Advertisement

Recovery of Neurovascular Unit Integrity by CDK5-KD Astrocyte Transplantation in a Global Cerebral Ischemia Model

  • Andrea Becerra-Calixto
  • Rafael Posada-Duque
  • Gloria Patricia Cardona-Gómez
Article

Abstract

Astrocytes play metabolic and structural support roles and contribute to the integrity of the blood-brain barrier (BBB), linking communication between neurons and the endothelium. Cyclin-dependent kinase 5 (CDK5) likely exerts a dual effect on the endothelium and astrocytes due to its involvement in migration and angiogenesis; the overactivation of CDK5 is associated with dysfunction in glutamate recapture and hypoxia. Recently, we proposed that CDK5-targeted astrocytes facilitate the recovery of neurological and motor function in transplanted ischemic rats. In the current study, we treated cerebral ischemic rats and endothelial cells exposed to glutamate toxicity with CDK5 knock-down (CDK5-KD) astrocytes to determine the role of CDK5 in neurovascular integrity. We found that the effects of CDK5-KD were sustained for 4 months, preventing neuronal and astrocyte loss, facilitating the recovery of the BBB via the production of BDNF by endogenous astrocytes (GFP) surrounding vessels in the motor cortex and the corpus callosum of global ischemic rats, and improving neurological performance. These findings were supported by the in vitro findings of increased transendothelial resistance, p120-ctn+ adhesion and reduced intercellular gaps induced by a CDK5 inhibitor (roscovitine) in bEnd.3 cells in a glutamate-toxicity model. Additionally, CDK5-KD astrocytes in co-culture protected the endothelial cell viability, increased BDNF release from astrocytes, increased BDNF immunoreactivity in neighboring astrocytes and endothelial cells and enhanced cell adhesion in a glutamate-toxicity model. Altogether, these findings suggest that a CDK5 reduction in astrocytes protects the endothelium, which promotes BDNF release, endothelial adhesion, and the recovery of neurovascular unit integrity and brain function in ischemic rats.

Keywords

Astrocytes CDK5 Neurovascular unit BDNF Neuroprotection Cerebral stroke 

Notes

Acknowledgments

The authors thank Tania Marquez for assistance with the rat colonies at the SPF vivarium, Maria Alejandra Valencia for assistance with the behavior tests and histology assays, Juan Camilo Zuluaga for supporting the astrocyte characterization, Felipe Vargas for characterizing the endothelial cells, and Dr. Beverly Davidson from the Children Hospital of Philadelphia for her expert advice regarding the viral vectors.

Funding information

This study was funded by grants from COLCIENCIAS: Code # 111554531400 (2012-2015), Banco de la República # 3.494 and CODI University of Antioquia 2014-970.

Compliance with Ethical Standards

All animal procedures were performed in accordance with the ARRIVE guidelines, the Guide for the Care and Use of Laboratory Animals, 8th edition, published by the National Institutes of Health (NIH) and Colombian standards (law 84/1989 and resolution 8430/1993). These procedures were approved by the Ethics Committee for Animal Experimentation at the University of Antioquia, Medellín, Colombia.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2018_992_MOESM1_ESM.pptx (7.3 mb)
Supplementary Fig 1 (PPTX 7425 kb)
12035_2018_992_MOESM2_ESM.pptx (1.3 mb)
Supplementary Fig 2 (PPTX 1290 kb)

