Skip to main content
Log in

PLP1 Gene Variation Modulates Leftward and Rightward Functional Hemispheric Asymmetries

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Molecular neurobiological factors determining corpus callosum physiology and anatomy have been suggested to be one of the major factors determining functional hemispheric asymmetries. Recently, it was shown that allelic variations in two myelin-related genes, the proteolipid protein 1 gene PLP1 and the contactin 1 gene CNTN1, are associated with differences in interhemispheric integration. Here, we investigated whether three single nucleotide polymorphisms that were associated with interhemispheric integration via the corpus callosum in a previous study also are relevant for functional hemispheric asymmetries. To this end, we tested more than 900 healthy adults with the forced attention dichotic listening task, a paradigm to assess language lateralization and its modulation by cognitive control processes. Moreover, we used the line bisection task, a paradigm to assess functional hemispheric asymmetries in spatial attention. We found that a polymorphism in PLP1, but not CNTN1, was associated with performance differences in both tasks. Both functional hemispheric asymmetries and their modulation by cognitive control processes were affected. These findings suggest that both left and right hemisphere dominant cognitive functions can be modulated by allelic variation in genes affecting corpus callosum structure. Moreover, higher order cognitive processes may be relevant parameters when investigating the molecular basis of hemispheric asymmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Corballis MC (2012) Lateralization of the human brain. Prog Brain Res 195:103–121. https://doi.org/10.1016/B978-0-444-53860-4.00006-4

    Article  PubMed  Google Scholar 

  2. Güntürkün O, Ocklenburg S (2017) Ontogenesis of lateralization. Neuron 94(2):249–263. https://doi.org/10.1016/j.neuron.2017.02.045

    Article  PubMed  CAS  Google Scholar 

  3. Ocklenburg S, Beste C, Arning L et al (2014) The ontogenesis of language lateralization and its relation to handedness. Neurosci Biobehav Rev 43:191–198. https://doi.org/10.1016/j.neubiorev.2014.04.008

    Article  PubMed  Google Scholar 

  4. Gainotti G (2013) Laterality effects in normal subjects' recognition of familiar faces, voices and names. Perceptual and representational components. Neuropsychologia 51(7):1151–1160. https://doi.org/10.1016/j.neuropsychologia.2013.03.009

    Article  PubMed  Google Scholar 

  5. Grimshaw GM, Carmel D (2014) An asymmetric inhibition model of hemispheric differences in emotional processing. Front Psychol 5:489. https://doi.org/10.3389/fpsyg.2014.00489

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hausmann M (2005) Hemispheric asymmetry in spatial attention across the menstrual cycle. Neuropsychologia 43(11):1559–1567. https://doi.org/10.1016/j.neuropsychologia.2005.01.017

    Article  PubMed  Google Scholar 

  7. Keenan JP, Rubio J, Racioppi C et al (2005) The right hemisphere and the dark side of consciousness. Cortex 41(5):695–704 discussion 731-4

    Article  PubMed  Google Scholar 

  8. Nowicka A, Tacikowski P (2011) Transcallosal transfer of information and functional asymmetry of the human brain. Laterality 16(1):35–74. https://doi.org/10.1080/13576500903154231

    Article  PubMed  Google Scholar 

  9. van der Knaap LJ, van der Ham IJM (2011) How does the corpus callosum mediate interhemispheric transfer? A review. Behav Brain Res 223(1):211–221. https://doi.org/10.1016/j.bbr.2011.04.018

    Article  PubMed  Google Scholar 

  10. Ringo JL, Doty RW, Demeter S et al (1994) Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cereb Cortex 4(4):331–343

    Article  PubMed  CAS  Google Scholar 

  11. Cook ND (1984) Homotopic callosal inhibition. Brain Lang 23(1):116–125

    Article  PubMed  CAS  Google Scholar 

  12. Bloom JS, Hynd GW (2005) The role of the corpus callosum in interhemispheric transfer of information: excitation or inhibition? Neuropsychol Rev 15(2):59–71. https://doi.org/10.1007/s11065-005-6252-y

    Article  PubMed  Google Scholar 

  13. Caminiti R, Ghaziri H, Galuske R et al (2009) Evolution amplified processing with temporally dispersed slow neuronal connectivity in primates. Proc Natl Acad Sci U S A 106(46):19551–19556. https://doi.org/10.1073/pnas.0907655106

    Article  PubMed  PubMed Central  Google Scholar 

  14. van der Knaap MS, Valk J, Barkhof F (2005) Magnetic resonance of myelination and myelin disorders, 3rd edn. Springer, Berlin [etc.]

