Ou SH, Wu F, Harrich D, Garcia-Martinez LF, Gaynor RB (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol 69(6):3584–3596
PubMed
PubMed Central
CAS
Google Scholar
Buratti E, De Conti L, Stuani C, Romano M, Baralle M, Baralle F (2010) Nuclear factor TDP-43 can affect selected microRNA levels. FEBS J 277(10):2268–2281. https://doi.org/10.1111/j.1742-4658.2010.07643.x
PubMed
CAS
Article
Google Scholar
Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. Lancet (London, England) 377(9769):942–955. https://doi.org/10.1016/S0140-6736(10)61156-7
CAS
Article
Google Scholar
Burrell JR, Halliday GM, Kril JJ, Ittner LM, Gotz J, Kiernan MC, Hodges JR (2016) The frontotemporal dementia-motor neuron disease continuum. Lancet (London, England) 388(10047):919–931. https://doi.org/10.1016/s0140-6736(16)00737-6
Article
Google Scholar
Lomen-Hoerth C, Anderson T, Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59(7):1077–1079. https://doi.org/10.1212/WNL.59.7.1077
PubMed
Article
Google Scholar
Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133. https://doi.org/10.1126/science.1134108
PubMed
CAS
Article
Google Scholar
Kwong LK, Neumann M, Sampathu DM, Lee VM, Trojanowski JQ (2007) TDP-43 proteinopathy: the neuropathology underlying major forms of sporadic and familial frontotemporal lobar degeneration and motor neuron disease. Acta Neuropathol 114(1):63–70. https://doi.org/10.1007/s00401-007-0226-5
PubMed
CAS
Article
Google Scholar
Kametani F, Obi T, Shishido T, Akatsu H, Murayama S, Saito Y, Yoshida M, Hasegawa M (2016) Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains. Sci Rep 6(1):23281. https://doi.org/10.1038/srep23281
PubMed
PubMed Central
CAS
Article
Google Scholar
Hasegawa M, Arai T, Nonaka T, Kametani F, Yoshida M, Hashizume Y, Beach TG, Buratti E et al (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 64(1):60–70. https://doi.org/10.1002/ana.21425
PubMed
PubMed Central
CAS
Article
Google Scholar
Cohen TJ, Hwang AW, Restrepo CR, Yuan CX, Trojanowski JQ, Lee VM (2015) An acetylation switch controls TDP-43 function and aggregation propensity. Nat Commun 6(1):5845. https://doi.org/10.1038/ncomms6845
PubMed
PubMed Central
CAS
Article
Google Scholar
Igaz LM, Kwong LK, Chen-Plotkin A, Winton MJ, Unger TL, Xu Y, Neumann M, Trojanowski JQ et al (2009) Expression of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. J Biol Chem 284(13):8516–8524. https://doi.org/10.1074/jbc.M809462200
PubMed
PubMed Central
CAS
Article
Google Scholar
Nonaka T, Arai T, Buratti E, Baralle FE, Akiyama H, Hasegawa M (2009) Phosphorylated and ubiquitinated TDP-43 pathological inclusions in ALS and FTLD-U are recapitulated in SH-SY5Y cells. FEBS Lett 583(2):394–400. https://doi.org/10.1016/j.febslet.2008.12.031
PubMed
CAS
Article
Google Scholar
Mackenzie IR, Rademakers R, Neumann M (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9(10):995–1007. https://doi.org/10.1016/S1474-4422(10)70195-2
PubMed
CAS
Article
Google Scholar
Fuentealba RA, Udan M, Bell S, Wegorzewska I, Shao J, Diamond MI, Weihl CC, Baloh RH (2010) Interaction with polyglutamine aggregates reveals a Q/N-rich domain in TDP-43. J Biol Chem 285(34):26304–26314. https://doi.org/10.1074/jbc.M110.125039
PubMed
PubMed Central
CAS
Article
Google Scholar
Buratti E, Brindisi A, Giombi M, Tisminetzky S, Ayala YM, Baralle FE (2005) TDP-43 binds heterogeneous nuclear ribonucleoprotein a/B through its C-terminal tail: An important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem 280(45):37572–37584. https://doi.org/10.1074/jbc.M505557200
PubMed
CAS
Article
Google Scholar
