Skip to main content

In Vivo Transient and Partial Cell Reprogramming to Pluripotency as a Therapeutic Tool for Neurodegenerative Diseases

Abstract

In theory, human diseases in which a specific cell type degenerates, such as neurodegenerative diseases, can be therapeutically addressed by replacement of the lost cells. The classical strategy for cell replacement is exogenous cell transplantation, but now, cell replacement can also be achieved with in situ reprogramming. Indeed, many of these disorders are age-dependent, and “rejuvenating” strategies based on cell epigenetic modifications are a possible approach to counteract disease progression. In this context, transient and/or partial reprogramming of adult somatic cells towards pluripotency can be a promising tool for neuroregeneration. Temporary and controlled in vivo overexpression of Yamanaka reprogramming factors (Oct3/4, Sox2, Klf4, and c-Myc (OSKM)) has been proven feasible in different experimental settings and could be employed to facilitate in situ tissue regeneration; this regeneration can be accomplished either by producing novel stem/precursor cells, without the challenges posed by exogenous cell transplantation, or by changing the epigenetic adult cell signature to the signature of a younger cell. The risk of this procedure resides in the possible lack of perfect control of the process, carrying a potential oncogenic or unexpected cell phenotype hazard. Recent studies have suggested that these limits can be overcome by a tightly controlled cyclic regimen of short-term OSKM expression in vivo that prevents full reprogramming to the pluripotent state and avoids both tumorigenesis and the presence of unwanted undifferentiated cells. On the other hand, this strategy can enhance tissue regeneration for therapeutic purposes in aging-related neurological diseases as well. These data could open the path to further research on the therapeutic potential of in vivo reprogramming in regenerative medicine.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Dametti S, Faravelli I, Ruggieri M, Ramirez A, Nizzardo M, Corti S (2016) Experimental advances towards neural regeneration from induced stem cells to direct in vivo reprogramming. Mol Neurobiol 53(4):2124–2131. https://doi.org/10.1007/s12035-015-9181-7

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Chen G, Wernig M, Berninger B, Nakafuku M, Parmar M, Zhang CL (2015) In vivo reprogramming for brain and spinal cord repair. eNeuro 2(5). https://doi.org/10.1523/ENEURO.0106-15.2015

  4. 4.

    Taguchi J, Yamada Y (2017) In vivo reprogramming for tissue regeneration and organismal rejuvenation. Curr Opin Genet Dev 46:132–140. https://doi.org/10.1016/j.gde.2017.07.008

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    de Lazaro I, Kostarelos K (2014) In vivo cell reprogramming to pluripotency: exploring a novel tool for cell replenishment and tissue regeneration. Biochem Soc Trans 42(3):711–716. https://doi.org/10.1042/BST20140012

    Article  CAS  Google Scholar 

  6. 6.

    de Lázaro I, Cossu G, Kostarelos K (2017) Transient transcription factor (OSKM) expression is key towards clinical translation of in vivo cell reprogramming. EMBO Mol Med 9(6):733–736. https://doi.org/10.15252/emmm.201707650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. 7.

    Haas BJ, Whited JL (2017) Advances in decoding axolotl limb regeneration. Trends Genet 33(8):553–565. https://doi.org/10.1016/j.tig.2017.05.006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. 8.

    Abad M, Mosteiro L, Pantoja C, Canamero M, Rayon T, Ors I, Grana O, Megias D et al (2013) Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 502(7471):340–345. https://doi.org/10.1038/nature12586

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Ohnishi K, Semi K, Yamamoto T, Shimizu M, Tanaka A, Mitsunaga K, Okita K, Osafune K et al (2014) Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 156(4):663–677. https://doi.org/10.1016/j.cell.2014.01.005

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Mosteiro L, Pantoja C, Alcazar N, Marion RM, Chondronasiou D, Rovira M, Fernandez-Marcos PJ, Munoz-Martin M et al (2016) Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354(6315):aaf4445. https://doi.org/10.1126/science.aaf4445

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Ocampo A, Reddy P, Martinez-Redondo P, Platero-Luengo A, Hatanaka F, Hishida T, Li M, Lam D et al (2016) In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167:1719–1733.e12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    Gao X, Wang X, Xiong W, Chen J (2016) In vivo reprogramming reactive glia into iPSCs to produce new neurons in the cortex following traumatic brain injury. Sci Rep 6(22490)

  13. 13.