    Book  Google Scholar 

  15. Ocklenburg S, Gerding WM, Arning L et al (2016) Myelin genes and the corpus callosum: proteolipid protein 1 (PLP1) and contactin 1 (CNTN1) gene variation modulates interhemispheric integration. Mol Neurobiol. https://doi.org/10.1007/s12035-016-0285-5

  16. Banich MT, Belger A (1990) Interhemispheric interaction: how do the hemispheres divide and conquer a task? Cortex 26(1):77–94

    Article  PubMed  CAS  Google Scholar 

  17. Hugdahl K, Andersson L (1986) The “forced-attention paradigm” in dichotic listening to CV-syllables: a comparison between adults and children. Cortex 22(3):417–432

    Article  PubMed  CAS  Google Scholar 

  18. Bryden MP, Munhall K, Allard F (1983) Attentional biases and the right-ear effect in dichotic listening. Brain Lang 18(2):236–248

    Article  PubMed  CAS  Google Scholar 

  19. Bless JJ, Westerhausen R, Arciuli J et al (2013) “Right on all Occasions?”—on the feasibility of laterality research using a smartphone dichotic listening application. Front Psychol 4:42. https://doi.org/10.3389/fpsyg.2013.00042

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ocklenburg S, Ströckens F, Bless JJ et al (2016) Investigating heritability of laterality and cognitive control in speech perception. Brain Cogn 109:34–39. https://doi.org/10.1016/j.bandc.2016.09.003

    Article  PubMed  Google Scholar 

  21. Bless JJ, Westerhausen R, von Koss Torkildsen J et al (2015) Laterality across languages: results from a global dichotic listening study using a smartphone application. Laterality 20(4):434–452. https://doi.org/10.1080/1357650X.2014.997245

    Article  PubMed  PubMed Central  Google Scholar 

  22. Beste C, Arning L, Gerding WM et al (2017) Cognitive control processes and functional cerebral asymmetries: association with variation in the handedness-associated gene LRRTM1. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0485-7

  23. Hugdahl K, Westerhausen R, Alho K et al (2009) Attention and cognitive control: unfolding the dichotic listening story. Scand J Psychol 50(1):11–22. https://doi.org/10.1111/j.1467-9450.2008.00676.x

    Article  PubMed  Google Scholar 

  24. Tervaniemi M, Hugdahl K (2003) Lateralization of auditory-cortex functions. Brain Res Brain Res Rev 43(3):231–246

    Article  PubMed  Google Scholar 

  25. Kompus K, Specht K, Ersland L et al (2012) A forced-attention dichotic listening fMRI study on 113 subjects. Brain Lang 121(3):240–247. https://doi.org/10.1016/j.bandl.2012.03.004

    Article  PubMed  Google Scholar 

  26. Asbjørnsen AE, Bryden MP (1998) Auditory attentional shifts in reading-disabled students: quantification of attentional effectiveness by the Attentional Shift Index. Neuropsychologia 36(2):143–148

    Article  PubMed  Google Scholar 

  27. Beste C, Wascher E, Dinse HR et al (2012) Faster perceptual learning through excitotoxic neurodegeneration. Curr Biol 22(20):1914–1917. https://doi.org/10.1016/j.cub.2012.08.012

    Article  PubMed  CAS  Google Scholar 

  28. Beste C, Wascher E, Güntürkün O et al (2011) Improvement and impairment of visually guided behavior through LTP- and LTD-like exposure-based visual learning. Curr Biol 21(10):876–882. https://doi.org/10.1016/j.cub.2011.03.065

    Article  PubMed  CAS  Google Scholar 

  29. Beste C, Ocklenburg S, von der Hagen M et al (2016) Mammalian cadherins DCHS1-FAT4 affect functional cerebral architecture. Brain Struct Funct 221(5):2487–2491. https://doi.org/10.1007/s00429-015-1051-6

    Article  PubMed  CAS  Google Scholar 

  30. Musiek FE, Weihing J (2011) Perspectives on dichotic listening and the corpus callosum. Brain Cogn 76(2):225–232. https://doi.org/10.1016/j.bandc.2011.03.011

    Article  PubMed  Google Scholar 

  31. Westerhausen R, Hugdahl K (2008) The corpus callosum in dichotic listening studies of hemispheric asymmetry: a review of clinical and experimental evidence. Neurosci Biobehav Rev 32(5):1044–1054. https://doi.org/10.1016/j.neubiorev.2008.04.005

    Article  PubMed  Google Scholar 

  32. Jewell G, McCourt ME (2000) Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia 38(1):93–110

    Article  PubMed  CAS  Google Scholar 

  33. Bowers D, Heilman KM (1980) Pseudoneglect: effects of hemispace on a tactile line bisection task. Neuropsychologia 18(4–5):491–498

    Article  PubMed  CAS  Google Scholar 

  34. Zago L, Petit L, Jobard G et al (2017) Pseudoneglect in line bisection judgement is associated with a modulation of right hemispheric spatial attention dominance in right-handers. Neuropsychologia 94:75–83. https://doi.org/10.1016/j.neuropsychologia.2016.11.024

    Article  PubMed  Google Scholar 

  35. Hausmann M, Corballis MC, Farbi M (2003) Line bisection in the split brain. Neuropsychology 17(4):602–609. https://doi.org/10.1037/0894-4105.17.4.602

