Skip to main content

Advertisement

Log in

Long-Term, Fructose-Induced Metabolic Syndrome-Like Condition Is Associated with Higher Metabolism, Reduced Synaptic Plasticity and Cognitive Impairment in Octodon degus

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

There has been a progressive increase in the incidence of fructose-induced metabolic disorders, such as metabolic syndrome (MetS). Moreover, novel evidence reported negative effects of high-fructose diets in brain function. This study was designed to evaluate for the first time the effects of long-term fructose consumption (LT-FC) on the normal ageing process in a long-lived animal model rodent, Octodon degus or degu. Moreover, we could replicate human sugar consumption behaviour over time, leading us to understand then the possible mechanisms by which this MetS-like condition could affect cognitive abilities. Our results support that 28 months (from pup to adulthood) of a 15% solution of fructose induced clinical conditions similar to MetS which includes an insulin-resistance scenario together with elevated basal metabolic rate and non-alcoholic fatty liver disease. Additionally, we extended our analysis to evaluate the impact of this MetS-like condition on the functional and cognitive brain processes. Behavioural test suggests that fructose-induced MetS-like condition impair hippocampal-dependent and independent memory performance. Moreover, we also reported several neuropathological events as impaired hippocampal redox balance, together with synaptic protein loss. These changes might be responsible for the alterations in synaptic plasticity and transmitter release observed in these cognitively impaired animals. Our results indicate that LT-FC induced several facets of MetS that eventually could trigger brain disorders, in particular, synaptic dysfunction and reduced cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kaidar-Person O, Person B, Szomstein S, Rosenthal RJ (2008) Nutritional deficiencies in morbidly obese patients: a new form of malnutrition? Obes Surg 18(8):1028–1034

    Article  Google Scholar 

  2. Miller A, Adeli K (2008) Dietary fructose and the metabolic syndrome. Curr Opin Gastroenterol 224(2):204–209

    Article  Google Scholar 

  3. Jürgens H, Haass W, Castañeda TR, Schürmann A, Koebnick C, Dombrowski F, Otto B, Nawrocki AR et al (2005) Consuming fructose-sweetened beverages increases body adiposity in mice. Obesity 13(7):1146–1156

    Article  Google Scholar 

  4. Rizkalla SW (2010) Health implications of fructose consumption: a review of recent data. Nutr Metab 7(1):82

    Article  Google Scholar 

  5. Tappy L, Lê K-A (2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 90(1):23–46

    Article  CAS  Google Scholar 

  6. Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K (2010) Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab 299(5):E685–E694

    Article  CAS  Google Scholar 

  7. Malik VS, Hu FB (2012) Sweeteners and risk of obesity and type 2 diabetes: the role of sugar-sweetened beverages. Curr Diab Rep 12(2):195–203

    Article  CAS  Google Scholar 

  8. Hamaguchi M, Kojima T, Takeda N, Nakagawa T, Taniguchi H, Fujii K, Omatsu T, Nakajima T et al (2005) The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann Intern Med 143(10):722–728

    Article  CAS  Google Scholar 

  9. Ríos JA, Cisternas P, Arrese M, Barja S, Inestrosa NC (2014) Is Alzheimer’s disease related to metabolic syndrome? A Wnt signaling conundrum. Prog Neurobiol 121:125–146

    Article  Google Scholar 

  10. Suzanne M, Tong M (2014) Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem Pharmacol 88(4):548–559

    Article  Google Scholar 

  11. Gómez-Pinilla F (2008) Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 9(7):568–578

    Article  Google Scholar 

  12. Agrawal R, Gomez-Pinilla F (2012) ‘Metabolic syndrome’ in the brain: deficiency in omega-3 fatty acid exacerbates dysfunctions in insulin receptor signalling and cognition. J Physiol 590(10):2485–2499

    Article  CAS  Google Scholar 

  13. Ross AP, Bartness TJ, Mielke JG, Parent MB (2009) A high fructose diet impairs spatial memory in male rats. Neurobiol Learn Mem 92(3):410–416

    Article  CAS  Google Scholar 

  14. Cisternas P, Salazar P, Serrano FG, Montecinos-Oliva C, Arredondo SB, Varela-Nallar L, Barja S, Vio CP et al (2015) Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance. Biochim Biophys Acta BBA-Mol Basis Dis 1852(11):2379–2390

