Skip to main content

Advertisement

Log in

Kir6.2 Deficiency Promotes Mesencephalic Neural Precursor Cell Differentiation via Regulating miR-133b/GDNF in a Parkinson’s Disease Mouse Model

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 15 December 2023

This article has been updated

Abstract

The loss of dopaminergic (DA) neurons in the substantia nigra (SN) is a major feature in the pathology of Parkinson’s disease (PD). Using neural stem or progenitor cells (NSC/NPCs), the prospect of replacing the missing or damaged DA neurons is very attractive for PD therapy. However, little is known about the endogenous mechanisms and molecular pathways regulating the NSC/NPC proliferation and differentiation in the development of PD. Herein, using Kir6.2 knockout (Kir6.2−/−) mice, we observed that genetic deficiency of Kir6.2 exacerbated the loss of SN DA neurons relatively early in a chronic MPTP/probenecid (MPTP/p) injection course, but rescued the damage of neurons 7 days after the last MPTP/p injection. Meanwhile, we found that Kir6.2 knockout predominantly increased the differentiation of nuclear receptor-related 1 (Nurr1+) precursors to DA neurons, indicating that Kir6.2 deficiency could activate an endogenous self-repair process. Furthermore, we demonstrated in vivo and in vitro that lack of Kir6.2 promoted neuronal differentiation via inhibiting the downregulation of glia cell line-derived neurotrophic factor (GDNF), which negatively related to the level of microRNA-133b. Notably, we revealed that Gdnf is a target gene of miR-133b and transfection of miR-133b could attenuate the enhancement of neural precursor differentiation induced by Kir6.2 deficiency. Collectively, we clarify for the first time that Kir6.2/K-ATP channel functions as a novel endogenous negative regulator of NPC differentiation, and provide a promising neuroprotective target for PD therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Goedert M, Compston A (2017) Parkinson’s disease—the story of an eponym. Nat Rev Neurol 14:57–62. https://doi.org/10.1038/nrneurol.2017.165

    Article  PubMed  Google Scholar 

  2. Toda T, Gage FH (2017) Review: adult neurogenesis contributes to hippocampal plasticity. Cell Tissue Res. https://doi.org/10.1007/s00441-017-2735-4

    Article  Google Scholar 

  3. van den Berge SA, van Strien ME, Hol EM (2013) Resident adult neural stem cells in Parkinson’s disease—the brain’s own repair system? Eur J Pharmacol 719(1–3):117–127. https://doi.org/10.1016/j.ejphar.2013.04.058

    Article  CAS  PubMed  Google Scholar 

  4. He XJ, Nakayama H (2015) Transiently impaired neurogenesis in MPTP mouse model of Parkinson’s disease. Neurotoxicology 50:46–55. https://doi.org/10.1016/j.neuro.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  5. Khacho M, Slack RS (2017) Mitochondrial activity in the regulation of stem cell self-renewal and differentiation. Curr Opin Cell Biol 49:1–8. https://doi.org/10.1016/j.ceb.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  6. Mir S, Cai W, Carlson SW, Saatman KE, Andres DA (2017) IGF-1 mediated neurogenesis involves a novel RIT1/Akt/Sox2 cascade. Sci Rep 7(1):3283. https://doi.org/10.1038/s41598-017-03641-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jang S, Kim H, Jeong J, Lee SK, Kim EW, Park M, Kim CH, Lee JE et al (2016) Blunted response of hippocampal AMPK associated with reduced neurogenesis in older versus younger mice. Prog Neuro-Psychopharmacol Biol Psychiatry 71:57–65. https://doi.org/10.1016/j.pnpbp.2016.06.011

    Article  CAS  Google Scholar 

  8. Lu KT, Huang TC, Wang JY, You YS, Chou JL, Chan MW, Wo PY, Amstislavskaya TG et al (2015) NKCC1 mediates traumatic brain injury-induced hippocampal neurogenesis through CREB phosphorylation and HIF-1alpha expression. Pflugers Arch 467(8):1651–1661. https://doi.org/10.1007/s00424-014-1588-x

    Article  CAS  PubMed  Google Scholar 

  9. Ahmad Waza A, Ahmad Bhat S, Ul Hussain M, Ganai BA (2017) Connexin 43 and ATP-sensitive potassium channels crosstalk: a missing link in hypoxia/ischemia stress. Cell Tissue Res 371:213–222. https://doi.org/10.1007/s00441-017-2736-3

