Neuroprotective Effects of Filgrastim in Rotenone-Induced Parkinson’s Disease in Rats: Insights into its Anti-Inflammatory, Neurotrophic, and Antiapoptotic Effects

Abstract

All current treatments of Parkinson’s disease (PD) focus on enhancing the dopaminergic effects and providing symptomatic relief; however, they cannot delay the disease progression. Filgrastim, a recombinant methionyl granulocyte colony-stimulating factor, demonstrated neuroprotection in many neurodegenerative and neurological diseases. This study aimed to assess the neuroprotective effects of filgrastim in rotenone-induced rat model of PD and investigate the potential underlying mechanisms of filgrastim actions. The effects of two doses of filgrastim (20 and 40 μg/kg) on spontaneous locomotion, catalepsy, body weight, histology, and striatal dopamine (DA) content, as well as tyrosine hydroxylase (TH) and α-synuclein expression, were evaluated. Then, the effective dose was further tested for its potential anti-inflammatory, neurotrophic, and antiapoptotic effects. Filgrastim (40 μg/kg) prevented rotenone-induced motor deficits, weight reduction, striatal DA depletion, and histological damage. Besides, it significantly inhibited rotenone-induced decrease in TH expression and increase in α-synuclein immunoreactivity in the midbrains and striata of the rats. These effects were associated with reduction of rotenone-induced neuroinflammation, apoptosis, and brain-derived neurotrophic factor depletion. Collectively, these results suggest that filgrastim might be a good candidate for management of PD.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Pringsheim T, Jette N, Frolkis A, Steeves TD (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 29(13):1583–1590. https://doi.org/10.1002/mds.25945

    Article  PubMed  Google Scholar 

  2. 2.

    Barzilai A, Melamed E (2003) Molecular mechanisms of selective dopaminergic neuronal death in Parkinson’s disease. Trends Mol Med 9(3):126–132. https://doi.org/10.1016/S1471-4914(03)00020-0

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376. https://doi.org/10.1136/jnnp.2007.131045

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Davie CA (2008) A review of Parkinson’s disease. Br Med Bull 86(1):109–127. https://doi.org/10.1093/bmb/ldn013

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Pont-Sunyer C, Hotter A, Gaig C, Seppi K, Compta Y, Katzenschlager R, Mas N, Hofeneder D et al (2015) The onset of nonmotor symptoms in Parkinson’s disease (the ONSET PD study). Mov Disord 30(2):229–237. https://doi.org/10.1002/mds.26077

  6. 6.

    Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 106(6):518–526. https://doi.org/10.1007/s00401-003-0766-2

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Subramaniam SR, Federoff HJ (2017) Targeting microglial activation states as a therapeutic avenue in Parkinson’s disease. Front Aging Neurosci 9:176. https://doi.org/10.3389/fnagi.2017.00176

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl 70:373–381. https://doi.org/10.1007/978-3-211-45295-0_57

    Article  CAS  Google Scholar 

  9. 9.

    Alam Q, Alam MZ, Mushtaq G, Damanhouri GA, Rasool M, Kamal MA, Haque A (2016) Inflammatory process in Alzheimer’s and Parkinson’s diseases: central role of cytokines. Curr Pharm Des 22(5):541–548. https://doi.org/10.2174/1381612822666151125000300

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Montgomery SL, Bowers WJ (2012) Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J NeuroImmune Pharmacol 7(1):42–59. https://doi.org/10.1007/s11481-011-9287-2

    Article  PubMed  Google Scholar 

  11. 11.

    Lev N, Melamed E, Offen D (2003) Apoptosis and Parkinson’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry 27(2):245–250. https://doi.org/10.1016/S0278-5846(03)00019-8

    Article  CAS  Google Scholar 

  12. 12.

    Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M et al (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12(1):25–31

  13. 13.

    Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H et al (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci U S A 97(6):2875–2880. https://doi.org/10.1073/pnas.040556597

  14. 14.