    Article  CAS  Google Scholar 

  15. Agrawal R, Noble E, Vergnes L, Ying Z, Reue K, Gomez-Pinilla F (2016) Dietary fructose aggravates the pathobiology of traumatic brain injury by influencing energy homeostasis and plasticity. J Cereb Blood Flow Metab 36(5):941–953

    Article  CAS  Google Scholar 

  16. Levi B, Werman MJ (1998) Long-term fructose consumption accelerates glycation and several age-related variables in male rats. J Nutr 128(9):1442–1449

    Article  CAS  Google Scholar 

  17. Gomez-Pinilla F, Tyagi E (2013) Diet and cognition: interplay between cell metabolism and neuronal plasticity. Curr Opin Clin Nutr Metab Care 16(6):726–733

    Article  CAS  Google Scholar 

  18. Tillman EJ, Morgan DA, Rahmouni K, Swoap SJ (2014) Three months of high-fructose feeding fails to induce excessive weight gain or leptin resistance in mice. PLoS One 9(9):e107206

    Article  Google Scholar 

  19. Livesey G, Taylor R (2008) Fructose consumption and consequences for glycation, plasma triacylglycerol, and body weight: meta-analyses and meta-regression models of intervention studies. Am J Clin Nutr 88(5):1419–1437

    CAS  PubMed  Google Scholar 

  20. White JS (2013) Challenging the fructose hypothesis: new perspectives on fructose consumption and metabolism. Adv Nutr Int Rev J 4(2):246–256

    Article  CAS  Google Scholar 

  21. Johnson RJ, Segal MS, Sautin Y, Nakagawa T, Feig DI, Kang D-H, Sánchez-Lozada LG (2007) Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 86(4):899–906

    CAS  Google Scholar 

  22. Havel PJ (2005) Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev 63(5):133–157

    Article  Google Scholar 

  23. Sánchez-Lozada LG, Tapia E, Jiménez A, Bautista P, Cristóbal M, Nepomuceno T, Soto V, Avila-Casado C et al (2007) Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol-Ren Physiol 292(1):F423–F429

    Article  Google Scholar 

  24. Bremer AA, Stanhope KL, Graham JL, Cummings BP, Wang W, Saville BR, Havel PJ (2011) Fructose-fed rhesus monkeys: a nonhuman primate model of insulin resistance, metabolic syndrome, and type 2 diabetes. Clin Transl Sci 4(4):243–252

    Article  CAS  Google Scholar 

  25. Edwards MS (2009) Nutrition and behavior of degus (Octodon degus). Veterinary Clin North Am Exot Anim Pract 12(2):237–253

    Article  Google Scholar 

  26. Homan R, Hanselman JC, Bak-Mueller S, Washburn M, Lester P, Jensen HE, Pinkosky SL, Castle C et al (2010) Atherosclerosis in Octodon degus (degu) as a model for human disease. Atherosclerosis 212(1):48–54

    Article  CAS  Google Scholar 

  27. Brown C, Donnelly TM (2001) Cataracts and reduced fertility in degus (Octodon degus). Contracts secondary to spontaneous diabetes mellitus. Lab Anim 30(6):25

    CAS  Google Scholar 

  28. Castro-Fuentes R, Socas-Pérez R (2013) Octodon degus: a strong attractor for Alzheimer research. Basic Clin Neurosci 4(1):91–96

    PubMed  PubMed Central  Google Scholar 

  29. Opazo JC, Soto-Gamboa M, Bozinovic F (2004) Blood glucose concentration in caviomorph rodents. Comp Biochem Physiol A Mol Integr Physiol 137(1):57–64

    Article  Google Scholar 

  30. Ardiles ÁO, Tapia-Rojas CC, Mandal M, Alexandre F, Kirkwood A, Inestrosa NC, Palacios AG (2012) Postsynaptic dysfunction is associated with spatial and object recognition memory loss in a natural model of Alzheimer’s disease. Proc Natl Acad Sci 109(34):13835–13840

    Article  CAS  Google Scholar 

  31. Rivera DS, Inestrosa NC, Bozinovic F (2016) On cognitive ecology and the environmental factors that promote Alzheimer disease: lessons from Octodon degus (Rodentia: Octodontidae). Biol Res 49(1):10