References

  1. 1.
    Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53.  https://doi.org/10.1038/nrn1824 CrossRefPubMedGoogle Scholar
  2. 2.
    Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360.  https://doi.org/10.1038/nrn1387 CrossRefPubMedGoogle Scholar
  3. 3.
    Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11:4131–4142CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901.  https://doi.org/10.1152/physrev.00035.2003 CrossRefPubMedGoogle Scholar
  5. 5.
    Dejana E, Orsenigo F, Lampugnani MG (2008) The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 121:2115–2122.  https://doi.org/10.1242/jcs.017897 CrossRefPubMedGoogle Scholar
  6. 6.
    Dejana E (2004) Endothelial cell–cell junctions: happy together. Nat Rev Mol Cell Biol 5:261–270.  https://doi.org/10.1038/nrm1357 CrossRefPubMedGoogle Scholar
  7. 7.
    Anastasiadis PZ (2007) p120-ctn: A nexus for contextual signaling via Rho GTPases. Biochim Biophys Acta 1773:34–46.  https://doi.org/10.1016/j.bbamcr.2006.08.040 CrossRefPubMedGoogle Scholar
  8. 8.
    Anastasiadis PZ, Reynolds AB (2000) The p120 catenin family: complex roles in adhesion, signaling and cancer. J Cell Sci:1319–1334Google Scholar
  9. 9.
    Salinas PC, Price SR (2005) Cadherins and catenins in synapse development. Curr Opin Neurobiol 15:73–80.  https://doi.org/10.1016/j.conb.2005.01.001 CrossRefPubMedGoogle Scholar
  10. 10.
    Oas RG, Xiao K, Summers S, Wittich KB, Chiasson CM, Martin WD, Grossniklaus HE, Vincent PA et al (2010) p120-catenin is required for mouse vascular development. Circ Res 106:941–951.  https://doi.org/10.1161/CIRCRESAHA.109.207753
  11. 11.
    Iadecola C, Gorelick PB (2003) Converging pathogenic mechanisms in vascular and neurodegenerative dementia. Stroke 34:335–337CrossRefPubMedGoogle Scholar
  12. 12.
    Jellinger KA (2002) Alzheimer disease and cerebrovascular pathology: an update. J Neural Transm 109:813–836.  https://doi.org/10.1007/s007020200068 CrossRefPubMedGoogle Scholar
  13. 13.
    Posada-Duque RA, Barreto GE, Cardona-Gomez GP (2014) Protection after stroke: cellular effectors of neurovascular unit integrity. Front Cell Neurosci 8:231.  https://doi.org/10.3389/fncel.2014.00231 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344.  https://doi.org/10.1056/NEJMra0909142 CrossRefPubMedGoogle Scholar
  15. 15.
    Woodruff TM, Thundyil J, Tang S-C, et al Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. doi:  https://doi.org/10.1186/1750-1326-6-11
  16. 16.
    Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P et al (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14:1505–1517.  https://doi.org/10.1089/ars.2010.3576
  17. 17.
    Zacchigna S, Lambrechts D, Carmeliet P (2008) Neurovascular signalling defects in neurodegeneration. Nat Rev Neurosci 9:169–181.  https://doi.org/10.1038/nrn2336 CrossRefPubMedGoogle Scholar
  18. 18.
    Chamorro Á, Dirnagl U, Urra X, Planas AM (2016) Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 15:869–881.  https://doi.org/10.1016/S1474-4422(16)00114-9 CrossRefPubMedGoogle Scholar
  19. 19.
    Burn J, Dennis M, Bamford J, Sandercock P, Wade D, Warlow C (1994) Long-term risk of recurrent stroke after a first-ever stroke. The Oxfordshire Community Stroke Project. Stroke 25:333–337CrossRefPubMedGoogle Scholar
  20. 20.
    Martin HGS, Wang YT (2010) Blocking the deadly effects of the NMDA receptor in stroke. Cell 140:174–176.  https://doi.org/10.1016/j.cell.2010.01.014 CrossRefPubMedGoogle Scholar
