1159.  https://doi.org/10.1093/brain/awv066 CrossRefPubMedGoogle Scholar
  62. 62.
    Burda JE, Bernstein AM, Sofroniew MV (2016) Astrocyte roles in traumatic brain injury. Exp Neurol 275(Pt 3):305–315.  https://doi.org/10.1016/j.expneurol.2015.03.020 CrossRefPubMedGoogle Scholar
  63. 63.
    Wolf SA, Boddeke HW, Kettenmann H (2017) Microglia in physiology and disease. Annu Rev Physiol 79:619–643.  https://doi.org/10.1146/annurev-physiol-022516-034406 CrossRefPubMedGoogle Scholar
  64. 64.
    Perry VH, Holmes C (2014) Microglial priming in neurodegenerative disease. Nat Rev Neurol 10(4):217–224.  https://doi.org/10.1038/nrneurol.2014.38 CrossRefPubMedGoogle Scholar
  65. 65.
    von Bernhardi R, Eugenin-von Bernhardi L, Eugenin J (2015) Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci 7:124.  https://doi.org/10.3389/fnagi.2015.00124 Google Scholar
  66. 66.
    Pekny M, Pekna M, Messing A, Steinhauser C, Lee JM, Parpura V, Hol EM, Sofroniew MV et al (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131(3):323–345.  https://doi.org/10.1007/s00401-015-1513-1 CrossRefPubMedGoogle Scholar
  67. 67.
    Gonzalez-Giraldo Y, Garcia-Segura LM, Echeverria V, Barreto GE (2017) Tibolone preserves mitochondrial functionality and cell morphology in astrocytic cells treated with palmitic acid. Mol Neurobiol.  https://doi.org/10.1007/s12035-017-0667-3
  68. 68.
    Kawano H, Kimura-Kuroda J, Komuta Y, Yoshioka N, Li HP, Kawamura K, Li Y, Raisman G (2012) Role of the lesion scar in the response to damage and repair of the central nervous system. Cell Tissue Res 349(1):169–180.  https://doi.org/10.1007/s00441-012-1336-5 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Mathewson AJ, Berry M (1985) Observations on the astrocyte response to a cerebral stab wound in adult rats. Brain Res 327(1–2):61–69CrossRefPubMedGoogle Scholar
  70. 70.
    Turtzo LC, Lescher J, Janes L, Dean DD, Budde MD, Frank JA (2014) Macrophagic and microglial responses after focal traumatic brain injury in the female rat. J Neuroinflammation 11:82.  https://doi.org/10.1186/1742-2094-11-82 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Verheul HA, Blok LJ, Burger CW, Hanifi-Moghaddam P, Kloosterboer HJ (2007) Levels of tibolone and estradiol and their nonsulfated and sulfated metabolites in serum, myometrium, and vagina of postmenopausal women following treatment for 21 days with tibolone, estradiol, or estradiol plus medroxyprogestrone acetate. Reprod Sci 14(2):160–168.  https://doi.org/10.1177/1933719106298684 CrossRefPubMedGoogle Scholar
  72. 72.
    Lee SW, Gajavelli S, Spurlock MS, Andreoni C, de Rivero Vaccari JP, Bullock MR, Keane RWP, Dietrich WD (2018) Microglial inflammasome activation in penetrating ballistic-like brain injury. J Neurotrauma.  https://doi.org/10.1089/neu.2017.5530
  73. 73.
    Ma J, Xiao W, Wang J, Wu J, Ren J, Hou J, Gu J, Fan K et al (2016) Propofol inhibits NLRP3 inflammasome and attenuates blast-induced traumatic brain injury in rats. Inflammation 39(6):2094–2103.  https://doi.org/10.1007/s10753-016-0446-8 CrossRefPubMedGoogle Scholar
  74. 74.
    Signoretti S, Marmarou A, Aygok GA, Fatouros PP, Portella G, Bullock RM (2008) Assessment of mitochondrial impairment in traumatic brain injury using high-resolution proton magnetic resonance spectroscopy. J Neurosurg 108(1):42–52.  https://doi.org/10.3171/JNS/2008/108/01/0042 CrossRefPubMedGoogle Scholar
  75. 75.