Ayala YM, De Conti L, Avendano-Vazquez SE, Dhir A, Romano M, D'Ambrogio A, Tollervey J, Ule J et al (2011) TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J 30(2):277–288. https://doi.org/10.1038/emboj.2010.310
PubMed
CAS
Article
Google Scholar
Harrison AF, Shorter J (2017) RNA-binding proteins with prion-like domains in health and disease. Biochem J 474(8):1417–1438. https://doi.org/10.1042/BCJ20160499
PubMed
PubMed Central
CAS
Article
Google Scholar
Yamashita T, Hideyama T, Hachiga K, Teramoto S, Takano J, Iwata N, Saido TC, Kwak S (2012) A role for calpain-dependent cleavage of TDP-43 in amyotrophic lateral sclerosis pathology. Nat Commun 3(1):1307. https://doi.org/10.1038/ncomms2303
PubMed
CAS
Article
Google Scholar
Wang HY, Wang IF, Bose J, Shen CK (2004) Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics 83(1):130–139. https://doi.org/10.1016/S0888-7543(03)00214-3
PubMed
CAS
Article
Google Scholar
Winton MJ, Igaz LM, Wong MM, Kwong LK, Trojanowski JQ, Lee VM (2008) Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J Biol Chem 283(19):13302–13309. https://doi.org/10.1074/jbc.M800342200
PubMed
PubMed Central
CAS
Article
Google Scholar
Nishimura AL, Zupunski V, Troakes C, Kathe C, Fratta P, Howell M, Gallo JM, Hortobagyi T et al (2010) Nuclear import impairment causes cytoplasmic trans-activation response DNA-binding protein accumulation and is associated with frontotemporal lobar degeneration. Brain 133(Pt 6):1763–1771. https://doi.org/10.1093/brain/awq111
PubMed
Article
Google Scholar
Mompean M, Buratti E, Guarnaccia C, Brito RM, Chakrabartty A, Baralle FE, Laurents DV (2014) Structural characterization of the minimal segment of TDP-43 competent for aggregation. Arch Biochem Biophys 545:53–62. https://doi.org/10.1016/j.abb.2014.01.007
PubMed
CAS
Article
Google Scholar
Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, Gitler AD (2009) TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem 284(30):20329–20339. https://doi.org/10.1074/jbc.M109.010264
PubMed
PubMed Central
CAS
Article
Google Scholar
Gitcho MA, Baloh RH, Chakraverty S, Mayo K, Norton JB, Levitch D, Hatanpaa KJ, White CL 3rd et al (2008) TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol 63(4):535–538. https://doi.org/10.1002/ana.21344
PubMed
PubMed Central
CAS
Article
Google Scholar
Rutherford NJ, Zhang YJ, Baker M, Gass JM, Finch NA, Xu YF, Stewart H, Kelley BJ et al (2008) Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet 4(9):e1000193. https://doi.org/10.1371/journal.pgen.1000193
PubMed
PubMed Central
CAS
Article
Google Scholar
Lemmens R, Race V, Hersmus N, Matthijs G, Van Den Bosch L, Van Damme P, Dubois B, Boonen S et al (2009) TDP-43 M311V mutation in familial amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 80(3):354–355. https://doi.org/10.1136/jnnp.2008.157677
PubMed
CAS
Article
Google Scholar
Kuhnlein P, Sperfeld AD, Vanmassenhove B, Van Deerlin V, Lee VM, Trojanowski JQ, Kretzschmar HA, Ludolph AC et al (2008) Two German kindreds with familial amyotrophic lateral sclerosis due to TARDBP mutations. Arch Neurol 65(9):1185–1189. https://doi.org/10.1001/archneur.65.9.1185
PubMed
PubMed Central
Article
Google Scholar
Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science (New York, NY) 319(5870):1668–1672. https://doi.org/10.1126/science.1154584
CAS
Article
Google Scholar
Daoud H, Valdmanis PN, Kabashi E, Dion P, Dupre N, Camu W, Meininger V, Rouleau GA (2009) Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis. J Med Genet 46(2):112–114. https://doi.org/10.1136/jmg.2008.062463
PubMed
CAS
Article
Google Scholar
Del Bo R, Ghezzi S, Corti S, Pandolfo M, Ranieri M, Santoro D, Ghione I, Prelle A et al (2009) TARDBP (TDP-43) sequence analysis in patients with familial and sporadic ALS: Identification of two novel mutations. Eur J Neurol 16(6):727–732. https://doi.org/10.1111/j.1468-1331.2009.02574.x