    Yilmazer A, de Lazaro I, Bussy C, Kostarelos K (2013) In vivo cell reprogramming towards pluripotency by virus-free overexpression of defined factors. PLoS One 8(1):e54754. https://doi.org/10.1371/journal.pone.0054754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Tang Y, Cheng L (2017) Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury. Protein Cell 8(4):273–283. https://doi.org/10.1007/s13238-017-0373-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. 15.

    Chiche A, Le Roux I, von Joest M, Sakai H, Aguin SB, Cazin C, Salam R, Fiette L et al (2017) Injury-induced senescence enables in vivo reprogramming in skeletal muscle. Cell Stem Cell 20(3):407–414. https://doi.org/10.1016/j.stem.2016.11.020

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Vivien C, Scerbo P, Girardot F, Le Blay K, Demeneix BA, Coen L (2012) Non-viral expression of mouse Oct4, Sox2, and Klf4 transcription factors efficiently reprograms tadpole muscle fibers in vivo. J Biol Chem 287(10):7427–7435. https://doi.org/10.1074/jbc.M111.324368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. 17.

    Delaune E, Lemaire P, Kodjabachian L (2005) Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. Development 132(2):299–310. https://doi.org/10.1242/dev.01582

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    de Lazaro I, Yilmazer A, Nam Y, Qubisi S, Razak F, Cossu G, Kostarelos K (2017) Non viral induction of transient cell reprogramming in skeletal muscle to enhance tissue regeneration. bioRxiv. https://doi.org/10.1101/101188

  19. 19.

    Brady JJ, Li M, Suthram S, Jiang H, Wong WH, Blau HM (2013) Early role for IL-6 signalling during generation of induced pluripotent stem cells revealed by heterokaryon RNA-Seq. Nat Cell Biol 15(10):1244–1252. https://doi.org/10.1038/ncb2835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. 20.

    Ritschka B, Storer M, Mas A, Heinzmann F, Ortells MC, Morton JP, Sansom OJ, Zender L et al (2017) The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev 31(2):172–183. https://doi.org/10.1101/gad.290635.116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Marión RM, López de Silanes I, Mosteiro L, Gamache B, Abad M, Guerra C, Megías D, Serrano M et al (2017) Common telomere changes during in vivo reprogramming and early stages of tumorigenesis. Stem Cell Reports 8(2):460–475. https://doi.org/10.1016/j.stemcr.2017.01.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. 22.

    Benayoun BA, Pollina EA, Brunet A (2015) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16(10):593–610. https://doi.org/10.1038/nrm4048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. 23.

    Lapasset L, Milhavet O, Prieur A, Besnard E, Babled A, Aït-Hamou N, Leschik J, Pellestor F et al (2011) Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev 25(21):2248–2253. https://doi.org/10.1101/gad.173922.111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. 24.

    Mahmoudi S, Brunet A (2012) Aging and reprogramming: a two-way street. Curr Opin Cell Biol 24(6):744–756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Rando TA, Chang HY (2012) Aging, rejuvenation, and epigenetic reprogramming: Resetting the aging clock. Cell 148(1–2):46–57. https://doi.org/10.1016/j.cell.2012.01.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Kurian L, Sancho-Martinez I, Nivet E, Aguirre A, Moon K, Pendaries C, Volle-Challier C, Bono F et al (2013) Conversion of human fibroblasts to angioblast-like progenitor cells. Nat Methods 10(1):77–83. https://doi.org/10.1038/nmeth.2255

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Thier M, Wörsdörfer P, Lakes YB, Gorris R, Herms S, Opitz T, Seiferling D, Quandel T et al (2012) Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10(4):473–479. https://doi.org/10.1016/j.stem.2012.03.003

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Osorio FG, Navarro CL, Cadiñanos J, López-Mejía IC, Quirós PM, Bartoli C, Rivera J, Tazi J et al (2011) Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med 3(106):106ra107. https://doi.org/10.1126/scitranslmed.3002847

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433(7027):760–764. https://doi.org/10.1038/nature03260

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    McCay CM, Pope F, Lunsford W, Sperling G, Sambhavaphol P (1957) Parabiosis between old and young rats. Gerontologia 1(1):7–17. https://doi.org/10.1159/000210677

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236. https://doi.org/10.1038/nature10600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530(7589):184–189. https://doi.org/10.1038/nature16932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. 33.

