Long-Term, Fructose-Induced Metabolic Syndrome-Like Condition Is Associated with Higher Metabolism, Reduced Synaptic Plasticity and Cognitive Impairment in Octodon degus

  • Daniela S. Rivera
  • Carolina B. Lindsay
  • Juan F. Codocedo
  • Laura E. Carreño
  • Daniel Cabrera
  • Marco A. Arrese
  • Carlos P. Vio
  • Francisco Bozinovic
  • Nibaldo C. Inestrosa


There has been a progressive increase in the incidence of fructose-induced metabolic disorders, such as metabolic syndrome (MetS). Moreover, novel evidence reported negative effects of high-fructose diets in brain function. This study was designed to evaluate for the first time the effects of long-term fructose consumption (LT-FC) on the normal ageing process in a long-lived animal model rodent, Octodon degus or degu. Moreover, we could replicate human sugar consumption behaviour over time, leading us to understand then the possible mechanisms by which this MetS-like condition could affect cognitive abilities. Our results support that 28 months (from pup to adulthood) of a 15% solution of fructose induced clinical conditions similar to MetS which includes an insulin-resistance scenario together with elevated basal metabolic rate and non-alcoholic fatty liver disease. Additionally, we extended our analysis to evaluate the impact of this MetS-like condition on the functional and cognitive brain processes. Behavioural test suggests that fructose-induced MetS-like condition impair hippocampal-dependent and independent memory performance. Moreover, we also reported several neuropathological events as impaired hippocampal redox balance, together with synaptic protein loss. These changes might be responsible for the alterations in synaptic plasticity and transmitter release observed in these cognitively impaired animals. Our results indicate that LT-FC induced several facets of MetS that eventually could trigger brain disorders, in particular, synaptic dysfunction and reduced cognition.


Octodon degus Fructose Insulin resistance Basal metabolic rate Non-alcoholic fatty liver Behaviour performance Synaptic plasticity 



This work was supported by a postdoctoral grant from Fondo Nacional de Desarollo Científico y Tecnológico (FONDECYT) N° 3140395 to DSR. PC was supported by FONDECYT N° 11160651. MAA was supported by FONDECYT N°1150327. DC was supported by FONDECYT N° 11171001. NCI was supported by FONDECYT N° 1160724 and grants from the Basal Centre of Excellence in Science and Technology (CONICYT-PFB12/2007) and AFB 170005. In addition, a grant from CAPES-CONICYT FB 0002-2014 (Line 3) was awarded to FB. We thank G. Cavieres for assistance with Basal metabolic rate records, C. Céspedes for assistance with blood pressure measurements and J. Rios for assistance with liver histopathology analysis.

Compliance with Ethical Standards

Housing, treatment and euthanasia of animals met the guidelines set by the National Institutes of Health (NIH, Baltimore, MD, USA). All experimental procedures involving animals were approved by the Bioethical and Biosafety Committee of the Faculty of Biological Sciences of the Pontificia Universidad Católica de Chile (CBB-121-2013). All efforts were made to minimize animal suffering and to reduce the number of animals used.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2018_969_MOESM1_ESM.docx (43 kb)
ESM 1 (DOCX 43 kb).
12035_2018_969_MOESM2_ESM.docx (12.7 mb)
ESM 2 (DOCX 13054 kb).
12035_2018_969_MOESM3_ESM.docx (30 kb)
ESM 3 (DOCX 29 kb).


  1. 1.
    Kaidar-Person O, Person B, Szomstein S, Rosenthal RJ (2008) Nutritional deficiencies in morbidly obese patients: a new form of malnutrition? Obes Surg 18(8):1028–1034CrossRefPubMedGoogle Scholar
  2. 2.
    Miller A, Adeli K (2008) Dietary fructose and the metabolic syndrome. Curr Opin Gastroenterol 224(2):204–209CrossRefGoogle Scholar
  3. 3.