PubMed
Article
Google Scholar
Lattante S, Conte A, Zollino M, Luigetti M, Del Grande A, Marangi G, Romano A, Marcaccio A et al (2012) Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease. Neurology 79(1):66–72. https://doi.org/10.1212/WNL.0b013e31825dceca
PubMed
CAS
Article
Google Scholar
Benajiba L, Le Ber I, Camuzat A, Lacoste M, Thomas-Anterion C, Couratier P, Legallic S, Salachas F et al (2009) TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann Neurol 65(4):470–473. https://doi.org/10.1002/ana.21612
PubMed
CAS
Article
Google Scholar
Borroni B, Bonvicini C, Alberici A, Buratti E, Agosti C, Archetti S, Papetti A, Stuani C et al (2009) Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum Mutat 30(11):E974–E983. https://doi.org/10.1002/humu.21100
PubMed
CAS
Article
Google Scholar
Kovacs GG, Murrell JR, Horvath S, Haraszti L, Majtenyi K, Molnar MJ, Budka H, Ghetti B et al (2009) TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea. Mov Disord 24(12):1843–1847. https://doi.org/10.1002/mds.22697
PubMed
Article
Google Scholar
Van Deerlin VM, Leverenz JB, Bekris LM, Bird TD, Yuan W, Elman LB, Clay D, Wood EM et al (2008) TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: A genetic and histopathological analysis. Lancet Neurol 7(5):409–416. https://doi.org/10.1016/S1474-4422(08)70071-1
PubMed
PubMed Central
CAS
Article
Google Scholar
Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, Bouchard JP, Lacomblez L et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40(5):572–574. https://doi.org/10.1038/ng.132
PubMed
CAS
Article
Google Scholar
Lee EB, Lee VM, Trojanowski JQ (2011) Gains or losses: Molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 13(1):38–50. https://doi.org/10.1038/nrn3121
PubMed
PubMed Central
CAS
Article
Google Scholar
Ling SC, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: Disrupted RNA and protein homeostasis. Neuron 79(3):416–438. https://doi.org/10.1016/j.neuron.2013.07.033
PubMed
PubMed Central
CAS
Article
Google Scholar
Kabashi E, Lin L, Tradewell ML, Dion PA, Bercier V, Bourgouin P, Rochefort D, Bel Hadj S et al (2010) Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum Mol Genet 19(4):671–683. https://doi.org/10.1093/hmg/ddp534
PubMed
CAS
Article
Google Scholar
Nonaka T, Kametani F, Arai T, Akiyama H, Hasegawa M (2009) Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum Mol Genet 18(18):3353–3364. https://doi.org/10.1093/hmg/ddp275
PubMed
CAS
Article
Google Scholar
Barmada SJ, Skibinski G, Korb E, Rao EJ, Wu JY, Finkbeiner S (2010) Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci 30(2):639–649. https://doi.org/10.1523/JNEUROSCI.4988-09.2010
PubMed
PubMed Central
CAS
Article
Google Scholar
Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 106(44):18809–18814. https://doi.org/10.1073/pnas.0908767106
PubMed
PubMed Central
Article
Google Scholar
Janssens J, Wils H, Kleinberger G, Joris G, Cuijt I, Ceuterick-de Groote C, Van Broeckhoven C, Kumar-Singh S (2013) Overexpression of ALS-associated p.M337V human TDP-43 in mice worsens disease features compared to wild-type human TDP-43 mice. Mol Neurobiol 48(1):22–35. https://doi.org/10.1007/s12035-013-8427-5
PubMed
PubMed Central
CAS
Article
Google Scholar
Schwenk BM, Hartmann H, Serdaroglu A, Schludi MH, Hornburg D, Meissner F, Orozco D, Colombo A et al (2016) TDP-43 loss of function inhibits endosomal trafficking and alters trophic signaling in neurons. EMBO J 35(21):2350–2370. https://doi.org/10.15252/embj.201694221
PubMed
PubMed Central
CAS
Article
Google Scholar