    Cornelius C, Crupi R, Calabrese V, Graziano A, Milone P, Pennisi G, Radak Z, Calabrese EJ et al (2013) Traumatic brain injury: oxidative stress and neuroprotection. Antioxid Redox Signal 19(8):836–853.  https://doi.org/10.1089/ars.2012.4981 CrossRefPubMedGoogle Scholar
  76. 76.
    Simoncini T, Genazzani AR (2000) Tibolone inhibits leukocyte adhesion molecule expression in human endothelial cells. Mol Cell Endocrinol 162(1–2):87–94CrossRefPubMedGoogle Scholar
  77. 77.
    Simoncini T, Mannella P, Fornari L, Caruso A, Varone G, Garibaldi S, Genazzani AR (2004) Tibolone activates nitric oxide synthesis in human endothelial cells. J Clin Endocrinol Metab 89(9):4594–4600.  https://doi.org/10.1210/jc.2003-032189 CrossRefPubMedGoogle Scholar
  78. 78.
    Guzman CB, Zhao C, Deighton-Collins S, Kleerekoper M, Benjamins JA, Skafar DF (2007) Agonist activity of the 3-hydroxy metabolites of tibolone through the oestrogen receptor in the mouse N20.1 oligodendrocyte cell line and normal human astrocytes. J Neuroendocrinol 19(12):958–965.  https://doi.org/10.1111/j.1365-2826.2007.01611.x CrossRefPubMedGoogle Scholar
  79. 79.
    Blurton-Jones M, Tuszynski MH (2001) Reactive astrocytes express estrogen receptors in the injured primate brain. J Comp Neurol 433(1):115–123CrossRefPubMedGoogle Scholar
  80. 80.
    Garcia-Ovejero D, Veiga S, Garcia-Segura LM, Doncarlos LL (2002) Glial expression of estrogen and androgen receptors after rat brain injury. J Comp Neurol 450(3):256–271.  https://doi.org/10.1002/cne.10325 CrossRefPubMedGoogle Scholar
  81. 81.
    Sierra A, Gottfried-Blackmore A, Milner TA, McEwen BS, Bulloch K (2008) Steroid hormone receptor expression and function in microglia. Glia 56(6):659–674.  https://doi.org/10.1002/glia.20644 CrossRefPubMedGoogle Scholar
  82. 82.
    Habib P, Beyer C (2015) Regulation of brain microglia by female gonadal steroids. J Steroid Biochem Mol Biol 146:3–14.  https://doi.org/10.1016/j.jsbmb.2014.02.018 CrossRefPubMedGoogle Scholar
  83. 83.
    Zhao TZ, Ding Q, Hu J, He SM, Shi F, Ma LT (2016) GPER expressed on microglia mediates the anti-inflammatory effect of estradiol in ischemic stroke. Brain Behav 6(4):e00449.  https://doi.org/10.1002/brb3.449 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Kuo J, Hamid N, Bondar G, Prossnitz ER, Micevych P (2010) Membrane estrogen receptors stimulate intracellular calcium release and progesterone synthesis in hypothalamic astrocytes. J Neurosci 30(39):12950–12957.  https://doi.org/10.1523/JNEUROSCI.1158-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Finley SK, Kritzer MF (1999) Immunoreactivity for intracellular androgen receptors in identified subpopulations of neurons, astrocytes and oligodendrocytes in primate prefrontal cortex. J Neurobiol 40(4):446–457CrossRefPubMedGoogle Scholar
  86. 86.
    DonCarlos LL, Sarkey S, Lorenz B, Azcoitia I, Garcia-Ovejero D, Huppenbauer C, Garcia-Segura LM (2006) Novel cellular phenotypes and subcellular sites for androgen action in the forebrain. Neuroscience 138(3):801–807.  https://doi.org/10.1016/j.neuroscience.2005.06.020 CrossRefPubMedGoogle Scholar
  87. 87.
    Arevalo MA, Santos-Galindo M, Acaz-Fonseca E, Azcoitia I, Garcia-Segura LM (2013) Gonadal hormones and the control of reactive gliosis. Horm Behav 63(2):216–221.  https://doi.org/10.1016/j.yhbeh.2012.02.021 CrossRefPubMedGoogle Scholar
  88. 88.