    Jürgens H, Haass W, Castañeda TR, Schürmann A, Koebnick C, Dombrowski F, Otto B, Nawrocki AR et al (2005) Consuming fructose-sweetened beverages increases body adiposity in mice. Obesity 13(7):1146–1156CrossRefGoogle Scholar
  4. 4.
    Rizkalla SW (2010) Health implications of fructose consumption: a review of recent data. Nutr Metab 7(1):82CrossRefGoogle Scholar
  5. 5.
    Tappy L, Lê K-A (2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 90(1):23–46CrossRefPubMedGoogle Scholar
  6. 6.
    Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K (2010) Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab 299(5):E685–E694CrossRefPubMedGoogle Scholar
  7. 7.
    Malik VS, Hu FB (2012) Sweeteners and risk of obesity and type 2 diabetes: the role of sugar-sweetened beverages. Curr Diab Rep 12(2):195–203CrossRefGoogle Scholar
  8. 8.
    Hamaguchi M, Kojima T, Takeda N, Nakagawa T, Taniguchi H, Fujii K, Omatsu T, Nakajima T et al (2005) The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann Intern Med 143(10):722–728CrossRefPubMedGoogle Scholar
  9. 9.
    Ríos JA, Cisternas P, Arrese M, Barja S, Inestrosa NC (2014) Is Alzheimer’s disease related to metabolic syndrome? A Wnt signaling conundrum. Prog Neurobiol 121:125–146CrossRefPubMedGoogle Scholar
  10. 10.
    Suzanne M, Tong M (2014) Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem Pharmacol 88(4):548–559CrossRefGoogle Scholar
  11. 11.
    Gómez-Pinilla F (2008) Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 9(7):568–578CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Agrawal R, Gomez-Pinilla F (2012) ‘Metabolic syndrome’ in the brain: deficiency in omega-3 fatty acid exacerbates dysfunctions in insulin receptor signalling and cognition. J Physiol 590(10):2485–2499CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ross AP, Bartness TJ, Mielke JG, Parent MB (2009) A high fructose diet impairs spatial memory in male rats. Neurobiol Learn Mem 92(3):410–416CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cisternas P, Salazar P, Serrano FG, Montecinos-Oliva C, Arredondo SB, Varela-Nallar L, Barja S, Vio CP et al (2015) Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance. Biochim Biophys Acta BBA-Mol Basis Dis 1852(11):2379–2390CrossRefGoogle Scholar
  15. 15.
    Agrawal R, Noble E, Vergnes L, Ying Z, Reue K, Gomez-Pinilla F (2016) Dietary fructose aggravates the pathobiology of traumatic brain injury by influencing energy homeostasis and plasticity. J Cereb Blood Flow Metab 36(5):941–953CrossRefPubMedGoogle Scholar
  16. 16.
    Levi B, Werman MJ (1998) Long-term fructose consumption accelerates glycation and several age-related variables in male rats. J Nutr 128(9):1442–1449CrossRefPubMedGoogle Scholar
  17. 17.
    Gomez-Pinilla F, Tyagi E (2013) Diet and cognition: interplay between cell metabolism and neuronal plasticity. Curr Opin Clin Nutr Metab Care 16(6):726–733CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tillman EJ, Morgan DA, Rahmouni K, Swoap SJ (2014) Three months of high-fructose feeding fails to induce excessive weight gain or leptin resistance in mice. PLoS One 9(9):e107206CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Livesey G, Taylor R (2008) Fructose consumption and consequences for glycation, plasma triacylglycerol, and body weight: meta-analyses and meta-regression models of intervention studies. Am J Clin Nutr 88(5):1419–1437PubMedGoogle Scholar
  20. 20.
    White JS (2013) Challenging the fructose hypothesis: new perspectives on fructose consumption and metabolism. Adv Nutr Int Rev J 4(2):246–256CrossRefGoogle Scholar
  21. 21.