Fang YS, Tsai KJ, Chang YJ, Kao P, Woods R, Kuo PH, Wu CC, Liao JY et al (2014) Full-length TDP-43 forms toxic amyloid oligomers that are present in frontotemporal lobar dementia-TDP patients. Nat Commun 5:4824. https://doi.org/10.1038/ncomms5824
PubMed
CAS
Article
Google Scholar
Yamashita T, Teramoto S, Kwak S (2016) Phosphorylated TDP-43 becomes resistant to cleavage by calpain: a regulatory role for phosphorylation in TDP-43 pathology of ALS/FTLD. Neurosci Res 107:63–69. https://doi.org/10.1016/j.neures.2015.12.006
PubMed
CAS
Article
Google Scholar
Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351(3):602–611. https://doi.org/10.1016/j.bbrc.2006.10.093
PubMed
CAS
Article
Google Scholar
Kametani F, Nonaka T, Suzuki T, Arai T, Dohmae N, Akiyama H, Hasegawa M (2009) Identification of casein kinase-1 phosphorylation sites on TDP-43. Biochem Biophys Res Commun 382(2):405–409. https://doi.org/10.1016/j.bbrc.2009.03.038
PubMed
CAS
Article
Google Scholar
Neumann M, Kwong LK, Lee EB, Kremmer E, Flatley A, Xu Y, Forman MS, Troost D et al (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 117(2):137–149. https://doi.org/10.1007/s00401-008-0477-9
PubMed
PubMed Central
CAS
Article
Google Scholar
Nonaka T, Suzuki G, Tanaka Y, Kametani F, Hirai S, Okado H, Miyashita T, Saitoe M et al (2016) Phosphorylation of TAR DNA-binding protein of 43 kDa (TDP-43) by truncated casein kinase 1delta triggers mislocalization and accumulation of TDP-43. J Biol Chem 291(11):5473–5483. https://doi.org/10.1074/jbc.M115.695379
PubMed
PubMed Central
CAS
Article
Google Scholar
Brady OA, Meng P, Zheng Y, Mao Y, Hu F (2011) Regulation of TDP-43 aggregation by phosphorylation and p62/SQSTM1. J Neurochem 116(2):248–259. https://doi.org/10.1111/j.1471-4159.2010.07098.x
PubMed
CAS
Article
Google Scholar
Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M, Suh E, Van Deerlin VM et al (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74(1):20–38. https://doi.org/10.1002/ana.23937
PubMed
PubMed Central
CAS
Article
Google Scholar
Brettschneider J, Del Tredici K, Irwin DJ, Grossman M, Robinson JL, Toledo JB, Lee EB, Fang L et al (2014) Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathol 127(3):423–439. https://doi.org/10.1007/s00401-013-1238-y
PubMed
PubMed Central
CAS
Article
Google Scholar
Mackenzie IR, Neumann M, Baborie A, Sampathu DM, Du Plessis D, Jaros E, Perry RH, Trojanowski JQ et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122(1):111–113. https://doi.org/10.1007/s00401-011-0845-8
PubMed
PubMed Central
Article
Google Scholar
Lee EB, Porta S, Michael Baer G, Xu Y, Suh E, Kwong LK, Elman L, Grossman M et al (2017) Expansion of the classification of FTLD-TDP: distinct pathology associated with rapidly progressive frontotemporal degeneration. Acta Neuropathol 134(1):65–78. https://doi.org/10.1007/s00401-017-1679-9
PubMed
PubMed Central
CAS
Article
Google Scholar
Mackenzie IR, Neumann M (2017) Reappraisal of TDP-43 pathology in FTLD-U subtypes. Acta Neuropathol 134(1):79–96. https://doi.org/10.1007/s00401-017-1716-8
PubMed
CAS
Article
Google Scholar
Igaz LM, Kwong LK, Xu Y, Truax AC, Uryu K, Neumann M, Clark CM, Elman LB et al (2008) Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Am J Pathol 173(1):182–194. https://doi.org/10.2353/ajpath.2008.080003
PubMed
PubMed Central
CAS
Article
Google Scholar
Braak H, Ludolph AC, Neumann M, Ravits J, Del Tredici K (2016) Pathological TDP-43 changes in Betz cells differ from those in bulbar and spinal alpha-motoneurons in sporadic amyotrophic lateral sclerosis. Acta Neuropathol 133(1):79–90. https://doi.org/10.1007/s00401-016-1633-2
PubMed
PubMed Central
CAS
Article
Google Scholar