    Mochizuki H, Goto K, Mori H, Mizuno Y (1996) Histochemical detection of apoptosis in Parkinson’s disease. J Neurol Sci 137(2):120–123. https://doi.org/10.1016/0022-510X(95)00336-Z

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Baquet ZC, Bickford PC, Jones KR (2005) Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci 25(26):6251–6259. https://doi.org/10.1523/JNEUROSCI.4601-04.2005

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Howells DW, Porritt MJ, Wong JY, Batchelor PE, Kalnins R, Hughes AJ, Donnan GA (2000) Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp Neurol 166(1):127–135. https://doi.org/10.1006/exnr.2000.7483

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T (1999) Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson’s disease. Neurosci Lett 270(1):45–48. https://doi.org/10.1016/S0304-3940(99)00463-2

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306. https://doi.org/10.1038/81834

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Michel HE, Tadros MG, Esmat A, Khalifa AE, Abdel-Tawab AM (2016) Tetramethylpyrazine ameliorates rotenone-induced Parkinson’s disease in rats: involvement of its anti-inflammatory and anti-apoptotic actions. Mol Neurobiol 54(7):4866–4878. https://doi.org/10.1007/s12035-016-0028-7

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Thakur P, Nehru B (2013) Anti-inflammatory properties rather than anti-oxidant capability is the major mechanism of neuroprotection by sodium salicylate in a chronic rotenone model of Parkinson’s disease. Neuroscience 231:420–431. https://doi.org/10.1016/j.neuroscience.2012.11.006

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Betarbet R, Sherer TB, Greenamyre JT (2002) Animal models of Parkinson’s disease. BioEssays 24(4):308–318. https://doi.org/10.1002/bies.10067

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Khurana N, Gajbhiye A (2013) Ameliorative effect of Sida cordifolia in rotenone-induced oxidative stress model of Parkinson’s disease. Neurotoxicology 39:57–64. https://doi.org/10.1016/j.neuro.2013.08.005

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T et al (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23(34):10756–10764

  24. 24.

    Ulusoy GK, Celik T, Kayir H, Gürsoy M, Isik AT, Uzbay TI (2011) Effects of pioglitazone and retinoic acid in a rotenone model of Parkinson’s disease. Brain Res Bull 85(6):380–384. https://doi.org/10.1016/j.brainresbull.2011.05.001

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Gao HM, Liu B, Hong JS (2003) Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 23(15):6181–6187

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Gao HM, Hong JS, Zhang W, Liu B (2002) Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 22(3):782–790

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Kandil EA, Abdelkader NF, El-Sayeh BM, Saleh S (2016) Imipramine and amitriptyline ameliorate the rotenone model of Parkinson’s disease in rats. Neuroscience 332:26–37. https://doi.org/10.1016/j.neuroscience.2016.06.040

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Samantaray S, Knaryan VH, Guyton MK, Matzelle DD, Ray SK, Banik NL (2007) The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats. Neuroscience 146(2):741–755. https://doi.org/10.1016/j.neuroscience.2007.01.056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. 29.

    Sapkota K, Kim S, Park SE, Kim SJ (2011) Detoxified extract of Rhus verniciflua stokes inhibits rotenone-induced apoptosis in human dopaminergic cells, SH-SY5Y. Cell Mol Neurobiol 31(2):213–223. https://doi.org/10.1007/s10571-010-9609-6

    Article  PubMed  Google Scholar 

  30. 30.

    Sherer TB, Kim JH, Betarbet R, Greenamyre JT (2003) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation. Exp Neurol 179(1):9–16. https://doi.org/10.1006/exnr.2002.8072

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    DeMaagd G, Philip A (2015) Part 2: Introduction to the pharmacotherapy of Parkinson’s disease, with a focus on the use of dopaminergic agents. Pharmacy and Therapeutics 40(9):590–600

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Oertel WH, Quinn NP (1997) Parkinson’s disease: drug therapy. Baillieres Clin Neurol 6(1):89–108

    PubMed  CAS  Google Scholar 

  33. 33.

    Strecker K, Schwarz J (2008) Parkinson’s disease: emerging pharmacotherapy. Expert Opin Emerg Drugs 13(4):573–591. https://doi.org/10.1517/14728210802596906

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Schneider A, Kruger C, Steigleder T, Weber D, Pitzer C, Laage R, Aronowski J, Maurer MH et al (2005) The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115(8):2083–2098. https://doi.org/10.1172/JCI23559

  35. 35.

    Meuer K, Pitzer C, Teismann P, Krüger C, Göricke B, Laage R, Lingor P, Peters K et al (2006) Granulocyte-colony stimulating factor is neuroprotective in a model of Parkinson’s disease. J Neurochem 97(3):675–686. https://doi.org/10.1111/j.1471-4159.2006.03727.x

  36. 36.