    Johnson RJ, Segal MS, Sautin Y, Nakagawa T, Feig DI, Kang D-H, Sánchez-Lozada LG (2007) Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 86(4):899–906PubMedGoogle Scholar
  22. 22.
    Havel PJ (2005) Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev 63(5):133–157CrossRefPubMedGoogle Scholar
  23. 23.
    Sánchez-Lozada LG, Tapia E, Jiménez A, Bautista P, Cristóbal M, Nepomuceno T, Soto V, Avila-Casado C et al (2007) Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol-Ren Physiol 292(1):F423–F429CrossRefGoogle Scholar
  24. 24.
    Bremer AA, Stanhope KL, Graham JL, Cummings BP, Wang W, Saville BR, Havel PJ (2011) Fructose-fed rhesus monkeys: a nonhuman primate model of insulin resistance, metabolic syndrome, and type 2 diabetes. Clin Transl Sci 4(4):243–252CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Edwards MS (2009) Nutrition and behavior of degus (Octodon degus). Veterinary Clin North Am Exot Anim Pract 12(2):237–253CrossRefGoogle Scholar
  26. 26.
    Homan R, Hanselman JC, Bak-Mueller S, Washburn M, Lester P, Jensen HE, Pinkosky SL, Castle C et al (2010) Atherosclerosis in Octodon degus (degu) as a model for human disease. Atherosclerosis 212(1):48–54CrossRefPubMedGoogle Scholar
  27. 27.
    Brown C, Donnelly TM (2001) Cataracts and reduced fertility in degus (Octodon degus). Contracts secondary to spontaneous diabetes mellitus. Lab Anim 30(6):25Google Scholar
  28. 28.
    Castro-Fuentes R, Socas-Pérez R (2013) Octodon degus: a strong attractor for Alzheimer research. Basic Clin Neurosci 4(1):91–96PubMedPubMedCentralGoogle Scholar
  29. 29.
    Opazo JC, Soto-Gamboa M, Bozinovic F (2004) Blood glucose concentration in caviomorph rodents. Comp Biochem Physiol A Mol Integr Physiol 137(1):57–64CrossRefPubMedGoogle Scholar
  30. 30.
    Ardiles ÁO, Tapia-Rojas CC, Mandal M, Alexandre F, Kirkwood A, Inestrosa NC, Palacios AG (2012) Postsynaptic dysfunction is associated with spatial and object recognition memory loss in a natural model of Alzheimer’s disease. Proc Natl Acad Sci 109(34):13835–13840CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rivera DS, Inestrosa NC, Bozinovic F (2016) On cognitive ecology and the environmental factors that promote Alzheimer disease: lessons from Octodon degus (Rodentia: Octodontidae). Biol Res 49(1):10CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Inestrosa NC, Ríos JA, Cisternas P, Tapia-Rojas C, Rivera DS, Braidy N, Zolezzi JM, Godoy JA et al (2015) Age progression of neuropathological markers in the brain of the Chilean rodent Octodon degus, a natural model of Alzheimer’s disease. Brain Pathol 25(6):679–691CrossRefPubMedGoogle Scholar
  33. 33.
    Veloso C, Bozinovic F (1993) Dietary and digestive constraints on basal energy metabolism in a small herbivorous rodent. Ecology 74(7):2003–2010CrossRefGoogle Scholar
  34. 34.
    Lott JA, Turner K (1975) Evaluation of Trinder’s glucose oxidase method for measuring glucose in serum and urine. Clin Chem 21(12):1754–1760PubMedGoogle Scholar
  35. 35.
    Johnson RN, Metcalf PA, Baker JR (1983) Fructosamine: a new approach to the estimation of serum glycosylprotein. An index of diabetic control. Clin Chim Acta 127(1):87–95CrossRefPubMedGoogle Scholar
  36. 36.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419CrossRefPubMedGoogle Scholar
  37. 37.
    Group NDD (1979) Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 28(12):1039–1057CrossRefGoogle Scholar
  38. 38.