Feiler MS, Strobel B, Freischmidt A, Helferich AM, Kappel J, Brewer BM, Li D, Thal DR et al (2015) TDP-43 is intercellularly transmitted across axon terminals. J Cell Biol 211(4):897–911. https://doi.org/10.1083/jcb.201504057
PubMed
PubMed Central
CAS
Article
Google Scholar
Zhang HX, Tanji K, Mori F, Wakabayashi K (2008) Epitope mapping of 2E2-D3, a monoclonal antibody directed against human TDP-43. Neurosci Lett 434(2):170–174. https://doi.org/10.1016/j.neulet.2008.01.060
PubMed
CAS
Article
Google Scholar
Kwong LK, Irwin DJ, Walker AK, Xu Y, Riddle DM, Trojanowski JQ, Lee VM (2014) Novel monoclonal antibodies to normal and pathologically altered human TDP-43 proteins. Acta Neuropathol Commun 2(1):33. https://doi.org/10.1186/2051-5960-2-33
PubMed
PubMed Central
Article
Google Scholar
Olsson B, Lautner R, Andreasson U, Ohrfelt A, Portelius E, Bjerke M, Holtta M, Rosen C et al (2016) CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 15(7):673–684. https://doi.org/10.1016/S1474-4422(16)00070-3
PubMed
CAS
Article
PubMed Central
Google Scholar
Begley DJ, Brightman MW (2003) Structural and functional aspects of the blood-brain barrier. Prog Drug Res 61:39–78
PubMed
CAS
Google Scholar
Johanson CE, Stopa EG, McMillan PN (2011) The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol 686:101–131. https://doi.org/10.1007/978-1-60761-938-3_4
PubMed
CAS
Article
Google Scholar
Felgenhauer K (1974) Protein size and cerebrospinal fluid composition. Klin Wochenschr 52(24):1158–1164. https://doi.org/10.1007/BF01466734
PubMed
CAS
Article
Google Scholar
Steinacker P, Hendrich C, Sperfeld AD, Jesse S, von Arnim CA, Lehnert S, Pabst A, Uttner I et al (2008) TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch Neurol 65(11):1481–1487. https://doi.org/10.1001/archneur.65.11.1481
PubMed
PubMed Central
Article
Google Scholar
Afroz T, Hock EM, Ernst P, Foglieni C, Jambeau M, Gilhespy LAB, Laferriere F, Maniecka Z et al (2017) Functional and dynamic polymerization of the ALS-linked protein TDP-43 antagonizes its pathologic aggregation. Nat Commun 8(1):45. https://doi.org/10.1038/s41467-017-00062-0
PubMed
PubMed Central
CAS
Article
Google Scholar
De Marco G, Lupino E, Calvo A, Moglia C, Buccinna B, Grifoni S, Ramondetti C, Lomartire A et al (2011) Cytoplasmic accumulation of TDP-43 in circulating lymphomonocytes of ALS patients with and without TARDBP mutations. Acta Neuropathol 121(5):611–622. https://doi.org/10.1007/s00401-010-0786-7
PubMed
CAS
Article
Google Scholar
Feneberg E, Steinacker P, Lehnert S, Schneider A, Walther P, Thal DR, Linsenmeier M, Ludolph AC et al (2014) Limited role of free TDP-43 as a diagnostic tool in neurodegenerative diseases. Amyotrophic lateral sclerosis & frontotemporal degeneration 15(5–6):351–356. https://doi.org/10.3109/21678421.2014.905606
CAS
Article
Google Scholar
Thompson AG, Gray E, Heman-Ackah SM, Mager I, Talbot K, Andaloussi SE, Wood MJ, Turner MR (2016) Extracellular vesicles in neurodegenerative disease—pathogenesis to biomarkers. Nat Rev Neurol 12(6):346–357. https://doi.org/10.1038/nrneurol.2016.68
PubMed
CAS
Article
Google Scholar
Iguchi Y, Eid L, Parent M, Soucy G, Bareil C, Riku Y, Kawai K, Takagi S et al (2016) Exosome secretion is a key pathway for clearance of pathological TDP-43. Brain 139(Pt 12):3187–3201. https://doi.org/10.1093/brain/aww237
PubMed
PubMed Central
Article
Google Scholar
Kasai T, Tokuda T, Ishigami N, Sasayama H, Foulds P, Mitchell DJ, Mann DM, Allsop D et al (2009) Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol 117(1):55–62. https://doi.org/10.1007/s00401-008-0456-1
PubMed
CAS
Article
Google Scholar
