Molecular Neurobiology

, Volume 55, Issue 9, pp 7463–7475 | Cite as

Rosmarinic Acid Mitigates Mitochondrial Dysfunction and Spinal Glial Activation in Oxaliplatin-induced Peripheral Neuropathy

  • Aparna Areti
  • Prashanth Komirishetty
  • Anil Kumar Kalvala
  • Karthika Nellaiappan
  • Ashutosh KumarEmail author


Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting complication which develops as a consequence of treatment with chemotherapeutic agents like oxaliplatin and is a mainstay of therapy for colorectal cancer. Ever since CIPN was identified, understanding its exact pathomechanisms remains a clinical challenge. The role of mitochondrial dysfunction and glial cell activation has surfaced in the etiology of CIPN. Rosmarinic acid (RA), a known mitoprotectant exerts neuroprotection against the oxidative stress and neuroinflammation in various disease conditions. Hence, in the present study, we investigated the effect using rosmarinic acid (25 and 50 mg/kg, po) in the experimental model of oxaliplatin-induced peripheral neuropathy (OIPN) in rats. Results showed that RA significantly (p < 0.001) prevented the functional deficits, reversed oxaliplatin-induced mechanical allodynia and cold hyperalgesia in rats. It reduced the oxidative stress, improved the mitochondrial function, and prevented the oxaliplatin-induced loss of ATP levels. RA significantly (p < 0.01) inhibited the spinal glial cell activation and suppressed the expression of inflammatory markers. RA treatment also resulted in the activation of adenosine monophosphate-activated protein kinase (AMPK) in the peripheral nerves and dorsal root ganglion (DRG) which also might have contributed to its neuroprotective actions. In vitro screening also revealed that RA did not compromise the anti-cancer activity of oxaliplatin in colon cancer cells (HT-29). Taken together, the above results demonstrate the therapeutic activity of RA against the oxaliplatin-induced mitochondrial dysfunction and neuroinflammation and thus, suggest its potential for the management of OIPN.

Graphical Abstract

Schematic representation of neuroprotective mechanisms of rosmarinic acid via AMPK activation in oxaliplatin-evoked peripheral neuropathy.


Rosmarinic acid Oxaliplatin Mitochondrial dysfunction Peripheral neuropathy Neuroinflammation Dorsal root ganglion (DRG) 



The authors would like to acknowledge the financial support from the Department of Pharmaceuticals, Ministry of Chemical and Fertilizers, and NIPER-Hyderabad for their support to carry out the study.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no competing interests.