    Bozinovic F, Bacigalupe LD, Vasquez RA, Visser GH, Veloso C, Kenagy GJ (2004) Cost of living in free-ranging degus (Octodon degus): seasonal dynamics of energy expenditure. Comp Biochem Physiol A Mol Integr Physiol 137(3):597–604CrossRefPubMedGoogle Scholar
  39. 39.
    Bozinovic F, Rojas JM, Broitman BR, Vásquez RA (2009) Basal metabolism is correlated with habitat productivity among populations of degus (Octodon degus). Comp Biochem Physiol A Mol Integr Physiol 152(4):560–564CrossRefPubMedGoogle Scholar
  40. 40.
    Withers PC (1977) Measurement of VO2, VCO2, and evaporative water loss with a flow-through mask. J Appl Physiol 42(1):120–123CrossRefPubMedGoogle Scholar
  41. 41.
    Takahashi Y, Fukusato T (2014) Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol WJG 20(42):15539–15548CrossRefPubMedGoogle Scholar
  42. 42.
    Cabrera D, Ruiz A, Cabello-Verrugio C, Brandan E, Estrada L, Pizarro M, Solis N, Torres J et al (2016) Diet-induced nonalcoholic fatty liver disease is associated with sarcopenia and decreased serum insulin-like growth factor-1. Dig Dis Sci 61(11):3190–3198CrossRefPubMedGoogle Scholar
  43. 43.
    Rivera DS, Lindsay C, Codocedo JF, Morel I, Pinto C, Cisternas P, Bozinovic F, Inestrosa NC (2016) Andrographolide recovers cognitive impairment in a natural model of Alzheimer’s disease (Octodon degus). Neurobiol Aging 46:204–220CrossRefPubMedGoogle Scholar
  44. 44.
    Kumazawa-Manita N, Hama H, Miyawaki A, Iriki A (2013) Tool use specific adult neurogenesis and synaptogenesis in rodent (Octodon degus) hippocampus. PLoS One 8(3):e58649CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93(1):74–104CrossRefPubMedGoogle Scholar
  46. 46.
    Serrano FG, Tapia-Rojas C, Carvajal FJ, Hancke J, Cerpa W, Inestrosa NC (2014) Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice. Mol Neurodegener 9(1):61CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Aydin S, Aksoy A, Aydin S, Kalayci M, Yilmaz M, Kuloglu T, Citil C, Catak Z (2014) Today’s and yesterday’s of pathophysiology: biochemistry of metabolic syndrome and animal models. Nutrition 30(1):1–9CrossRefPubMedGoogle Scholar
  48. 48.
    Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, Natale S, Vanni E et al (2003) Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37(4):917–923CrossRefPubMedGoogle Scholar
  49. 49.
    Lonardo A, Ballestri S, Marchesini G, Angulo P, Loria P (2015) Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig Liver Dis 47(3):181–190CrossRefPubMedGoogle Scholar
  50. 50.
    Singh S, Nath P, Parida P, Narayan J, Padhi P, Singh A, Pati G, Agrawal O et al (2015) NAFLD alone is a better predictor than MS (ATP-III) criteria for insulin resistance. J Clin Exp Hepatol 5:S21CrossRefGoogle Scholar
  51. 51.
    Arrese M (2010) Nonalcoholic fatty liver disease: liver disease: an overlooked complication of diabetes mellitus. Nat Rev Endocrinol 6(12):660–661CrossRefPubMedGoogle Scholar
  52. 52.
    Targher G (2007) Non-alcoholic fatty liver disease, the metabolic syndrome and the risk of cardiovascular disease: the plot thickens. Diabet Med 24(1):1–6CrossRefPubMedGoogle Scholar
  53. 53.
    Ackerman Z, Oron-Herman M, Grozovski M, Rosenthal T, Pappo O, Link G, Sela BA (2005) Fructose-induced fatty liver disease. Hypertension 45(5):1012–1018CrossRefPubMedGoogle Scholar
  54. 54.