    Li Y, Zhang Q, Yin X, Yang W, Du Y, Hou P, Ge J, Liu C et al (2011) Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res 21(1):196–204. https://doi.org/10.1038/cr.2010.142

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J et al (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341(6146):651–654. https://doi.org/10.1126/science.1239278

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Hu W, Qiu B, Guan W, Wang Q, Wang M, Li W, Gao L, Shen L et al (2015) Direct conversion of normal and Alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell 17(2):204–212. https://doi.org/10.1016/j.stem.2015.07.006

    Article  PubMed  CAS  Google Scholar 

  36. 36.

    Zhou Y, Wang L, Vaseghi HR, Liu Z, Lu R, Alimohamadi S, Yin C, Fu JD et al (2016) Bmi1 is a key epigenetic barrier to direct cardiac reprogramming. Cell Stem Cell 18(3):382–395. https://doi.org/10.1016/j.stem.2016.02.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. 37.

    Cahan P, Li H, Morris SA, Lummertz da Rocha E, Daley GQ, Collins JJ (2014) CellNet: network biology applied to stem cell engineering. Cell 158(4):903–915. https://doi.org/10.1016/j.cell.2014.07.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. 38.

    D’Alessio AC, Fan ZP, Wert KJ, Baranov P, Cohen MA, Saini JS, Cohick E, Charniga C et al (2015) A systematic approach to identify candidate transcription factors that control cell identity. Stem Cell Rep 5(5):763–775. https://doi.org/10.1016/j.stemcr.2015.09.016

    Article  CAS  Google Scholar 

  39. 39.

    Rackham OJ, Firas J, Fang H, Oates ME, Holmes ML, Knaupp AS, Consortium F, Suzuki H et al (2016) A predictive computational framework for direct reprogramming between human cell types. Nat Genet 48(3):331–335. https://doi.org/10.1038/ng.3487

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    Wapinski OL, Vierbuchen T, Qu K, Lee QY, Chanda S, Fuentes DR, Giresi PG, Ng YH et al (2013) Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155(3):621–635. https://doi.org/10.1016/j.cell.2013.09.028

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Cao N, Huang Y, Zheng J, Spencer CI, Zhang Y, Fu JD, Nie B, Xie M et al (2016) Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 352(6290):1216–1220. https://doi.org/10.1126/science.aaf1502

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Zhang L, Yin JC, Yeh H, Ma NX, Lee G, Chen XA, Wang Y, Lin L et al (2015) Small molecules efficiently reprogram human astroglial cells into functional neurons. Cell Stem Cell 17(6):735–747. https://doi.org/10.1016/j.stem.2015.09.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Joint Programme Neurodegenerative Disease (JPND) Research grant DAMNDPATHS (2014) and ARISLA grant smallRNALS (2014) to SC and the Italian Ministry of Health RF-2013-023555764 and Regione Lombardia TRANS-ALS to GPC are gratefully acknowledged. The authors wish to thank the Associazione Centro Dino Ferrari for its support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Corti.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tamanini, S., Comi, G.P. & Corti, S. In Vivo Transient and Partial Cell Reprogramming to Pluripotency as a Therapeutic Tool for Neurodegenerative Diseases. Mol Neurobiol 55, 6850–6862 (2018). https://doi.org/10.1007/s12035-018-0888-0

Download citation

Keywords

  • In vivo reprogramming
  • Rejuvenation
  • Tissue repair
  • Senescence
  • Aging
  • Yamanaka Factors
  • Progeria
  • Regenerative medicine