  1. 1.
    Argyriou AA, Polychronopoulos P, Iconomou G, Chroni E, Kalofonos HP (2008) A review on oxaliplatin-induced peripheral nerve damage. Cancer Treat Rev 34(4):368–377CrossRefPubMedGoogle Scholar
  2. 2.
    Pasetto LM, D’Andrea MR, Rossi E, Monfardini S (2006) Oxaliplatin-related neurotoxicity: how and why? Crit Rev Oncol Hematol 59(2):159–168. CrossRefPubMedGoogle Scholar
  3. 3.
    Balayssac D, Ferrier J, Descoeur J, Ling B, Pezet D, Eschalier A, Authier N (2011) Chemotherapy-induced peripheral neuropathies: from clinical relevance to preclinical evidence. Expert Opin Drug Saf 10(3):407–417CrossRefPubMedGoogle Scholar
  4. 4.
    Wolf S, Barton D, Kottschade L, Grothey A, Loprinzi C (2008) Chemotherapy-induced peripheral neuropathy: prevention and treatment strategies. Eur J Cancer 44(11):1507–1515CrossRefPubMedGoogle Scholar
  5. 5.
    Wang X-M, Lehky TJ, Brell JM, Dorsey SG (2012) Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine 59(1):3–9. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bennett GJ, Doyle T, Salvemini D (2014) Mitotoxicity in distal symmetrical sensory peripheral neuropathies. Nat Rev Neurol 10(6):326–336CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Areti A, Komirishetty P, Kumar A (2017) Carvedilol prevents functional deficits in peripheral nerve mitochondria of rats with oxaliplatin-evoked painful peripheral neuropathy. Toxicol Appl Pharmacol 322:97–103CrossRefPubMedGoogle Scholar
  8. 8.
    Areti A, Yerra VG, Naidu VGM, Kumar A (2014) Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biol 2:289–295. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Scuteri A, Galimberti A, Maggioni D, Ravasi M, Pasini S, Nicolini G, Bossi M, Miloso M et al (2009) Role of MAPKs in platinum-induced neuronal apoptosis. Neurotoxicology 30(2):312–319. CrossRefPubMedGoogle Scholar
  10. 10.
    Mannelli LDC, Pacini A, Micheli L, Tani A, Zanardelli M, Ghelardini C (2014) Glial role in oxaliplatin-induced neuropathic pain. Exp Neurol 261:22–33. CrossRefGoogle Scholar
  11. 11.
    Lopez-Armada MJ, Riveiro-Naveira RR, Vaamonde-Garcia C, Valcarcel-Ares MN (2013) Mitochondrial dysfunction and the inflammatory response. Mitochondrion 13(2):106–118. CrossRefPubMedGoogle Scholar
  12. 12.
    Andreux PA, Houtkooper RH, Auwerx J (2013) Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov 12(6):465–483. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chowdhury SKR, Smith DR, Saleh A, Schapansky J, Marquez A, Gomes S, Akude E, Morrow D et al (2012) Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes. Brain 135(6):1751–1766. CrossRefGoogle Scholar
  14. 14.
    Price TJ, Dussor G (2013) AMPK: an emerging target for modification of injury-induced pain plasticity. Neurosci Lett 557:9–18. CrossRefPubMedGoogle Scholar
  15. 15.
    Gui Y, Li A, Chen F, Zhou H, Tang Y, Chen L, Chen S, Duan S (2015) Involvement of AMPK/SIRT1 pathway in anti-allodynic effect of troxerutin in CCI-induced neuropathic pain. Eur J Pharmacol 769:234–241. CrossRefPubMedGoogle Scholar
  16. 16.
    Melemedjian OK, Asiedu MN, Tillu DV, Sanoja R, Yan J, Lark A, Khoutorsky A, Johnson J et al (2011) Targeting adenosine monophosphate-activated protein kinase (AMPK) in preclinical models reveals a potential mechanism for the treatment of neuropathic pain. Mol Pain 7(1):70PubMedPubMedCentralGoogle Scholar
  17. 17.
    Petersen M, Simmonds MSJ (2003) Rosmarinic acid. Phytochemistry 62(2):121–125. CrossRefPubMedGoogle Scholar
  18. 18.
    Al-Sereiti MR, Abu-Amer KM, Sen P (1999) Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J Exp Biol 37(2):124–130PubMedGoogle Scholar
  19. 19.