    Article  Google Scholar 

  32. Inestrosa NC, Ríos JA, Cisternas P, Tapia-Rojas C, Rivera DS, Braidy N, Zolezzi JM, Godoy JA et al (2015) Age progression of neuropathological markers in the brain of the Chilean rodent Octodon degus, a natural model of Alzheimer’s disease. Brain Pathol 25(6):679–691

    Article  CAS  Google Scholar 

  33. Veloso C, Bozinovic F (1993) Dietary and digestive constraints on basal energy metabolism in a small herbivorous rodent. Ecology 74(7):2003–2010

    Article  Google Scholar 

  34. Lott JA, Turner K (1975) Evaluation of Trinder’s glucose oxidase method for measuring glucose in serum and urine. Clin Chem 21(12):1754–1760

    CAS  PubMed  Google Scholar 

  35. Johnson RN, Metcalf PA, Baker JR (1983) Fructosamine: a new approach to the estimation of serum glycosylprotein. An index of diabetic control. Clin Chim Acta 127(1):87–95

    Article  CAS  Google Scholar 

  36. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419

    Article  CAS  Google Scholar 

  37. Group NDD (1979) Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 28(12):1039–1057

    Article  Google Scholar 

  38. Bozinovic F, Bacigalupe LD, Vasquez RA, Visser GH, Veloso C, Kenagy GJ (2004) Cost of living in free-ranging degus (Octodon degus): seasonal dynamics of energy expenditure. Comp Biochem Physiol A Mol Integr Physiol 137(3):597–604

    Article  Google Scholar 

  39. Bozinovic F, Rojas JM, Broitman BR, Vásquez RA (2009) Basal metabolism is correlated with habitat productivity among populations of degus (Octodon degus). Comp Biochem Physiol A Mol Integr Physiol 152(4):560–564

    Article  Google Scholar 

  40. Withers PC (1977) Measurement of VO2, VCO2, and evaporative water loss with a flow-through mask. J Appl Physiol 42(1):120–123

    Article  CAS  Google Scholar 

  41. Takahashi Y, Fukusato T (2014) Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol WJG 20(42):15539–15548

    Article  Google Scholar 

  42. Cabrera D, Ruiz A, Cabello-Verrugio C, Brandan E, Estrada L, Pizarro M, Solis N, Torres J et al (2016) Diet-induced nonalcoholic fatty liver disease is associated with sarcopenia and decreased serum insulin-like growth factor-1. Dig Dis Sci 61(11):3190–3198

    Article  CAS  Google Scholar 

  43. Rivera DS, Lindsay C, Codocedo JF, Morel I, Pinto C, Cisternas P, Bozinovic F, Inestrosa NC (2016) Andrographolide recovers cognitive impairment in a natural model of Alzheimer’s disease (Octodon degus). Neurobiol Aging 46:204–220

    Article  CAS  Google Scholar 

  44. Kumazawa-Manita N, Hama H, Miyawaki A, Iriki A (2013) Tool use specific adult neurogenesis and synaptogenesis in rodent (Octodon degus) hippocampus. PLoS One 8(3):e58649

    Article  CAS  Google Scholar 

  45. Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93(1):74–104

    Article  CAS  Google Scholar 

  46. Serrano FG, Tapia-Rojas C, Carvajal FJ, Hancke J, Cerpa W, Inestrosa NC (2014) Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice. Mol Neurodegener 9(1):61

    Article  Google Scholar 

  47. Aydin S, Aksoy A, Aydin S, Kalayci M, Yilmaz M, Kuloglu T, Citil C, Catak Z (2014) Today’s and yesterday’s of pathophysiology: biochemistry of metabolic syndrome and animal models. Nutrition 30(1):1–9

    Article  CAS  Google Scholar 

  48. Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, Natale S, Vanni E et al (2003) Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37(4):917–923

    Article  Google Scholar 

  49. Lonardo A, Ballestri S, Marchesini G, Angulo P, Loria P (2015) Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig Liver Dis 47(3):181–190

    Article  Google Scholar 

  50. Singh S, Nath P, Parida P, Narayan J, Padhi P, Singh A, Pati G, Agrawal O et al (2015) NAFLD alone is a better predictor than MS (ATP-III) criteria for insulin resistance. J Clin Exp Hepatol 5:S21