    Lei B, Mace B, Dawson HN, Warner DS, Laskowitz DT, James ML (2014) Anti-inflammatory effects of progesterone in lipopolysaccharide-stimulated BV-2 microglia. PLoS One 9(7):e103969.  https://doi.org/10.1371/journal.pone.0103969 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Verheul HA, van Iersel ML, Delbressine LP, Kloosterboer HJ (2007) Selective tissue distribution of tibolone metabolites in mature ovariectomized female cynomolgus monkeys after multiple doses of tibolone. Drug Metab Dispos 35(7):1105–1111.  https://doi.org/10.1124/dmd.106.014118 CrossRefPubMedGoogle Scholar
  90. 90.
    Escande A, Servant N, Rabenoelina F, Auzou G, Kloosterboer H, Cavailles V, Balaguer P, Maudelonde T (2009) Regulation of activities of steroid hormone receptors by tibolone and its primary metabolites. J Steroid Biochem Mol Biol 116(1–2):8–14.  https://doi.org/10.1016/j.jsbmb.2009.03.008 CrossRefPubMedGoogle Scholar
  91. 91.
    Gatson JW, Maass DL, Simpkins JW, Idris AH, Minei JP, Wigginton JG (2009) Estrogen treatment following severe burn injury reduces brain inflammation and apoptotic signaling. J Neuroinflammation 6:30.  https://doi.org/10.1186/1742-2094-6-30 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Bao YJ, Li LZ, Li XG, Wang YJ (2011) 17Beta-estradiol differentially protects cortical pericontusional zone from programmed cell death after traumatic cerebral contusion at distinct stages via non-genomic and genomic pathways. Mol Cell Neurosci 48(3):185–194.  https://doi.org/10.1016/j.mcn.2011.07.004 CrossRefPubMedGoogle Scholar
  93. 93.
    Li LZ, Bao YJ, Zhao M (2011) 17beta-estradiol attenuates programmed cell death in cortical pericontusional zone following traumatic brain injury via upregulation of ERalpha and inhibition of caspase-3 activation. Neurochem Int 58(1):126–133.  https://doi.org/10.1016/j.neuint.2010.11.006 CrossRefPubMedGoogle Scholar
  94. 94.
    Sohrabji F, Bake S (2006) Age-related changes in neuroprotection: Is estrogen pro-inflammatory for the reproductive senescent brain? Endocrine 29(2):191–197.  https://doi.org/10.1385/ENDO:29:2:191 CrossRefPubMedGoogle Scholar
  95. 95.
    Webster KM, Wright DK, Sun M, Semple BD, Ozturk E, Stein DG, O'Brien TJ, Shultz SR (2015) Progesterone treatment reduces neuroinflammation, oxidative stress and brain damage and improves long-term outcomes in a rat model of repeated mild traumatic brain injury. J Neuroinflammation 12:238.  https://doi.org/10.1186/s12974-015-0457-7 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Djebaili M, Guo Q, Pettus EH, Hoffman SW, Stein DG (2005) The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats. J Neurotrauma 22(1):106–118.  https://doi.org/10.1089/neu.2005.22.106 CrossRefPubMedGoogle Scholar
  97. 97.
    Irwin RW, Yao J, Hamilton RT, Cadenas E, Brinton RD, Nilsen J (2008) Progesterone and estrogen regulate oxidative metabolism in brain mitochondria. Endocrinology 149(6):3167–3175.  https://doi.org/10.1210/en.2007-1227 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Acaz-Fonseca E, Duran JC, Carrero P, Garcia-Segura LM, Arevalo MA (2015) Sex differences in glia reactivity after cortical brain injury. Glia 63(11):1966–1981.  https://doi.org/10.1002/glia.22867 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Consejo Superior de Investigaciones Científicas (CSIC)Instituto CajalMadridSpain
  2. 2.Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
  3. 3.Department of Cell Biology, Faculty of BiologyUniversidad ComplutenseMadridSpain
  4. 4.Departamento de Nutrición y Bioquímica, Facultad de CienciasPontificia Universidad JaverianaBogotá D.C.Colombia

Personalised recommendations