  21. 21.
    Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568CrossRefPubMedGoogle Scholar
  22. 22.
    Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54:34–66.  https://doi.org/10.1016/j.brainresrev.2006.11.003 CrossRefPubMedGoogle Scholar
  23. 23.
    Matute C, Alberdi E, Ibarretxe G, Sánchez-Gómez MV (2002) Excitotoxicity in glial cells. Eur J Pharmacol 447:239–246CrossRefPubMedGoogle Scholar
  24. 24.
    Matute C, Alberdi E, Domercq M, Sánchez-Gómez MV, Pérez-Samartín A, Rodríguez-Antigüedad A, Pérez-Cerdá F (2007) Excitotoxic damage to white matter. J Anat 210:693–702.  https://doi.org/10.1111/j.1469-7580.2007.00733.x CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Posada-Duque RA, Palacio-Castañeda V, Cardona-Gómez GP (2015) CDK5 knockdown in astrocytes provide neuroprotection as a trophic source via Rac1. Mol Cell Neurosci 68:151–166.  https://doi.org/10.1016/j.mcn.2015.07.001 CrossRefPubMedGoogle Scholar
  26. 26.
    Henry VJ, Lecointre M, Laudenbach V, Ali C, Macrez R, Jullienne A, Berezowski V, Carmeliet P et al (2013) High t-PA release by neonate brain microvascular endothelial cells under glutamate exposure affects neuronal fate. Neurobiol Dis 50:201–208.  https://doi.org/10.1016/j.nbd.2012.10.020
  27. 27.
    Minagar A, Alexander JS, Kelley RE et al (2009) Proteomic analysis of human cerebral endothelial cells activated by glutamate/MK-801: significance in ischemic stroke injury. J Mol Neurosci 38:182–192.  https://doi.org/10.1007/s12031-008-9149-4 CrossRefPubMedGoogle Scholar
  28. 28.
    Scott GS, Bowman SR, Smith T, Flower RJ, Bolton C (2007) Glutamate-stimulated peroxynitrite production in a brain-derived endothelial cell line is dependent on N-methyl-d-aspartate (NMDA) receptor activation. Biochem Pharmacol 73:228–236.  https://doi.org/10.1016/j.bcp.2006.09.021 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35.  https://doi.org/10.1007/s00401-009-0619-8 CrossRefPubMedGoogle Scholar
  30. 30.
    Grade S, Weng YC, Snapyan M, Kriz J, Malva JO, Saghatelyan A (2013) Brain-derived neurotrophic factor promotes vasculature-associated migration of neuronal precursors toward the ischemic striatum. PLoS One 8:e55039.  https://doi.org/10.1371/journal.pone.0055039 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Guo S, Kim WJ, Lok J, Lee SR, Besancon E, Luo BH, Stins MF, Wang X et al (2008) Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons. Proc Natl Acad Sci 105:7582–7587.  https://doi.org/10.1073/pnas.0801105105
  32. 32.
    Nakahashi T, Fujimura H, Altar CA, Li J, Kambayashi JI, Tandon NN, Sun B (2000) Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett 470:113–117CrossRefPubMedGoogle Scholar
  33. 33.
    Donovan MJ, Lin MI, Wiegn P, Ringstedt T, Kraemer R, Hahn R, Wang S, Ibañez CF et al (2000) Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development 127:4531–4540Google Scholar
  34. 34.
    Matsuda S, Fujita T, Kajiya M, Takeda K, Shiba H, Kawaguchi H, Kurihara H (2012) Brain-derived neurotrophic factor induces migration of endothelial cells through a TrkB-ERK-integrin αVβ3-FAK cascade. J Cell Physiol 227:2123–2129.  https://doi.org/10.1002/jcp.22942 CrossRefPubMedGoogle Scholar
  35. 35.
    Kim H, Li Q, Hempstead BL, Madri JA (2004) Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells. J Biol Chem 279:33538–33546.  https://doi.org/10.1074/jbc.M404115200 CrossRefPubMedGoogle Scholar