    Article  Google Scholar 

  51. Arrese M (2010) Nonalcoholic fatty liver disease: liver disease: an overlooked complication of diabetes mellitus. Nat Rev Endocrinol 6(12):660–661

    Article  Google Scholar 

  52. Targher G (2007) Non-alcoholic fatty liver disease, the metabolic syndrome and the risk of cardiovascular disease: the plot thickens. Diabet Med 24(1):1–6

    Article  CAS  Google Scholar 

  53. Ackerman Z, Oron-Herman M, Grozovski M, Rosenthal T, Pappo O, Link G, Sela BA (2005) Fructose-induced fatty liver disease. Hypertension 45(5):1012–1018

    Article  CAS  Google Scholar 

  54. Cave M, Deaciuc I, Mendez C, Song Z, Joshi-Barve S, Barve S, McClain C (2007) Nonalcoholic fatty liver disease: predisposing factors and the role of nutrition. J Nutr Biochem 18(3):184–195

    Article  CAS  Google Scholar 

  55. Reiser S, Powell AS, Scholfield DJ, Panda P, Ellwood KC, Canary JJ (1989) Blood lipids, lipoproteins, apoproteins, and uric acid in men fed diets containing fructose or high-amylose cornstarch. Am J Clin Nutr 49(5):832–839

    Article  CAS  Google Scholar 

  56. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, Hatcher B, Cox CL et al (2009) Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119(5):1322–1334

    Article  CAS  Google Scholar 

  57. Hwang I-S, Ho H, Hoffman BB, Reaven GM (1987) Fructose-induced insulin resistance and hypertension in rats. Hypertension 10(5):512–516

    Article  CAS  Google Scholar 

  58. Kamide K, Rakugi H, Higaki J, Okamura A, Nagai M, Moriguchi K, Ohishi M, Satoh N et al (2002) The renin-angiotensin and adrenergic nervous system in cardiac hypertrophy in fructose-fed rats. Am J Hypertens 15(1):66–71

    Article  CAS  Google Scholar 

  59. Axelsen LN, Lademann JB, Petersen JS, Holstein-Rathlou N-H, Ploug T, Prats C, Pedersen HD, Kjølbye AL (2010) Cardiac and metabolic changes in long-term high fructose-fat fed rats with severe obesity and extensive intramyocardial lipid accumulation. Am J Physiol-Regul Integr Comp Physiol 298(6):R1560–R1570

    Article  CAS  Google Scholar 

  60. Ha V, Sievenpiper JL, de Souza RJ, Chiavaroli L, Wang DD, Cozma AI, Mirrahimi A, Yu ME, Carleton AJ, Dibuono M, Jenkins AL, Leiter LA, Wolever TM, Beyene J, Kendall CW, Jenkins DJ (2012) Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Hypertension HYPERTENSIONAHA–111.

  61. Farah D, Nunes J, Sartori M, da Silva Dias D, Sirvente R, Silva MB, Fiorino P, Morris M et al (2016) Exercise training prevents cardiovascular derangements induced by fructose overload in developing rats. PLoS One 11(12):e0167291

    Article  Google Scholar 

  62. Balakumar M, Raji L, Prabhu D, Sathishkumar C, Prabu P, Mohan V, Balasubramanyam M (2016) High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress. Mol Cell Biochem 423(1–2):93–104

    Article  CAS  Google Scholar 

  63. Lim JS, Mietus-Snyder M, Valente A, Schwarz J-M, Lustig RH (2010) The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol 7(5):251–264

    Article  CAS  Google Scholar 

  64. Abdelmalek MF (2010) Nonalcoholic steatohepatitis clinical research network. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 51:1961–1971

    Article  CAS  Google Scholar 

  65. Sellmann C, Priebs J, Landmann M, Degen C, Engstler AJ, Jin CJ, Gärttner S, Spruss A et al (2015) Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time. J Nutr Biochem 26(11):1183–1192

    Article  CAS  Google Scholar 

  66. Müller MJ, Böttcher J, Selberg O, Weselmann S, Böker KH, Schwarze M, Manns MP (1999) Hypermetabolism in clinically stable patients with liver cirrhosis. Am J Clin Nutr 69(6):1194–1201