    Cave M, Deaciuc I, Mendez C, Song Z, Joshi-Barve S, Barve S, McClain C (2007) Nonalcoholic fatty liver disease: predisposing factors and the role of nutrition. J Nutr Biochem 18(3):184–195CrossRefPubMedGoogle Scholar
  55. 55.
    Reiser S, Powell AS, Scholfield DJ, Panda P, Ellwood KC, Canary JJ (1989) Blood lipids, lipoproteins, apoproteins, and uric acid in men fed diets containing fructose or high-amylose cornstarch. Am J Clin Nutr 49(5):832–839CrossRefPubMedGoogle Scholar
  56. 56.
    Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, Hatcher B, Cox CL et al (2009) Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119(5):1322–1334CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Hwang I-S, Ho H, Hoffman BB, Reaven GM (1987) Fructose-induced insulin resistance and hypertension in rats. Hypertension 10(5):512–516CrossRefPubMedGoogle Scholar
  58. 58.
    Kamide K, Rakugi H, Higaki J, Okamura A, Nagai M, Moriguchi K, Ohishi M, Satoh N et al (2002) The renin-angiotensin and adrenergic nervous system in cardiac hypertrophy in fructose-fed rats. Am J Hypertens 15(1):66–71CrossRefPubMedGoogle Scholar
  59. 59.
    Axelsen LN, Lademann JB, Petersen JS, Holstein-Rathlou N-H, Ploug T, Prats C, Pedersen HD, Kjølbye AL (2010) Cardiac and metabolic changes in long-term high fructose-fat fed rats with severe obesity and extensive intramyocardial lipid accumulation. Am J Physiol-Regul Integr Comp Physiol 298(6):R1560–R1570CrossRefPubMedGoogle Scholar
  60. 60.
    Ha V, Sievenpiper JL, de Souza RJ, Chiavaroli L, Wang DD, Cozma AI, Mirrahimi A, Yu ME, Carleton AJ, Dibuono M, Jenkins AL, Leiter LA, Wolever TM, Beyene J, Kendall CW, Jenkins DJ (2012) Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Hypertension HYPERTENSIONAHA–111.Google Scholar
  61. 61.
    Farah D, Nunes J, Sartori M, da Silva Dias D, Sirvente R, Silva MB, Fiorino P, Morris M et al (2016) Exercise training prevents cardiovascular derangements induced by fructose overload in developing rats. PLoS One 11(12):e0167291CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Balakumar M, Raji L, Prabhu D, Sathishkumar C, Prabu P, Mohan V, Balasubramanyam M (2016) High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress. Mol Cell Biochem 423(1–2):93–104CrossRefPubMedGoogle Scholar
  63. 63.
    Lim JS, Mietus-Snyder M, Valente A, Schwarz J-M, Lustig RH (2010) The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol 7(5):251–264CrossRefPubMedGoogle Scholar
  64. 64.
    Abdelmalek MF (2010) Nonalcoholic steatohepatitis clinical research network. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 51:1961–1971CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Sellmann C, Priebs J, Landmann M, Degen C, Engstler AJ, Jin CJ, Gärttner S, Spruss A et al (2015) Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time. J Nutr Biochem 26(11):1183–1192CrossRefPubMedGoogle Scholar
  66. 66.
    Müller MJ, Böttcher J, Selberg O, Weselmann S, Böker KH, Schwarze M, Manns MP (1999) Hypermetabolism in clinically stable patients with liver cirrhosis. Am J Clin Nutr 69(6):1194–1201CrossRefPubMedGoogle Scholar
  67. 67.
    Tarantino G, Marra M, Contaldo F, Pasanisi F (2008) Basal metabolic rate in morbidly obese patients with non-alcoholic fatty liver disease. Clin Invest Med 31(1):24–29CrossRefGoogle Scholar
  68. 68.