    Pollari E, Savchenko E, Jaronen M, Kanninen K, Malm T, Wojciechowski S, Ahtoniemi T, Goldsteins G et al (2011) Granulocyte colony stimulating factor attenuates inflammation in a mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 8(1):74. https://doi.org/10.1186/1742-2094-8-74

  37. 37.

    Chao PK, Lu KT, Lee YL, Chen JC, Wang HL, Yang YL, Cheng MY, Liao MF et al (2012) Early systemic granulocyte-colony stimulating factor treatment attenuates neuropathic pain after peripheral nerve injury. PLoS One 7(8):e43680. https://doi.org/10.1371/journal.pone.0043680

  38. 38.

    Li L, McBride DW, Doycheva D, Dixon BJ, Krafft PR, Zhang JH, Tang J (2015) G-CSF attenuates neuroinflammation and stabilizes the blood-brain barrier via the PI3K/Akt/GSK-3β signaling pathway following neonatal hypoxia-ischemia in rats. Exp Neurol 272:135–144. https://doi.org/10.1016/j.expneurol.2014.12.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. 39.

    Song S, Kong X, Acosta S, Sava V, Borlongan C, Sanchez-Ramos J (2016) Granulocyte colony-stimulating factor promotes behavioral recovery in a mouse model of traumatic brain injury. J Neurosci Res 94(5):409–423. https://doi.org/10.1002/jnr.23714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. 40.

    Komine-Kobayashi M, Zhang N, Liu M, Tanaka R, Hara H, Osaka A, Mochizuki H, Mizuno Y et al (2006) Neuroprotective effect of recombinant human granulocyte colony-stimulating factor in transient focal ischemia of mice. J Cereb Blood Flow Metab 26(3):402–413. https://doi.org/10.1038/sj.jcbfm.9600195

  41. 41.

    Zavala F, Abad S, Ezine S, Taupin V, Masson A, Bach JF (2002) G-CSF therapy of ongoing experimental allergic encephalomyelitis via chemokine- and cytokine-based immune deviation. J Immunol 168(4):2011–2019. https://doi.org/10.4049/jimmunol.168.4.2011

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Crawford J (2003) Safety and efficacy of pegfilgrastim in patients receiving myelosuppressive chemotherapy. Pharmacotherapy 23(8 Pt 2):15S–19S. https://doi.org/10.1592/phco.23.9.15S.32889

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Mahdy HM, Tadros MG, Mohamed MR, Karim AM, Khalifa AE (2011) The effect of Ginkgo biloba extract on 3-nitropropionic acid-induced neurotoxicity in rats. Neurochem Int 59(6):770–778. https://doi.org/10.1016/j.neuint.2011.07.012

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    Bishnoi M, Chopra K, Kulkarni SK (2006) Involvement of adenosinergic receptor system in an animal model of tardive dyskinesia and associated behavioral, biochemical, and neurochemical changes. Eur J Pharmacol 552(1–3):55–66. https://doi.org/10.1016/j.ejphar.2006.09.010

    Article  PubMed  CAS  Google Scholar 

  45. 45.

    Price DA, Martinez AA, Seillier A, Koek W, Acosta Y, Fernandez E, Strong R, Lutz B et al (2009) WIN55,212-2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Eur J Neurosci 29(11):2177–2186. https://doi.org/10.1111/j.1460-9568.2009.06764.x

  46. 46.

    Costall B, Naylor RJ (1974) On catalepsy and catatonia and the predictability of the catalepsy test for neuroleptic activity. Psychopharmacologia 34(3):233–241. https://doi.org/10.1007/BF00421964

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Ludolph AC, He F, Spencer PS, Hammerstad J, Sabri M (1991) 3-nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 18(4):492–498. https://doi.org/10.1017/S0317167100032212

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Bancroft JD, Stevens A, Turner DR (1996) Theory and practice of histological techniques, 4th edn. Churchil Livingstone, New York

    Google Scholar 

  49. 49.

    Bancroft JD, Gamble M (2002) Theory and practice of histological techniques, 5th edn. Churchil Livingstone, Edinburgh

    Google Scholar 

  50. 50.

    Ferri AL, Cavallaro M, Braida D, Di Cristofano A, Canta A, Vezzani A, Ottolenghi S, Pandolfi PP et al (2004) Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131(15):3805–3819. https://doi.org/10.1242/dev.01204

  51. 51.