    Article  Google Scholar 

  67. Tarantino G, Marra M, Contaldo F, Pasanisi F (2008) Basal metabolic rate in morbidly obese patients with non-alcoholic fatty liver disease. Clin Invest Med 31(1):24–29

    Article  Google Scholar 

  68. Maeda K, Cao H, Kono K, Gorgun CZ, Furuhashi M, Uysal KT, Cao Q, Atsumi G et al (2005) Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. Cell Metab 1(2):107–119

    Article  CAS  Google Scholar 

  69. Woods SC, Seeley RJ, Porte D, Schwartz MW (1998) Signals that regulate food intake and energy homeostasis. Science 280(5368):1378–1383

    Article  CAS  Google Scholar 

  70. Haleem DJ, Haider S, Perveen T, Inam Q-U-A, Kidwai IM, Haleem MA (2000) Hyperphagia and decreases of brain serotonin in rats fed freely on sugar rich diet for three weeks. Nutr Neurosci 3(6):399–405

    Article  CAS  Google Scholar 

  71. Sohal RS (2002) Role of oxidative stress and protein oxidation in the aging process 1, 2. Free Radic Biol Med 33(1):37–44

    Article  CAS  Google Scholar 

  72. Burton T, Killen SS, Armstrong JD, Metcalfe NB (2011) What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proc R Soc Lond B Biol Sci 278(1724):3465–3473

    Article  CAS  Google Scholar 

  73. Mastrocola R, Nigro D, Cento AS, Chiazza F, Collino M, Aragno M (2016) High-fructose intake as risk factor for neurodegeneration: key role for carboxy methyllysine accumulation in mice hippocampal neurons. Neurobiol Dis 89:65–75

    Article  CAS  Google Scholar 

  74. Yan L-J, Levine RL, Sohal RS (1997) Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci 94(21):11168–11172

    Article  CAS  Google Scholar 

  75. Sohal RS, Ku H-H, Agarwal S, Forster MJ, Lal H (1994) Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 74(1):121–133

    Article  CAS  Google Scholar 

  76. Lopes A, Vilela TC, Taschetto L, Vuolo F, Petronilho F, Dal-Pizzol F, Streck EL, Ferreira GC et al (2014) Evaluation of the effects of fructose on oxidative stress and inflammatory parameters in rat brain. Mol Neurobiol 50(3):1124–1130

    Article  CAS  Google Scholar 

  77. Castro MC, Massa ML, Arbeláez LG, Schinella G, Gagliardino JJ, Francini F (2015) Fructose-induced inflammation, insulin resistance and oxidative stress: a liver pathological triad effectively disrupted by lipoic acid. Life Sci 137:1–6

    Article  CAS  Google Scholar 

  78. Calvo-Ochoa E, Hernández-Ortega K, Ferrera P, Morimoto S, Arias C (2014) Short-term high-fat-and-fructose feeding produces insulin signaling alterations accompanied by neurite and synaptic reduction and astroglial activation in the rat hippocampus. J Cereb Blood Flow Metab 34(6):1001–1008

    Article  CAS  Google Scholar 

  79. Hudoyo AW, Hirase T, Tandelillin A, Honda M, Shirai M, Cheng J, Morisaki H, Morisaki T (2017) Role of AMPD2 in impaired glucose tolerance induced by high fructose diet. Mol Genet Metab Rep 13:23–29

    Article  CAS  Google Scholar 

  80. Li P, Koike T, Qin B, Kubota M, Kawata Y, Jia YJ, Oshida Y (2008) A high-fructose diet impairs Akt and PKCζ phosphorylation and GLUT4 translocation in rat skeletal muscle. Horm Metab Res 40(08):528–532

    Article  CAS  Google Scholar 

  81. Pham N, Dhar A, Khalaj S, Desai K, Taghibiglou C (2014) Down regulation of brain cellular prion protein in an animal model of insulin resistance: possible implication in increased prevalence of stroke in pre-diabetics/diabetics. Biochem Biophys Res Commun 448(2):151–156

    Article  CAS  Google Scholar 

  82. Cao D, Lu H, Lewis TL, Li L (2007) Intake of sucrose-sweetened water induces insulin resistance and exacerbates memory deficits and amyloidosis in a transgenic mouse model of Alzheimer disease. J Biol Chem 282(50):36275–36282