  36. 36.
    Becerra-Calixto A, Cardona-Gómez GP (2017) The role of astrocytes in neuroprotection after brain stroke: potential in cell therapy. Front Mol Neurosci 10.  https://doi.org/10.3389/fnmol.2017.00088
  37. 37.
    Becerra-Calixto A, Cardona-Gómez GP (2016) Neuroprotection induced by transplanted CDK5 knockdown astrocytes in global cerebral ischemic rats. Mol Neurobiol 54:6681–6696.  https://doi.org/10.1007/s12035-016-0162-2
  38. 38.
    Bosutti A, Qi J, Pennucci R, Bolton D, Matou S, Ali K, Tsai LH, Krupinski J et al (2013) Targeting p35/Cdk5 signalling via CIP-peptide promotes angiogenesis in hypoxia. PLoS One 8:e75538.  https://doi.org/10.1371/journal.pone.0075538
  39. 39.
    Liebl J, Weitensteiner SB, Vereb G, Takács L, Fürst R, Vollmar AM, Zahler S (2010) Cyclin-dependent kinase 5 regulates endothelial cell migration and angiogenesis. J Biol Chem 285:35932–35943.  https://doi.org/10.1074/jbc.M110.126177 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Dhavan R, Tsai L-H (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2:749–759.  https://doi.org/10.1038/35096019 CrossRefPubMedGoogle Scholar
  41. 41.
    Lai K-O, Ip NY (2009) Recent advances in understanding the roles of Cdk5 in synaptic plasticity. Biochim Biophys Acta - Mol Basis Dis 1792:741–745.  https://doi.org/10.1016/j.bbadis.2009.05.001 CrossRefGoogle Scholar
  42. 42.
    Menn B, Bach S, Blevins TL, Campbell M, Meijer L, Timsit S (2010) Delayed treatment with systemic (S)-roscovitine provides neuroprotection and inhibits in vivo CDK5 activity increase in animal stroke models. PLoS One 5:e12117.  https://doi.org/10.1371/journal.pone.0012117 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    López-Tobón A, Castro-Álvarez JF, Piedrahita D, Boudreau RL, Gallego-Gómez JC, Cardona-Gómez GP (2011) Silencing of CDK5 as potential therapy for Alzheimer’s disease. Rev Neurosci 22:143–152.  https://doi.org/10.1515/RNS.2011.015 CrossRefPubMedGoogle Scholar
  44. 44.
    Slevin M, Krupinski J (2009) Cyclin-dependent kinase-5 targeting for ischaemic stroke. Curr Opin Pharmacol 9:119–124.  https://doi.org/10.1016/j.coph.2008.10.003 CrossRefPubMedGoogle Scholar
  45. 45.
    Wang J, Liu S, Fu Y, Wang JH, Lu YM (2003) Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat Neurosci 6:1039–1047.  https://doi.org/10.1038/nn1119 CrossRefPubMedGoogle Scholar
  46. 46.
    Wang Y, White MG, Akay C, Chodroff RA, Robinson J, Lindl KA, Dichter MA, Qian Y et al (2007) Activation of cyclin-dependent kinase 5 by calpains contributes to human immunodeficiency virus-induced neurotoxicity. J Neurochem 103:439–455.  https://doi.org/10.1111/j.1471-4159.2007.04746.x
  47. 47.
    García-Matas S, Gutierrez-Cuesta J, Coto-Montes A, Rubio-Acero R, Díez-Vives C, Camins A, Pallàs M, Sanfeliu C et al (2008) Dysfunction of astrocytes in senescence-accelerated mice SAMP8 reduces their neuroprotective capacity. Aging Cell 7:630–640.  https://doi.org/10.1111/j.1474-9726.2008.00410.x
  48. 48.
    Gutiérrez-Vargas JA, Múnera A, Cardona-Gómez GP (2015) CDK5 knockdown prevents hippocampal degeneration and cognitive dysfunction produced by cerebral ischemia. J Cereb Blood Flow Metab 35:1937–1949.  https://doi.org/10.1038/jcbfm.2015.150 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Gutiérrez-Vargas JA, Moreno H, Cardona-Gómez GP (2016) Targeting CDK5 post-stroke provides long-term neuroprotection and rescues synaptic plasticity. J Cereb Blood Flow Metab 0271678X16662476 . doi:  https://doi.org/10.1177/0271678X16662476