    Yuan GJ, Zhou XR, Gong ZJ, Zhang P, Sun XM, Zheng SH (2006) Expression and activity of inducible nitric oxide synthase and endothelial nitric oxide synthase correlate with ethanol-induced liver injury. World J Gastroenterol 12(15):2375–2381. https://doi.org/10.3748/wjg.v12.i15.2375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. 52.

    Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT (2009) A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34(2):279–290. https://doi.org/10.1016/j.nbd.2009.01.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. 53.

    Gibson CL, Bath PM, Murphy SP (2005) G-CSF reduces infarct volume and improves functional outcome after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 25(4):431–439. https://doi.org/10.1038/sj.jcbfm.9600033

    Article  PubMed  CAS  Google Scholar 

  54. 54.

    Schäbitz WR, Kollmar R, Schwaninger M, Juettler E, Bardutzky J, Schölzke MN, Sommer C, Schwab S (2003) Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 34(3):745–751. https://doi.org/10.1161/01.STR.0000057814.70180.17

    Article  PubMed  CAS  Google Scholar 

  55. 55.

    Prakash A, Medhi B, Chopra K (2013) Granulocyte colony stimulating factor (GCSF) improves memory and neurobehavior in an amyloid-β induced experimental model of Alzheimer’s disease. Pharmacol Biochem Behav 110:46–57. https://doi.org/10.1016/j.pbb.2013.05.015

    Article  PubMed  CAS  Google Scholar 

  56. 56.

    Sanchez-Ramos J, Song S, Sava V, Catlow B, Lin X, Mori T, Cao C, Arendash GW (2009) Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer’s mice. Neuroscience 163(1):55–72. https://doi.org/10.1016/j.neuroscience.2009.05.071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. 57.

    Duning T, Schiffbauer H, Warnecke T, Mohammadi S, Floel A, Kolpatzik K, Kugel H, Schneider A et al (2011) G-CSF prevents the progression of structural disintegration of white matter tracts in amyotrophic lateral sclerosis: a pilot trial. PLoS One 6(3):e17770. https://doi.org/10.1371/journal.pone.0017770

  58. 58.

    Cao XQ, Arai H, Ren YR, Oizumi H, Zhang N, Seike S, Furuya T, Yasuda T et al (2006) Recombinant human granulocyte colony-stimulating factor protects against MPTP-induced dopaminergic cell death in mice by altering Bcl-2/Bax expression levels. J Neurochem 99(3):861–867. https://doi.org/10.1111/j.1471-4159.2006.04125.x

  59. 59.

    Alam M, Schmidt WJ (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136(1):317–324. https://doi.org/10.1016/S0166-4328(02)00180-8

    Article  PubMed  CAS  Google Scholar 

  60. 60.

    Frank T, Klinker F, Falkenburger BH, Laage R, Lühder F, Göricke B, Schneider A, Neurath H et al (2012) Pegylated granulocyte colony-stimulating factor conveys long-term neuroprotection and improves functional outcome in a model of Parkinson’s disease. Brain 135(Pt 6):1914–1925. https://doi.org/10.1093/brain/aws054

  61. 61.

    Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2(7):492–501. https://doi.org/10.1038/35081564

    Article  PubMed  CAS  Google Scholar 

  62. 62.

    Cookson MR, van der Brug M (2008) Cell systems and the toxic mechanism(s) of alpha-synuclein. Exp Neurol 209(1):5–11. https://doi.org/10.1016/j.expneurol.2007.05.022

    Article  PubMed  CAS  Google Scholar 

  63. 63.

    Reynolds AD, Glanzer JG, Kadiu I, Ricardo-Dukelow M, Chaudhuri A, Ciborowski P, Cerny R, Gelman B et al (2008) Nitrated alpha-synuclein-activated microglial profiling for Parkinson’s disease. J Neurochem 104(6):1504–1525. https://doi.org/10.1111/j.1471-4159.2007.05087.x

  64. 64.

    Rocha NP, de Miranda AS, Teixeira AL (2015) Insights into neuroinflammation in Parkinson’s disease: from biomarkers to anti-inflammatory-based therapies. Biomed Res Int 2015:628192–628112. https://doi.org/10.1155/2015/628192

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  65. 65.

    Lull ME, Block ML (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics 7(4):354–365. https://doi.org/10.1016/j.nurt.2010.05.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. 66.