    Maeda K, Cao H, Kono K, Gorgun CZ, Furuhashi M, Uysal KT, Cao Q, Atsumi G et al (2005) Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. Cell Metab 1(2):107–119CrossRefPubMedGoogle Scholar
  69. 69.
    Woods SC, Seeley RJ, Porte D, Schwartz MW (1998) Signals that regulate food intake and energy homeostasis. Science 280(5368):1378–1383CrossRefPubMedGoogle Scholar
  70. 70.
    Haleem DJ, Haider S, Perveen T, Inam Q-U-A, Kidwai IM, Haleem MA (2000) Hyperphagia and decreases of brain serotonin in rats fed freely on sugar rich diet for three weeks. Nutr Neurosci 3(6):399–405CrossRefGoogle Scholar
  71. 71.
    Sohal RS (2002) Role of oxidative stress and protein oxidation in the aging process 1, 2. Free Radic Biol Med 33(1):37–44CrossRefPubMedGoogle Scholar
  72. 72.
    Burton T, Killen SS, Armstrong JD, Metcalfe NB (2011) What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proc R Soc Lond B Biol Sci 278(1724):3465–3473CrossRefGoogle Scholar
  73. 73.
    Mastrocola R, Nigro D, Cento AS, Chiazza F, Collino M, Aragno M (2016) High-fructose intake as risk factor for neurodegeneration: key role for carboxy methyllysine accumulation in mice hippocampal neurons. Neurobiol Dis 89:65–75CrossRefPubMedGoogle Scholar
  74. 74.
    Yan L-J, Levine RL, Sohal RS (1997) Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci 94(21):11168–11172CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Sohal RS, Ku H-H, Agarwal S, Forster MJ, Lal H (1994) Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 74(1):121–133CrossRefPubMedGoogle Scholar
  76. 76.
    Lopes A, Vilela TC, Taschetto L, Vuolo F, Petronilho F, Dal-Pizzol F, Streck EL, Ferreira GC et al (2014) Evaluation of the effects of fructose on oxidative stress and inflammatory parameters in rat brain. Mol Neurobiol 50(3):1124–1130CrossRefPubMedGoogle Scholar
  77. 77.
    Castro MC, Massa ML, Arbeláez LG, Schinella G, Gagliardino JJ, Francini F (2015) Fructose-induced inflammation, insulin resistance and oxidative stress: a liver pathological triad effectively disrupted by lipoic acid. Life Sci 137:1–6CrossRefPubMedGoogle Scholar
  78. 78.
    Calvo-Ochoa E, Hernández-Ortega K, Ferrera P, Morimoto S, Arias C (2014) Short-term high-fat-and-fructose feeding produces insulin signaling alterations accompanied by neurite and synaptic reduction and astroglial activation in the rat hippocampus. J Cereb Blood Flow Metab 34(6):1001–1008CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Hudoyo AW, Hirase T, Tandelillin A, Honda M, Shirai M, Cheng J, Morisaki H, Morisaki T (2017) Role of AMPD2 in impaired glucose tolerance induced by high fructose diet. Mol Genet Metab Rep 13:23–29CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Li P, Koike T, Qin B, Kubota M, Kawata Y, Jia YJ, Oshida Y (2008) A high-fructose diet impairs Akt and PKCζ phosphorylation and GLUT4 translocation in rat skeletal muscle. Horm Metab Res 40(08):528–532CrossRefPubMedGoogle Scholar
  81. 81.
    Pham N, Dhar A, Khalaj S, Desai K, Taghibiglou C (2014) Down regulation of brain cellular prion protein in an animal model of insulin resistance: possible implication in increased prevalence of stroke in pre-diabetics/diabetics. Biochem Biophys Res Commun 448(2):151–156CrossRefPubMedGoogle Scholar
  82. 82.
    Cao D, Lu H, Lewis TL, Li L (2007) Intake of sucrose-sweetened water induces insulin resistance and exacerbates memory deficits and amyloidosis in a transgenic mouse model of Alzheimer disease. J Biol Chem 282(50):36275–36282CrossRefPubMedGoogle Scholar
  83. 83.