    Bayrasy C, Chabi B, Laguerre M, Lecomte J, Jublanc E, Villeneuve P, Wrutniak-Cabello C, Cabello G (2013) Boosting antioxidants by lipophilization: a strategy to increase cell uptake and target mitochondria. Pharm Res 30(8):1979–1989. CrossRefPubMedGoogle Scholar
  20. 20.
    Gamaro GD, Suyenaga E, Borsoi M, Lermen J, Pereira P, Ardenghi P (2011) Effect of rosmarinic and caffeic acids on inflammatory and nociception process in rats. Int Sch Res Notices 2011Google Scholar
  21. 21.
    Brewer MS (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf 10(4):221–247. CrossRefGoogle Scholar
  22. 22.
    Kelsey NA, Wilkins HM, Linseman DA (2010) Nutraceutical antioxidants as novel neuroprotective agents. Molecules 15(11):7792–7814. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jayanthy G, Subramanian S (2015) RA abrogates hepatic gluconeogenesis and insulin resistance by enhancing IRS-1 and AMPK signalling in experimental type 2 diabetes. RSC Adv 5(55):44053–44067. CrossRefGoogle Scholar
  24. 24.
    Tu Z, Moss-Pierce T, Ford P, Jiang TA (2013) Rosemary (Rosmarinus officinalis L.) extract regulates glucose and lipid metabolism by activating AMPK and PPAR pathways in HepG2 cells. J Agric Food Chem 61(11):2803–2810. CrossRefPubMedGoogle Scholar
  25. 25.
    Yong Y, Shin SY, Jung Y, Jung H, Ahn S, Chong Y, Lim Y (2015) Flavonoids activating adenosine monophosphate-activated protein kinase. J Korean Soc Appl Biol Chem 58(1):13–19. CrossRefGoogle Scholar
  26. 26.
    Kawashiri T, Egashiral N, Watanabe H, Ikegami Y, Hirakawa S, Mihara Y, Yano T, Ikesue H et al (2011) Prevention of oxaliplatin-induced mechanical allodynia and neurodegeneration by neurotropin in the rat model. Eur J Pain 15(4):344–350CrossRefPubMedGoogle Scholar
  27. 27.
    Dong Q, Chen L, Lu Q, Sharma S, Li L, Morimoto S, Wang G (2014) Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression. Br J Pharmacol 171(19):4440–4454. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kim ST, Chung YH, Lee HS, Chung SJ, Lee JH, Sohn UD, Shin YK, Park ES et al (2015) Protective effects of phosphatidylcholine on oxaliplatin-induced neuropathy in rats. Life Sci 130:81–87. CrossRefPubMedGoogle Scholar
  29. 29.
    Lee JS, Kim YT, Jeon EK, Won HS, Cho Y-S, Ko YH (2012) Effect of green tea extracts on oxaliplatin-induced peripheral neuropathy in rats. BMC Complement Altern Med 12(1):124PubMedPubMedCentralGoogle Scholar
  30. 30.
    Komirishetty P, Areti A, Yerra VG, Ruby PK, Sharma SS, Gogoi R, Sistla R, Kumar A (2016) PARP inhibition attenuates neuroinflammation and oxidative stress in chronic constriction injury induced peripheral neuropathy. Life Sci 150:50–60. CrossRefPubMedGoogle Scholar
  31. 31.
    Tal M, Bennett GJ (1994) Extra-territorial pain in rats with a peripheral mononeuropathy: mechano-hyperalgesia and mechano-allodynia in the territory of an uninjured nerve. Pain 57(3):375–382. CrossRefPubMedGoogle Scholar
  32. 32.
    Randall LO (1957) A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn 111(4):409–419PubMedGoogle Scholar
  33. 33.
    Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9(6):515–540. CrossRefPubMedGoogle Scholar
  34. 34.
    Sun J, Zhang X, Broderick M, Fein H (2003) Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors 3(8):276–284. CrossRefGoogle Scholar
  35. 35.
    Komirishetty P, Areti A, Sistla R, Kumar A (2016) Morin mitigates chronic constriction injury (CCI)-induced peripheral neuropathy by inhibiting oxidative stress induced PARP over-activation and neuroinflammation. Neurochem Res 41(8):2029–2042. CrossRefPubMedGoogle Scholar
  36. 36.
    Komirishetty P, Areti A, Gogoi R, Sistla R, Kumar A (2016) Combination strategy of PARP inhibitor with antioxidant prevent bioenergetic deficits and inflammatory changes in CCI-induced neuropathy. Neuropharmacology 113:137–147CrossRefPubMedGoogle Scholar