  50. 50.
    Harukuni I, Bhardwaj A (2006) Mechanisms of brain injury after global cerebral ischemia. Neurol Clin 24:1–21.  https://doi.org/10.1016/j.ncl.2005.10.004 CrossRefPubMedGoogle Scholar
  51. 51.
    Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26:627–34; discussion 635CrossRefPubMedGoogle Scholar
  52. 52.
    Pazos MR, Cinquina V, Gomez A et al (2012) Cannabidiol administration after hypoxia-ischemia to newborn rats reduces long-term brain injury and restores neurobehavioral function. Neuropharmacology 63:776–783.  https://doi.org/10.1016/j.neuropharm.2012.05.034 CrossRefPubMedGoogle Scholar
  53. 53.
    Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates: hard cover edition. Elsevier ScienceGoogle Scholar
  54. 54.
    Montesano R, Pepper MS, Möhle-Steinlein U, Risau W, Wagner EF, Orci L (1990) Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 62:435–445CrossRefPubMedGoogle Scholar
  55. 55.
    Posada-Duque RA, Velasquez-Carvajal D, Eckert GP, Cardona-Gomez GP (2013) Atorvastatin requires geranylgeranyl transferase-I and Rac1 activation to exert neuronal protection and induce plasticity. Neurochem Int 62:433–445.  https://doi.org/10.1016/j.neuint.2013.01.026 CrossRefPubMedGoogle Scholar
  56. 56.
    Aragon-Sanabria V, Pohler SE, Eswar VJ, Bierowski M, Gomez EW, Dong C (2017) VE-cadherin disassembly and cell contractility in the endothelium are necessary for barrier disruption induced by tumor cells. Sci Rep 7:45835.  https://doi.org/10.1038/srep45835 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Fuchs E, Cleveland DW (1998) A structural scaffolding of intermediate filaments in health and disease. Science 279:514–519CrossRefPubMedGoogle Scholar
  58. 58.
    DeLisser HM, Newman PJ, Albelda SM (1994) Molecular and functional aspects of PECAM-1/CD31. Immunol Today 15:490–495.  https://doi.org/10.1016/0167-5699(94)90195-3 CrossRefPubMedGoogle Scholar
  59. 59.
    Xiong Y, Huo Y, Chen C, Zeng H, Lu X, Wei C, Ruan C, Zhang X et al (2009) Vascular endothelial growth factor (VEGF) Receptor-2 tyrosine 1175 signaling controls VEGF-induced von Willebrand factor release from endothelial cells via phospholipase C- 1- and protein kinase A-dependent pathways. J Biol Chem 284:23217–23224.  https://doi.org/10.1074/jbc.M109.019679
  60. 60.
    Berberich N, Uhl B, Joore J, Schmerwitz UK, Mayer BA, Reichel CA, Krombach F, Zahler S et al (2011) Roscovitine blocks leukocyte extravasation by inhibition of cyclin-dependent kinases 5 and 9. Br J Pharmacol 163:1086–1098.  https://doi.org/10.1111/j.1476-5381.2011.01309.x
  61. 61.
    Shimizu F, Sano Y, Abe M-A, Maeda T, Ohtsuki S, Terasaki T, Kanda T (2011) Peripheral nerve pericytes modify the blood-nerve barrier function and tight junctional molecules through the secretion of various soluble factors. J Cell Physiol 226:255–266.  https://doi.org/10.1002/jcp.22337 CrossRefPubMedGoogle Scholar
  62. 62.
    Sacco RL, Foulkes MA, Mohr JP, Wolf PA, Hier DB, Price TR (1989) Determinants of early recurrence of cerebral infarction. The stroke data bank. Stroke 20:983–989CrossRefPubMedGoogle Scholar
  63. 63.
    van Velthoven CT, Dzietko M, Wendland MF, Derugin N, Faustino J, Heijnen CJ, Ferriero DM, Vexler ZS (2017) Mesenchymal stem cells attenuate MRI-identifiable injury, protect white matter, and improve long-term functional outcomes after neonatal focal stroke in rats. J Neurosci Res 95:1225–1236.  https://doi.org/10.1002/jnr.23954 CrossRefPubMedGoogle Scholar