    Kogan JH, Frankland PW, Silva AJ (2000) Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus 10(1):47–56CrossRefPubMedGoogle Scholar
  84. 84.
    Rosenfeld CS, Ferguson SA (2014) Barnes maze testing strategies with small and large rodent models. J Vis Exp JoVE 84:e51194Google Scholar
  85. 85.
    Inam Q-A, Ikram H, Shireen E, Haleem DJ (2016) Effects of sugar rich diet on brain serotonin, hyperphagia and anxiety in animal model of both genders. Pak J Pharm Sci 29(3):757–763PubMedGoogle Scholar
  86. 86.
    Yoshimi N, Futamura T, Hashimoto K (2015) Improvement of dizocilpine-induced social recognition deficits in mice by brexpiprazole, a novel serotonin–dopamine activity modulator. Eur Neuropsychopharmacol 25(3):356–364CrossRefPubMedGoogle Scholar
  87. 87.
    Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13(2):93–110CrossRefPubMedGoogle Scholar
  88. 88.
    Jarrard LE (1993) On the role of the hippocampus in learning and memory in the rat. Behav Neural Biol 60(1):9–26CrossRefPubMedGoogle Scholar
  89. 89.
    Fusco S, Pani G (2013) Brain response to calorie restriction. Cell Mol Life Sci 70(17):3157–3170CrossRefPubMedGoogle Scholar
  90. 90.
    Harris KM, Weinberg RJ (2012) Ultrastructure of synapses in the mammalian brain. Cold Spring Harb Perspect Biol 4(5):a005587CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Lüscher C, Malenka RC (2012) NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol 4(6):a005710CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Hessler NA, Shirke AM, Malinow R (1993) The probability of transmitter release at a mammalian central synapse. Nature 366(6455):569–572CrossRefPubMedGoogle Scholar
  93. 93.
    Murthy VN, Sejnowski TJ, Stevens CF (1997) Heterogeneous release properties of visualized individual hippocampal synapses. Neuron 18(4):599–612CrossRefPubMedGoogle Scholar
  94. 94.
    Chen X, Levy JM, Hou A, Winters C, Azzam R, Sousa AA, Leapman RD, Nicoll RA et al (2015) PSD-95 family MAGUKs are essential for anchoring AMPA and NMDA receptor complexes at the postsynaptic density. Proc Natl Acad Sci 112(50):E6983–E6992CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Nagura H, Ishikawa Y, Kobayashi K, Takao K, Tanaka T, Nishikawa K, Tamura H, Shiosaka S et al (2012) Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice. Mol Brain 5(1):43CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Daniela S. Rivera
    • 1
    • 2
  • Carolina B. Lindsay
    • 1
  • Juan F. Codocedo
    • 1
  • Laura E. Carreño
    • 3
  • Daniel Cabrera
    • 4
    • 5
  • Marco A. Arrese
    • 1
    • 4
  • Carlos P. Vio
    • 1
    • 6
  • Francisco Bozinovic
    • 2
    • 7
  • Nibaldo C. Inestrosa
    • 1
    • 6
    • 7
    • 8
  1. 1.Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Departamento de Ecología and Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Servicio de Anatomía PatológicaHospital Clínico de la Universidad de ChileSantiagoChile
  4. 4.Departamento de Gastroenterología, Escuela de Medicina, Facultad de MedicinaPontificia Universidad Católica de ChileSantiagoChile
  5. 5.Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Santiago, ChileUniversidad Bernardo O’HigginsSantiagoChile
  6. 6.Centro de Excelencia en Biomedicina de Magallanes (CEBIMA)Universidad de MagallanesPunta ArenasChile
  7. 7.Centro UC-Síndrome de DownPontificia Universidad Católica de ChileSantiagoChile
  8. 8.Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of MedicineUniversity of New South WalesSydneyAustralia

Personalised recommendations