    Collins LM, Toulouse A, Connor TJ, Nolan YM (2012) Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease. Neuropharmacology 62(7):2154–2168. https://doi.org/10.1016/j.neuropharm.2012.01.028

    Article  PubMed  CAS  Google Scholar 

  67. 67.

    Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20(16):6309–6316

    Article  PubMed  CAS  Google Scholar 

  68. 68.

    Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52(6):1830–1836. https://doi.org/10.1111/j.1471-4159.1989.tb07264.x

    Article  PubMed  CAS  Google Scholar 

  69. 69.

    Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36(3):348–355. https://doi.org/10.1002/ana.410360305

    Article  PubMed  CAS  Google Scholar 

  70. 70.

    Lee JS, Yang CC, Kuo YM, Sze CI, Hsu JY, Huang YH, Tzeng SF, Tsai CL et al (2012) Delayed granulocyte colony-stimulating factor treatment promotes functional recovery in rats with severe contusive spinal cord injury. Spine (Phila Pa 1976) 37(1):10–17. https://doi.org/10.1097/BRS.0b013e31823b0440

  71. 71.

    Gall CM, Gold SJ, Isackson PJ, Seroogy KB (1992) Brain-derived neurotrophic factor and neurotrophin-3 mRNAs are expressed in ventral midbrain regions containing dopaminergic neurons. Mol Cell Neurosci 3(1):56–63. https://doi.org/10.1016/1044-7431(92)90009-Q

    Article  PubMed  CAS  Google Scholar 

  72. 72.

    Altar CA, DiStefano PS (1998) Neurotrophin trafficking by anterograde transport. Trends Neurosci 21(10):433–437. https://doi.org/10.1016/S0166-2236(98)01273-9

    Article  PubMed  CAS  Google Scholar 

  73. 73.

    Anusha C, Sumathi T, Joseph LD (2017) Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem Biol Interact 269:67–79. https://doi.org/10.1016/j.cbi.2017.03.016

    Article  PubMed  CAS  Google Scholar 

  74. 74.

    Perier C, Bové J, Vila M (2012) Mitochondria and programmed cell death in Parkinson’s disease: apoptosis and beyond. Antioxid Redox Signal 16(9):883–895. https://doi.org/10.1089/ars.2011.4074

    Article  PubMed  CAS  Google Scholar 

  75. 75.

    Hartmann A, Michel PP, Troadec JD, Mouatt-Prigent A, Faucheux BA, Ruberg M, Agid Y, Hirsch EC (2001) Is Bax a mitochondrial mediator in apoptotic death of dopaminergic neurons in Parkinson’s disease? J Neurochem 76(6):1785–1793. https://doi.org/10.1046/j.1471-4159.2001.00160.x

    Article  PubMed  CAS  Google Scholar 

  76. 76.

    Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T (2000) Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm (Vienna) 107(3):335–341. https://doi.org/10.1007/s007020050028

    Article  CAS  Google Scholar 

  77. 77.

    Tatton NA (2000) Increased caspase-3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 166(1):29–43. https://doi.org/10.1006/exnr.2000.748

    Article  PubMed  CAS  Google Scholar 

  78. 78.

    Nagatsu T (2002) Parkinson’s disease: changes in apoptosis related factors suggesting possible gene therapy. J Neural Transm (Vienna) 109(5–6):731–745. https://doi.org/10.1007/s007020200061

    Article  CAS  Google Scholar 

  79. 79.

    Chen Y, Zhang DQ, Liao Z, Wang B, Gong S, Wang C, Zhang MZ, Wang GH et al (2015) Anti-oxidant polydatin (piceid) protects against substantia nigral motor degeneration in multiplerodent models of Parkinson’s disease. Mol Neurodegener 10(1):4. https://doi.org/10.1186/1750-1326-10-4

  80. 80.

    Lieberthal W, Menza SA, Levine JS (1998) Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. Am J Phys 274(2 Pt 2):F315–F327

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Esther T. Menze.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azmy, M.S., Menze, E.T., El-Naga, R.N. et al. Neuroprotective Effects of Filgrastim in Rotenone-Induced Parkinson’s Disease in Rats: Insights into its Anti-Inflammatory, Neurotrophic, and Antiapoptotic Effects. Mol Neurobiol 55, 6572–6588 (2018). https://doi.org/10.1007/s12035-017-0855-1

Download citation

Keywords

  • Filgrastim
  • Parkinson’s disease
  • Neuroinflammation
  • Apoptosis
  • BDNF
  • Motor function