  64. 64.
    Fan Y, Shen F, Frenzel T, Zhu W, Ye J, Liu J, Chen Y, Su H et al (2010) Endothelial progenitor cell transplantation improves long-term stroke outcome in mice. Ann Neurol 67:488–497.  https://doi.org/10.1002/ana.21919
  65. 65.
    Bacigaluppi M, Russo GL, Peruzzotti-Jametti L, Rossi S, Sandrone S, Butti E, de Ceglia R, Bergamaschi A et al (2016) Neural stem cell transplantation induces stroke recovery by upregulating glutamate transporter GLT-1 in astrocytes. J Neurosci 36:10529–10544.  https://doi.org/10.1523/JNEUROSCI.1643-16.2016
  66. 66.
    Doeppner TR, Traut V, Heidenreich A, Kaltwasser B, Bosche B, Bähr M, Hermann DM (2017) Conditioned medium derived from neural progenitor cells induces long-term post-ischemic neuroprotection, sustained neurological recovery, neurogenesis, and angiogenesis. Mol Neurobiol 54:1531–1540.  https://doi.org/10.1007/s12035-016-9748-y CrossRefPubMedGoogle Scholar
  67. 67.
    Oh S-H, Choi C, Chang D-J, Shin DA, Lee N, Jeon I, Sung JH, Lee H et al (2015) Early neuroprotective effect with lack of long-term cell replacement effect on experimental stroke after intra-arterial transplantation of adipose-derived mesenchymal stromal cells. Cytotherapy 17:1090–1103.  https://doi.org/10.1016/j.jcyt.2015.04.007
  68. 68.
    Jeong H-K, Ji K, Min K, Joe E-H (2013) Brain inflammation and microglia: facts and misconceptions. Exp Neurobiol 22:59–67.  https://doi.org/10.5607/en.2013.22.2.59 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Guan Y, Zou H, Chen X, Zhao C, Wang J, Cai Y, Chan P, Chen L et al (2014) Ischemia, immunosuppression, and SSEA-1-negative cells all contribute to tumors resulting from mouse embryonic stem cell-derived neural progenitor transplantation. J Neurosci Res 92:74–85.  https://doi.org/10.1002/jnr.23292
  70. 70.
    Pustavoitau A, Bhardwaj A, Stevens R (2011) Analytic review: neurological complications of transplantation. J Intensive Care Med 26:209–222.  https://doi.org/10.1177/0885066610389549 CrossRefPubMedGoogle Scholar
  71. 71.
    Haas C, Neuhuber B, Yamagami T, Rao M, Fischer I (2012) Phenotypic analysis of astrocytes derived from glial restricted precursors and their impact on axon regeneration. Exp Neurol 233:717–732.  https://doi.org/10.1016/j.expneurol.2011.11.002 CrossRefPubMedGoogle Scholar
  72. 72.
    Shin Y-J, Kim HL, Park J-M, Cho JM, Kim SY, Lee MY (2013) Characterization of nestin expression and vessel association in the ischemic core following focal cerebral ischemia in rats. Cell Tissue Res 351:383–395.  https://doi.org/10.1007/s00441-012-1538-x CrossRefPubMedGoogle Scholar
  73. 73.
    Cho JM, Shin Y-J, Park J-M, Kim J, Lee MY (2013) Characterization of nestin expression in astrocytes in the rat hippocampal CA1 region following transient forebrain ischemia. Anat Cell Biol 46:131–140.  https://doi.org/10.5115/acb.2013.46.2.131 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Chen L-W, Zhang J-P, Kwok-Yan Shum D, Chan Y-S (2006) Localization of nerve growth factor, neurotrophin-3, and glial cell line-derived neurotrophic factor in nestin-expressing reactive astrocytes in the caudate-putamen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated C57/Bl mice. J Comp Neurol 497:898–909.  https://doi.org/10.1002/cne.21014 CrossRefPubMedGoogle Scholar
  75. 75.