Noto Y, Shibuya K, Sato Y, Kanai K, Misawa S, Sawai S, Mori M, Uchiyama T et al (2011) Elevated CSF TDP-43 levels in amyotrophic lateral sclerosis: specificity, sensitivity, and a possible prognostic value. Amyotroph Lateral Scler 12(2):140–143. https://doi.org/10.3109/17482968.2010.541263
PubMed
CAS
Article
Google Scholar
Junttila A, Kuvaja M, Hartikainen P, Siloaho M, Helisalmi S, Moilanen V, Kiviharju A, Jansson L et al (2016) Cerebrospinal fluid TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis patients with and without the C9ORF72 hexanucleotide expansion. Dement Geriatr Cogn Dis Extra 6(1):142–149. https://doi.org/10.1159/000444788
PubMed
PubMed Central
Article
Google Scholar
Kuiperij HB, Versleijen AA, Beenes M, Verwey NA, Benussi L, Paterlini A, Binetti G, Teunissen CE et al (2017) Tau rather than TDP-43 proteins are potential cerebrospinal fluid biomarkers for frontotemporal lobar degeneration subtypes: a pilot study. J Alzheimers Dis 55(2):585–595. https://doi.org/10.3233/JAD-160386
PubMed
CAS
Article
Google Scholar
Foulds P, McAuley E, Gibbons L, Davidson Y, Pickering-Brown SM, Neary D, Snowden JS, Allsop D et al (2008) TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration. Acta Neuropathol 116(2):141–146. https://doi.org/10.1007/s00401-008-0389-8
PubMed
PubMed Central
CAS
Article
Google Scholar
Foulds PG, Davidson Y, Mishra M, Hobson DJ, Humphreys KM, Taylor M, Johnson N, Weintraub S et al (2009) Plasma phosphorylated-TDP-43 protein levels correlate with brain pathology in frontotemporal lobar degeneration. Acta Neuropathol 118(5):647–658. https://doi.org/10.1007/s00401-009-0594-0
PubMed
PubMed Central
CAS
Article
Google Scholar
Verstraete E, Kuiperij HB, van Blitterswijk MM, Veldink JH, Schelhaas HJ, van den Berg LH, Verbeek MM (2012) TDP-43 plasma levels are higher in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 13(5):446–451. https://doi.org/10.3109/17482968.2012.703208
PubMed
CAS
Article
Google Scholar
Suarez-Calvet M, Dols-Icardo O, Llado A, Sanchez-Valle R, Hernandez I, Amer G, Anton-Aguirre S, Alcolea D et al (2014) Plasma phosphorylated TDP-43 levels are elevated in patients with frontotemporal dementia carrying a C9orf72 repeat expansion or a GRN mutation. J Neurol Neurosurg Psychiatry 85(6):684–691. https://doi.org/10.1136/jnnp-2013-305972
PubMed
Article
Google Scholar
Sheets MD, Amersdorfer P, Finnern R, Sargent P, Lindquist E, Schier R, Hemingsen G, Wong C et al (1998) Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci U S A 95(11):6157–6162. https://doi.org/10.1073/pnas.95.11.6157
PubMed
PubMed Central
CAS
Article
Google Scholar
Williams SM, Khan G, Harris BT, Ravits J, Sierks MR (2017) TDP-43 protein variants as biomarkers in amyotrophic lateral sclerosis. BMC Neurosci 18(1):20. https://doi.org/10.1186/s12868-017-0334-7
PubMed
PubMed Central
CAS
Article
Google Scholar
Goossens J, Vanmechelen E, Trojanowski JQ, Lee VM, Van Broeckhoven C, van der Zee J, Engelborghs S (2015) TDP-43 as a possible biomarker for frontotemporal lobar degeneration: a systematic review of existing antibodies. Acta Neuropathol Commun 3(1):15. https://doi.org/10.1186/s40478-015-0195-1
PubMed
PubMed Central
CAS
Article
Google Scholar
Ravits JM, La Spada AR (2009) ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73(10):805–811. https://doi.org/10.1212/WNL.0b013e3181b6bbbd
PubMed
PubMed Central
Article
Google Scholar
Mair W, Muntel J, Tepper K, Tang S, Biernat J, Seeley WW, Kosik KS, Mandelkow E et al (2016) FLEXITau: quantifying post-translational modifications of tau protein in vitro and in human disease. Anal Chem 88(7):3704–3714. https://doi.org/10.1021/acs.analchem.5b04509
PubMed
PubMed Central
CAS
Article
Google Scholar