    Article  PubMed  Google Scholar 

  36. Hausmann M, Waldie KE, Corballis MC (2003) Developmental changes in line bisection: a result of callosal maturation? Neuropsychology 17(1):155–160

    Article  PubMed  Google Scholar 

  37. Beste C, Hamm JP, Hausmann M (2006) Developmental changes in visual line bisection in women throughout adulthood. Dev Neuropsychol 30(2):753–767. https://doi.org/10.1207/s15326942dn3002_6

    Article  PubMed  Google Scholar 

  38. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  PubMed  CAS  Google Scholar 

  39. Arning L, Kraus PH, Saft C et al (2005) Age at onset of Huntington disease is not modulated by the R72P variation in TP53 and the R196K variation in the gene coding for the human caspase activated DNase (hCAD). BMC Med Genet 6:35. https://doi.org/10.1186/1471-2350-6-35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hugdahl K, Rund BR, Lund A et al (2003) Attentional and executive dysfunctions in schizophrenia and depression: evidence from dichotic listening performance. Biol Psychiatry 53(7):609–616

    Article  PubMed  Google Scholar 

  41. Hausmann M, Ergun G, Yazgan Y et al (2002) Sex differences in line bisection as a function of hand. Neuropsychologia 40(3):235–240

    Article  PubMed  Google Scholar 

  42. Ocklenburg S, Güntürkün O, Hugdahl K et al (2015) Laterality and mental disorders in the postgenomic age—a closer look at schizophrenia and language lateralization. Neurosci Biobehav Rev 59:100–110. https://doi.org/10.1016/j.neubiorev.2015.08.019

    Article  PubMed  Google Scholar 

  43. Aston C, Jiang L, Sokolov BP (2004) Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res 77(6):858–866. https://doi.org/10.1002/jnr.20208

    Article  PubMed  CAS  Google Scholar 

  44. Qin W, Gao J, Xing Q et al (2005) A family-based association study of PLP1 and schizophrenia. Neurosci Lett 375(3):207–210. https://doi.org/10.1016/j.neulet.2004.11.013

    Article  PubMed  CAS  Google Scholar 

  45. Kimura D (2011) From ear to brain. Brain Cogn 76(2):214–217. https://doi.org/10.1016/j.bandc.2010.11.009

    Article  PubMed  Google Scholar 

  46. Kimura D (1967) Functional asymmetry of the brain in dichotic listening. Cortex 3(2):163–178. https://doi.org/10.1016/S0010-9452(67)80010-8

    Article  Google Scholar 

  47. Martínez-Montero P, Muñoz-Calero M, Vallespín E et al (2013) PLP1 gene analysis in 88 patients with leukodystrophy. Clin Genet 84(6):566–571. https://doi.org/10.1111/cge.12103

    Article  PubMed  CAS  Google Scholar 

  48. Yool DA, Klugmann M, McLaughlin M et al (2001) Myelin proteolipid proteins promote the interaction of oligodendrocytes and axons. J Neurosci Res 63(2):151–164. https://doi.org/10.1002/1097-4547(20010115)63:2<151:AID-JNR1007>3.0.CO;2-Y

    Article  PubMed  CAS  Google Scholar 

  49. Inoue K (2005) PLP1-related inherited dysmyelinating disorders: Pelizaeus-Merzbacher disease and spastic paraplegia type 2. Neurogenetics 6(1):1–16. https://doi.org/10.1007/s10048-004-0207-y

    Article  PubMed  CAS  Google Scholar 

  50. Ruest T, Holmes WM, Barrie JA et al (2011) High-resolution diffusion tensor imaging of fixed brain in a mouse model of Pelizaeus-Merzbacher disease: comparison with quantitative measures of white matter pathology. NMR Biomed 24(10):1369–1379. https://doi.org/10.1002/nbm.1700

    Article  PubMed  Google Scholar 

  51. Ocklenburg S, Güntürkün O, Beste C (2011) Lateralized neural mechanisms underlying the modulation of response inhibition processes. NeuroImage 55(4):1771–1778. https://doi.org/10.1016/j.neuroimage.2011.01.035

    Article  PubMed  Google Scholar 

  52. Ocklenburg S, Hirnstein M, Beste C et al (2014) Lateralization and cognitive systems. Front Psychol 5:1143. https://doi.org/10.3389/fpsyg.2014.01143

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by grants from the Deutsche Forschungsgemeinschaft (DFG) Gu 227/16-1 and BE4045/26-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Ocklenburg.

Ethics declarations

Conflicts of Interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ocklenburg, S., Gerding, W.M., Raane, M. et al. PLP1 Gene Variation Modulates Leftward and Rightward Functional Hemispheric Asymmetries. Mol Neurobiol 55, 7691–7700 (2018). https://doi.org/10.1007/s12035-018-0941-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0941-z

Keywords

Navigation