    Article  CAS  PubMed  Google Scholar 

  10. Shen KZ, Wu YN, Munhall AC, Johnson SW (2016) AMP kinase regulates ligand-gated K-ATP channels in substantia nigra dopamine neurons. Neuroscience 330:219–228. https://doi.org/10.1016/j.neuroscience.2016.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Knowlton CJ, Kutterer S, Roeper J, Canavier CC (2017) Calcium dynamics control K-ATP channel mediated bursting in substantia nigra dopamine neurons: a combined experimental and modeling study. J Neurophysiol. https://doi.org/10.1152/jn.00351.2017

    Article  Google Scholar 

  12. Duda J, Potschke C, Liss B (2016) Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson’s disease. J Neurochem 139(Suppl 1):156–178. https://doi.org/10.1111/jnc.13572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang S, Hu LF, Yang Y, Ding JH, Hu G (2005) Studies of ATP-sensitive potassium channels on 6-hydroxydopamine and haloperidol rat models of Parkinson’s disease: implications for treating Parkinson’s disease? Neuropharmacology 48(7):984–992. https://doi.org/10.1016/j.neuropharm.2005.01.009

    Article  CAS  PubMed  Google Scholar 

  14. Wu J, Hu J, Chen YP, Takeo T, Suga S, Dechon J, Liu Q, Yang KC et al (2006) Iptakalim modulates ATP-sensitive K(+) channels in dopamine neurons from rat substantia nigra pars compacta. J Pharmacol Exp Ther 319(1):155–164. https://doi.org/10.1124/jpet.106.106286

    Article  CAS  PubMed  Google Scholar 

  15. Yang JZ, Huang X, Zhao FF, Xu Q, Hu G (2012) Iptakalim enhances adult mouse hippocampal neurogenesis via opening Kir6.1-composed K-ATP channels expressed in neural stem cells. CNS Neurosci Ther 18(9):737–744. https://doi.org/10.1111/j.1755-5949.2012.00359.x

    Article  CAS  PubMed  Google Scholar 

  16. Du XX, Qin K, Jiao Q, Xie JX, Jiang H (2016) [Advances in the association of ATP-sensitive potassium channels and Parkinson’s disease]. Sheng Li Xue Bao 68(5):644–648

    PubMed  Google Scholar 

  17. Wu YN, Shen KZ, Johnson SW (2017) Differential actions of AMP kinase on ATP-sensitive K(+) currents in ventral tegmental area and substantia nigra zona compacta neurons. Eur J Neurosci 46(11):2746–2753. https://doi.org/10.1111/ejn.13756

    Article  PubMed  Google Scholar 

  18. Przedborski S, Tieu K, Perier C, Vila M (2004) MPTP as a mitochondrial neurotoxic model of Parkinson’s disease. J Bioenerg Biomembr 36(4):375–379. https://doi.org/10.1023/B:JOBB.0000041771.66775.d5

    Article  CAS  PubMed  Google Scholar 

  19. Petroske E, Meredith GE, Callen S, Totterdell S, Lau YS (2001) Mouse model of parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106(3):589–601

    Article  CAS  Google Scholar 

  20. Sairanen M, Lucas G, Ernfors P, Castren M, Castren E (2005) Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 25(5):1089–1094. https://doi.org/10.1523/JNEUROSCI.3741-04.2005

    Article  CAS  PubMed  Google Scholar 

  21. Castelo-Branco G, Wagner J, Rodriguez FJ, Kele J, Sousa K, Rawal N, Pasolli HA, Fuchs E et al (2003) Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc Natl Acad Sci U S A 100(22):12747–12752. https://doi.org/10.1073/pnas.1534900100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Spathis AD, Asvos X, Ziavra D, Karampelas T, Topouzis S, Cournia Z, Qing X, Alexakos P et al (2017) Nurr1:RXRalpha heterodimer activation as monotherapy for Parkinson’s disease. Proc Natl Acad Sci U S A 114(15):3999–4004. https://doi.org/10.1073/pnas.1616874114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang P, Ye B, Yang Y, Shi J, Zhao H (2015) MicroRNA-181 functions as a tumor suppressor in non-small cell lung cancer (NSCLC) by targeting Bcl-2. Tumour Biol 36(5):3381–3387. https://doi.org/10.1007/s13277-014-2972-z