Collins MA, An J, Hood BL, Conrads TP, Bowser RP (2015) Label-free LC-MS/MS proteomic analysis of cerebrospinal fluid identifies protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis. J Proteome Res 14(11):4486–4501. https://doi.org/10.1021/acs.jproteome.5b00804
PubMed
PubMed Central
CAS
Article
Google Scholar
Mackenzie IR, Nicholson AM, Sarkar M, Messing J, Purice MD, Pottier C, Annu K, Baker M et al (2017) TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and Alter stress granule dynamics. Neuron 95(4):808–816 e809. https://doi.org/10.1016/j.neuron.2017.07.025
PubMed
PubMed Central
CAS
Article
Google Scholar
Kuhle J, Barro C, Andreasson U, Derfuss T, Lindberg R, Sandelius A, Liman V, Norgren N et al (2016) Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin Chem Lab Med 54(10):1655–1661. https://doi.org/10.1515/cclm-2015-1195
PubMed
CAS
Article
Google Scholar
Kuhle J, Barro C, Disanto G, Mathias A, Soneson C, Bonnier G, Yaldizli O, Regeniter A et al (2016) Serum neurofilament light chain in early relapsing remitting MS is increased and correlates with CSF levels and with MRI measures of disease severity. Mult Scler 22(12):1550–1559. https://doi.org/10.1177/1352458515623365
PubMed
CAS
Article
Google Scholar
Tatebe H, Kasai T, Ohmichi T, Kishi Y, Kakeya T, Waragai M, Kondo M, Allsop D et al (2017) Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: pilot case-control studies including patients with Alzheimer’s disease and down syndrome. Mol Neurodegener 12(1):63. https://doi.org/10.1186/s13024-017-0206-8
PubMed
PubMed Central
CAS
Article
Google Scholar
Proske D, Gilch S, Wopfner F, Schatzl HM, Winnacker EL, Famulok M (2002) Prion-protein-specific aptamer reduces PrPSc formation. Chembiochem 3(8):717–725. https://doi.org/10.1002/1439-7633(20020802)3:8<717::AID-CBIC717>3.0.CO;2-C
PubMed
CAS
Article
Google Scholar
Farrar CT, William CM, Hudry E, Hashimoto T, Hyman BT (2014) RNA aptamer probes as optical imaging agents for the detection of amyloid plaques. PLoS One 9(2):e89901. https://doi.org/10.1371/journal.pone.0089901
PubMed
PubMed Central
CAS
Article
Google Scholar
Tsukakoshi K, Abe K, Sode K, Ikebukuro K (2012) Selection of DNA aptamers that recognize alpha-synuclein oligomers using a competitive screening method. Anal Chem 84(13):5542–5547. https://doi.org/10.1021/ac300330g
PubMed
CAS
Article
Google Scholar
Mompean M, Hervas R, Xu Y, Tran TH, Guarnaccia C, Buratti E, Baralle F, Tong L et al (2015) Structural evidence of amyloid fibril formation in the putative aggregation domain of TDP-43. J Phys Chem Lett 6(13):2608–2615. https://doi.org/10.1021/acs.jpclett.5b00918
PubMed
PubMed Central
CAS
Article
Google Scholar
Zhang YJ, Caulfield T, Xu YF, Gendron TF, Hubbard J, Stetler C, Sasaguri H, Whitelaw EC et al (2013) The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation. Hum Mol Genet 22(15):3112–3122. https://doi.org/10.1093/hmg/ddt166
PubMed
PubMed Central
CAS
Article
Google Scholar
Freibaum BD, Chitta RK, High AA, Taylor JP (2010) Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J Proteome Res 9(2):1104–1120. https://doi.org/10.1021/pr901076y
PubMed
PubMed Central
CAS
Article
Google Scholar
Blokhuis AM, Koppers M, Groen EJ, van den Heuvel DM, Dini Modigliani S, Anink JJ, Fumoto K, van Diggelen F et al (2016) Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways. Acta Neuropathol 132(2):175–196. https://doi.org/10.1007/s00401-016-1575-8
PubMed
PubMed Central
CAS
Article
Google Scholar
Morris JH, Knudsen GM, Verschueren E, Johnson JR, Cimermancic P, Greninger AL, Pico AR (2014) Affinity purification-mass spectrometry and network analysis to understand protein-protein interactions. Nat Protoc 9(11):2539–2554. https://doi.org/10.1038/nprot.2014.164
PubMed
PubMed Central
CAS
Article
Google Scholar