    Tamagno I, Schiffer D (2006) Nestin expression in reactive astrocytes of human pathology. J Neuro-Oncol 80:227–233.  https://doi.org/10.1007/s11060-006-9181-6 CrossRefGoogle Scholar
  76. 76.
    Selkirk SM, Greenberg SJ, Plunkett RJ, Barone TA, Lis A, Spence PO (2002) Syngeneic central nervous system transplantation of genetically transduced mature, adult astrocytes. Gene Ther 9:432–443.  https://doi.org/10.1038/sj.gt.3301643 CrossRefPubMedGoogle Scholar
  77. 77.
    Han X, Chen M, Wang F, et al (2013) Cell Stem Cell Article Forebrain Engraftment by Human Glial Progenitor Cells Enhances Synaptic Plasticity and Learning in Adult Mice. doi:  https://doi.org/10.1016/j.stem.2012.12.015
  78. 78.
    Chen H, Qian K, Chen W, Hu B, Blackbourn LW IV, du Z, Ma L, Liu H et al (2015) Human-derived neural progenitors functionally replace astrocytes in adult mice. J Clin Invest 125:1033–1042.  https://doi.org/10.1172/JCI69097
  79. 79.
    Chodobski A, Zink BJ, Szmydynger-Chodobska J (2011) Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res 2:492–516.  https://doi.org/10.1007/s12975-011-0125-x CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Sifat AE, Vaidya B, Abbruscato TJ (2017) Blood-brain barrier protection as a therapeutic strategy for acute ischemic stroke. AAPS J 19:1–16.  https://doi.org/10.1208/s12248-017-0091-7 CrossRefGoogle Scholar
  81. 81.
    Ghosh A, Carnahan J, Greenberg ME (1994) Requirement for BDNF in activity-dependent survival of cortical neurons. Science (80- ) 263:1618–1623Google Scholar
  82. 82.
    Saha RN, Liu X, Pahan K (2006) Up-regulation of BDNF in astrocytes by TNF-alpha: a case for the neuroprotective role of cytokine. J NeuroImmune Pharmacol 1:212–222.  https://doi.org/10.1007/s11481-006-9020-8 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Chen A, Xiong LJ, Tong Y, Mao M (2013) The neuroprotective roles of BDNF in hypoxic ischemic brain injury. Biomed Rep 1:167–176.  https://doi.org/10.3892/br.2012.48 CrossRefPubMedGoogle Scholar
  84. 84.
    Quesseveur G, David DJ, Gaillard MC, Pla P, Wu MV, Nguyen HT, Nicolas V, Auregan G et al (2013) BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl Psychiatry 3:e253.  https://doi.org/10.1038/tp.2013.30
  85. 85.
    Miyamoto N, Maki T, Shindo A, Liang AC, Maeda M, Egawa N, Itoh K, Lo EK et al (2015) Astrocytes promote oligodendrogenesis after white matter damage via brain-derived neurotrophic factor. J Neurosci 35:14002–14008Google Scholar
  86. 86.
    Betzen C, White R, Zehendner CM, Pietrowski E, Bender B, Luhmann HJ, Kuhlmann CRW (2009) Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium. Free Radic Biol Med 47:1212–1220.  https://doi.org/10.1016/j.freeradbiomed.2009.07.034 CrossRefPubMedGoogle Scholar
  87. 87.
    Mitsios N, Pennucci R, Krupinski J, Sanfeliu C, Gaffney J, Kumar P, Kumar S, Juan-Babot O et al (2007) Expression of cyclin-dependent kinase 5 mRNA and protein in the human brain following acute ischemic stroke. Brain Pathol 17:11–23.  https://doi.org/10.1111/j.1750-3639.2006.00031.x
  88. 88.
    Weishaupt JH, Kussmaul L, Grötsch P, Heckel A, Rohde G, Romig H, Bähr M, Gillardon F (2003) Inhibition of CDK5 is protective in necrotic and apoptotic paradigms of neuronal cell death and prevents mitochondrial dysfunction. Mol Cell Neurosci 24:489–502CrossRefPubMedGoogle Scholar
  89. 89.