    Article  CAS  PubMed  Google Scholar 

  24. Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8(6):481–488. https://doi.org/10.1038/nrn2147

    Article  CAS  PubMed  Google Scholar 

  25. Liss B, Haeckel O, Wildmann J, Miki T, Seino S, Roeper J (2005) K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 8(12):1742–1751. https://doi.org/10.1038/nn1570

    Article  CAS  PubMed  Google Scholar 

  26. Jeon H, Ryu S, Kim D, Koo S, Ha KT, Kim S (2017) Acupuncture stimulation at GB34 restores MPTP-induced neurogenesis impairment in the subventricular zone of mice. Evid Based Complement Alternat Med 2017:3971675. https://doi.org/10.1155/2017/3971675

    Article  PubMed  PubMed Central  Google Scholar 

  27. L'Episcopo F, Serapide MF, Tirolo C, Testa N, Caniglia S, Morale MC, Pluchino S, Marchetti B (2011) A Wnt1 regulated frizzled-1/beta-catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: therapeutical relevance for neuron survival and neuroprotection. Mol Neurodegener 6:49. https://doi.org/10.1186/1750-1326-6-49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maxwell SL, Ho HY, Kuehner E, Zhao S, Li M (2005) Pitx3 regulates tyrosine hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopaminergic progenitor neurons during mouse development. Dev Biol 282(2):467–479. https://doi.org/10.1016/j.ydbio.2005.03.028

    Article  CAS  PubMed  Google Scholar 

  29. Bissonette GB, Roesch MR (2016) Development and function of the midbrain dopamine system: what we know and what we need to. Genes Brain Behav 15(1):62–73. https://doi.org/10.1111/gbb.12257

    Article  CAS  PubMed  Google Scholar 

  30. Leggio L, Vivarelli S, L'Episcopo F, Tirolo C, Caniglia S, Testa N, Marchetti B, Iraci N (2017) microRNAs in Parkinson’s disease: from pathogenesis to novel diagnostic and therapeutic approaches. Int J Mol Sci 18(12). https://doi.org/10.3390/ijms18122698

    Article  Google Scholar 

  31. Banelli B, Forlani A, Allemanni G, Morabito A, Pistillo MP, Romani M (2017) MicroRNA in glioblastoma: an overview. Int J Genomics 2017:7639084. https://doi.org/10.1155/2017/7639084

    Article  PubMed  PubMed Central  Google Scholar 

  32. Junn E, Mouradian MM (2012) MicroRNAs in neurodegenerative diseases and their therapeutic potential. Pharmacol Ther 133(2):142–150. https://doi.org/10.1016/j.pharmthera.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  33. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317(5842):1220–1224. https://doi.org/10.1126/science.1140481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, Li M, Xu L, Liu J, Wang D, Li Q, Wang L, Li P et al (2017) Expression of Bcl-2 and microRNAs in cardiac tissues of patients with dilated cardiomyopathy. Mol Med Rep 15(1):359–365. https://doi.org/10.3892/mmr.2016.5977

    Article  CAS  PubMed  Google Scholar 

  35. Qu Y, Zhang Q, Cai X, Li F, Ma Z, Xu M, Lu L (2017) Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. J Cell Mol Med 21(10):2491–2502. https://doi.org/10.1111/jcmm.13170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work reported herein was supported by the grants from the National Natural Science Foundation of China (No. 81630099, No. 81473196, No. 81773706, No. 81573403, and No. 81603083) and the key project of Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No. 15KJA310002) and Natural Science Foundation of Jiangsu Province (BK20151559). Kir6.2 knockout mice were friendly donated by Professor Miki (Chiba University, Japan).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Lu or Gang Hu.

Ethics declarations

All animal experiments were performed in accordance with the institutional guidelines for animal use and care, and the study protocol was approved by the ethical committee of Nanjing Medical University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zhu, J., Lv, Y. et al. Kir6.2 Deficiency Promotes Mesencephalic Neural Precursor Cell Differentiation via Regulating miR-133b/GDNF in a Parkinson’s Disease Mouse Model. Mol Neurobiol 55, 8550–8562 (2018). https://doi.org/10.1007/s12035-018-1005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1005-0

Keywords

Navigation