    Article  CAS  Google Scholar 

  83. Kogan JH, Frankland PW, Silva AJ (2000) Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus 10(1):47–56

    Article  CAS  Google Scholar 

  84. Rosenfeld CS, Ferguson SA (2014) Barnes maze testing strategies with small and large rodent models. J Vis Exp JoVE 84:e51194

    Google Scholar 

  85. Inam Q-A, Ikram H, Shireen E, Haleem DJ (2016) Effects of sugar rich diet on brain serotonin, hyperphagia and anxiety in animal model of both genders. Pak J Pharm Sci 29(3):757–763

    CAS  PubMed  Google Scholar 

  86. Yoshimi N, Futamura T, Hashimoto K (2015) Improvement of dizocilpine-induced social recognition deficits in mice by brexpiprazole, a novel serotonin–dopamine activity modulator. Eur Neuropsychopharmacol 25(3):356–364

    Article  CAS  Google Scholar 

  87. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13(2):93–110

    Article  CAS  Google Scholar 

  88. Jarrard LE (1993) On the role of the hippocampus in learning and memory in the rat. Behav Neural Biol 60(1):9–26

    Article  CAS  Google Scholar 

  89. Fusco S, Pani G (2013) Brain response to calorie restriction. Cell Mol Life Sci 70(17):3157–3170

    Article  CAS  Google Scholar 

  90. Harris KM, Weinberg RJ (2012) Ultrastructure of synapses in the mammalian brain. Cold Spring Harb Perspect Biol 4(5):a005587

    Article  Google Scholar 

  91. Lüscher C, Malenka RC (2012) NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol 4(6):a005710

    Article  Google Scholar 

  92. Hessler NA, Shirke AM, Malinow R (1993) The probability of transmitter release at a mammalian central synapse. Nature 366(6455):569–572

    Article  CAS  Google Scholar 

  93. Murthy VN, Sejnowski TJ, Stevens CF (1997) Heterogeneous release properties of visualized individual hippocampal synapses. Neuron 18(4):599–612

    Article  CAS  Google Scholar 

  94. Chen X, Levy JM, Hou A, Winters C, Azzam R, Sousa AA, Leapman RD, Nicoll RA et al (2015) PSD-95 family MAGUKs are essential for anchoring AMPA and NMDA receptor complexes at the postsynaptic density. Proc Natl Acad Sci 112(50):E6983–E6992

    Article  CAS  Google Scholar 

  95. Nagura H, Ishikawa Y, Kobayashi K, Takao K, Tanaka T, Nishikawa K, Tamura H, Shiosaka S et al (2012) Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice. Mol Brain 5(1):43

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a postdoctoral grant from Fondo Nacional de Desarollo Científico y Tecnológico (FONDECYT) N° 3140395 to DSR. PC was supported by FONDECYT N° 11160651. MAA was supported by FONDECYT N°1150327. DC was supported by FONDECYT N° 11171001. NCI was supported by FONDECYT N° 1160724 and grants from the Basal Centre of Excellence in Science and Technology (CONICYT-PFB12/2007) and AFB 170005. In addition, a grant from CAPES-CONICYT FB 0002-2014 (Line 3) was awarded to FB. We thank G. Cavieres for assistance with Basal metabolic rate records, C. Céspedes for assistance with blood pressure measurements and J. Rios for assistance with liver histopathology analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniela S. Rivera or Nibaldo C. Inestrosa.

Ethics declarations

Housing, treatment and euthanasia of animals met the guidelines set by the National Institutes of Health (NIH, Baltimore, MD, USA). All experimental procedures involving animals were approved by the Bioethical and Biosafety Committee of the Faculty of Biological Sciences of the Pontificia Universidad Católica de Chile (CBB-121-2013). All efforts were made to minimize animal suffering and to reduce the number of animals used.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 43 kb).

ESM 2

(DOCX 13054 kb).

ESM 3

(DOCX 29 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera, D.S., Lindsay, C.B., Codocedo, J.F. et al. Long-Term, Fructose-Induced Metabolic Syndrome-Like Condition Is Associated with Higher Metabolism, Reduced Synaptic Plasticity and Cognitive Impairment in Octodon degus. Mol Neurobiol 55, 9169–9187 (2018). https://doi.org/10.1007/s12035-018-0969-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0969-0

Keywords

Navigation