    Posada-Duque RA, López-Tobón A, Piedrahita D, González-Billault C, Cardona-Gomez GP (2015) p35 and Rac1 underlie the neuroprotection and cognitive improvement induced by CDK5 silencing. J Neurochem 134:354–370.  https://doi.org/10.1111/jnc.13127 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Ishiyama N, Lee S-H, Liu S, Li GY, Smith MJ, Reichardt LF, Ikura M (2010) Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell-cell adhesion. Cell 141:117–128.  https://doi.org/10.1016/j.cell.2010.01.017 CrossRefPubMedGoogle Scholar
  91. 91.
    Poore CP, Sundaram JR, Pareek TK, Fu A, Amin N, Mohamed NE, Zheng YL, Goh AXH et al (2010) Cdk5-mediated phosphorylation of delta-catenin regulates its localization and GluR2-mediated synaptic activity. J Neurosci 30:8457–8467.  https://doi.org/10.1523/JNEUROSCI.6062-09.2010
  92. 92.
    Céspedes-Rubio A, Jurado FW, Cardona-Gómez GP (2010) p120 catenin/αN-catenin are molecular targets in the neuroprotection and neuronal plasticity mediated by atorvastatin after focal cerebral ischemia. J Neurosci Res 88:3621–3634.  https://doi.org/10.1002/jnr.22511 CrossRefPubMedGoogle Scholar
  93. 93.
    Castro-Alvarez JF, Uribe-Arias SA, Kosik KS, Cardona-GÃ3mez GP (2014) Long- and short-term CDK5 knockdown prevents spatial memory dysfunction and tau pathology of triple transgenic Alzheimer’s mice. Front Aging Neurosci 6:243 . doi:  https://doi.org/10.3389/fnagi.2014.00243
  94. 94.
    Piedrahita D, Hernández I, López-Tobón A et al (2010) Silencing of CDK5 reduces neurofibrillary tangles in transgenic alzheimer’s mice. J Neurosci 30:13966–13976.  https://doi.org/10.1523/JNEUROSCI.3637-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Navaratna D, Fan X, Leung W, Lok J, Guo S, Xing C, Wang X, Lo EH (2013) Cerebrovascular degradation of TRKB by MMP9 in the diabetic brain. J Clin Invest 123:3373–3377.  https://doi.org/10.1172/JCI65767 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Navaratna D, Guo S-Z, Hayakawa K, Wang X, Gerhardinger C, Lo EH (2011) Decreased cerebrovascular brain-derived neurotrophic factor-mediated neuroprotection in the diabetic brain. Diabetes 60:1789–1796.  https://doi.org/10.2337/db10-1371 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Qin L, Kim E, Ratan R, Lee FS, Cho S (2011) Genetic variant of BDNF (Val66Met) polymorphism attenuates stroke-induced angiogenic responses by enhancing anti-angiogenic mediator CD36 expression. J Neurosci 31:775–783.  https://doi.org/10.1523/JNEUROSCI.4547-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Quirié A, Hervieu M, Garnier P, Demougeot C, Mossiat C, Bertrand N, Martin A, Marie C et al (2012) Comparative effect of treadmill exercise on mature BDNF production in control versus stroke rats. PLoS One 7:e44218.  https://doi.org/10.1371/journal.pone.0044218
  99. 99.
    Gutierrez-Vargas JA, Muñoz-Manco JI, Garcia-Segura LM, Cardona-Gómez GP (2014) GluN2B N-methyl-D-aspartic acid receptor subunit mediates atorvastatin-induced neuroprotection after focal cerebral ischemia. J Neurosci Res 92:1529–1548.  https://doi.org/10.1002/jnr.23426 CrossRefPubMedGoogle Scholar
  100. 100.
    Lipsky RH, Marini AM (2007) Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann N Y Acad Sci 1122:130–143.  https://doi.org/10.1196/annals.1403.009 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, SIUUniversity of AntioquiaMedellinColombia
  2. 2.Institute of Biology, Faculty of Exact and Natural SciencesUniversity of AntioquiaMedellinColombia
  3. 3.Universidad de Antioquia, Sede de Investigación Universitaria (SIU)MedellínColombia

Personalised recommendations