  37. 37.
    Kramer KA, Oglesbee D, Hartman SJ, Huey J, Anderson B, Magera MJ, Matern D, Rinaldo P et al (2005) Automated spectrophotometric analysis of mitochondrial respiratory chain complex enzyme activities in cultured skin fibroblasts. Clin Chem 51(11):2110–2116. CrossRefPubMedGoogle Scholar
  38. 38.
    Xiao WH, Zheng H, Bennett GJ (2012) Characterization of oxaliplatin-induced chronic painful peripheral neuropathy in the rat and comparison with the neuropathy induced by paclitaxel. Neuroscience 203:194–206CrossRefPubMedGoogle Scholar
  39. 39.
    Ta LE, Espeset L, Podratz J, Windebank AJ (2006) Neurotoxicity of oxaliplatin and cisplatin for dorsal root ganglion neurons correlates with platinum-DNA binding. Neurotoxicology 27(6):992–1002. CrossRefPubMedGoogle Scholar
  40. 40.
    Mannelli LDC, Zanardelli M, Failli P, Ghelardini C (2013) Oxaliplatin-induced oxidative stress in nervous system-derived cellular models: Could it correlate with in vivo neuropathy? Free Radic Biol Med 61:143–150. CrossRefGoogle Scholar
  41. 41.
    Zheng H, Xiao WH, Bennett GJ (2011) Functional deficits in peripheral nerve mitochondria in rats with paclitaxel-and oxaliplatin-evoked painful peripheral neuropathy. Exp Neurol 232(2):154–161. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Witte ME, Geurts JJG, de Vries HE, van der Valk P, van Horssen J (2011) Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion 10(5):411–418CrossRefGoogle Scholar
  43. 43.
    Areti A, Ganesh YV, Komirishetty P, Kumar A (2016) Potential therapeutic benefits of maintaining mitochondrial health in peripheral neuropathies. Curr Neuropharmacol 14(6):593–609. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mannelli LDC, Pacini A, Bonaccini L, Zanardelli M, Mello T, Ghelardini C (2013) Morphologic features and glial activation in rat oxaliplatin-dependent neuropathic pain. J Pain 14(12):1585–1600. CrossRefGoogle Scholar
  45. 45.
    Ji R-R, Gereau RW, Malcangio M, Strichartz GR (2009) MAP kinase and pain. Brain Res Rev 60(1):135–148. CrossRefPubMedGoogle Scholar
  46. 46.
    Myers RR, Campana WM, Shubayev VI (2006) The role of neuroinflammation in neuropathic pain: mechanisms and therapeutic targets. Drug Discov Today 11(1):8–20. CrossRefPubMedGoogle Scholar
  47. 47.
    Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10(11):1361–1368. CrossRefPubMedGoogle Scholar
  48. 48.
    Tillu DV, Melemedjian OK, Asiedu MN, Qu N, De Felice M, Dussor G, Price TJ (2012) Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain. Mol Pain 8(1):5PubMedPubMedCentralGoogle Scholar
  49. 49.
    Yerra VG, Kumar A (2016) Adenosine monophosphate-activated protein kinase abates hyperglycaemia-induced neuronal injury in experimental models of diabetic neuropathy: effects on mitochondrial biogenesis, autophagy and neuroinflammation. Mol Neurobiol 54(3):2301–2312. CrossRefPubMedGoogle Scholar
  50. 50.
    Yang Y-J, Hu L, Xia Y-P, Jiang C-Y, Miao C, Yang C-Q, Yuan M, Wang L (2016) Resveratrol suppresses glial activation and alleviates trigeminal neuralgia via activation of AMPK. J Neuroinflammation 13(1):84. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ling Y-Z, Li Z-Y, Ou-Yang H-D, Ma C, Wu S-L, Wei J-Y, Ding H-H, Zhang X-L et al (2017) The inhibition of spinal synaptic plasticity mediated by activation of AMP-activated protein kinase signaling alleviates the acute pain induced by oxaliplatin. Exp Neurol 288:85–93. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)-HyderabadHyderabadIndia
  2. 2.Division of Neurology and Neuroscience and Mental Health Institute, Department of MedicineUniversity of AlbertaEdmontonCanada

Personalised recommendations