Advertisement

Molecular Neurobiology

, Volume 55, Issue 8, pp 6533–6546 | Cite as

Allele-Specific Biased Expression of the CNTN6 Gene in iPS Cell-Derived Neurons from a Patient with Intellectual Disability and 3p26.3 Microduplication Involving the CNTN6 Gene

  • Maria M. Gridina
  • Natalia M. Matveeva
  • Veniamin S. Fishman
  • Aleksei G. Menzorov
  • Helen A. Kizilova
  • Nikolay A. Beregovoy
  • Igor I. Kovrigin
  • Inna E. Pristyazhnyuk
  • Igor P. Oscorbin
  • Maxim L. Filipenko
  • Anna A. Kashevarova
  • Nikolay A. Skryabin
  • Tatyana V. Nikitina
  • Elena A. Sazhenova
  • Ludmila P. Nazarenko
  • Igor N. Lebedev
  • Oleg L. Serov
Article

Abstract

Copy number variations (CNVs) of the human CNTN6 gene caused by megabase-scale microdeletions or microduplications in the 3p26.3 region are often the cause of neurodevelopmental disorders, including intellectual disability and developmental delay. Surprisingly, patients with different copy numbers of this gene display notable overlapping of neuropsychiatric symptoms. The complexity of the study of human neuropathologies is associated with the inaccessibility of brain material. This problem can be overcome through the use of reprogramming technologies that permit the generation of induced pluripotent stem (iPS) cells from fibroblasts and their subsequent in vitro differentiation into neurons. We obtained a set of iPS cell lines derived from a patient carrier of the CNTN6 gene duplication and from two healthy donors. All iPS cell lines displayed the characteristics of pluripotent cells. Some iPS cell lines derived from the patient and from healthy donors were differentiated in vitro by exogenous expression of the Ngn2 transcription factor or by spontaneous neural differentiation of iPS cells through the neural rosette stage. The obtained neurons showed the characteristics of mature neurons as judged by the presence of neuronal markers and by their electrophysiological characteristics. Analysis of allele-specific expression of the CNTN6 gene in these neuronal cells by droplet digital PCR demonstrated that the level of expression of the duplicated allele was significantly reduced compared to that of the wild-type allele. Importantly, according to the sequencing data, both copies of the CNTN6 gene, which were approximately 1 Mb in size, showed no any additional structural rearrangements.

Keywords

CNTN6 gene 3p26.3 microduplication Intellectual disability Induced pluripotent stem cells in vitro neural differentiation Allele-specific expression 

Notes

Acknowledgements

The LeGO lentiviral vectors containing the human reprogramming transcription factors OCT4, SOX2, C-MYC, and KLF4 were kindly provided to us by Dr. Sergei L. Kiselev (Moscow). Three lentiviral constructs (FUW-TRE Ngn2/Puro, containing full-length mouse Ngn2 and puromycin-resistance genes, and M2RtTA and FUW-TRE EGFP, containing the GFP gene) were kindly provided to us by Dr. Thomas Südhof (Stanford, CA, USA). Patient's fibroblasts samples were obtained from the collection «Biobank of populations of Northern Eurasia» financed by the Federal Agency for Scientific Organizations of Russia Federation program for supporting the bioresource collections in 2017 (project no. 0550-2017-0019). We thank the family of the patient with 3p26.3 microduplication for their collaboration. We are grateful to the donors of skin fibroblasts and to their parents for their voluntary participation in the research. Cell culture was performed at the Collective Center of ICG SB RAS "Collection of Pluripotent Human and Mammalian Cell Cultures for Biological and Biomedical Research" (state project No. 0324-2016-0002 of Russian Academy of Sciences).

Funding

This study was supported by the Russian Science Foundation, grant no. 14-15-00772.

References

  1. 1.
    Mou X, Wu Y, Cao H, Meng Q, Wang Q, Sun C, Hu S, Ma Y et al (2012) Generation of disease-specific induced pluripotent stem cells from patients with different karyotypes of Down syndrome. Stem Cell Res Ther 3(2):14.  https://doi.org/10.1186/scrt105 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hibaoui Y, Feki A (2015) Concise review: methods and cell types used to generate Down syndrome induced pluripotent stem cells. J Clin Med 4(4):696–714.  https://doi.org/10.3390/jcm4040696 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Luo Y, Zhu D, Du R, Gong Y, Xie C, Xu X, Fan Y, Yu B, Sun X, Chen Y (2015) Uniparental disomy of the entire X chromosome in Turner syndrome patient-specific induced pluripotent stem cells. Cell Discovery, 1, Article number: 15022.Google Scholar
  4. 4.
    Hibaoui Y, Grad I, Letourneau A, Sailani MR, Dahoun S, Santori FA, Gimelli S, Guipponi M et al (2014) Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21. EMBO Mol Med 6(2):259–277.  https://doi.org/10.1002/emmm.201302848 PubMedGoogle Scholar
  5. 5.
    Vissers LE, Gilissen C, Veltman JA (2016) Genetic studies in intellectual disability and related disorders. Nat Rev Genet 17(1):9–18.  https://doi.org/10.1038/nrg3999 CrossRefPubMedGoogle Scholar
  6. 6.
    Mikhail FM, Lose EJ, Robin NH, Descartes MD, Rutledge KD, Rutledge SL, Korf BR, Carroll AJ (2011) Clinically relevant single gene or intragenic deletions encompassing critical neurodevelopmental genes in patients with developmental delay, mental retardation, and/or autism spectrum disorders. Am J Med Genet A 155A(10):2386–2396.  https://doi.org/10.1002/ajmg.a.34177 CrossRefPubMedGoogle Scholar
  7. 7.
    Kasnauskiene J, Ciuladaite Z, Preiksaitiene E, Utkus A, Peciulyte A, Kučinskas V (2013) A new single gene deletion on 2q34: ERBB4 is associated with intellectual disability. Am J Med Genet A 161A(6):1487–1490.  https://doi.org/10.1002/ajmg.a.35911 CrossRefPubMedGoogle Scholar
  8. 8.
    Shoukier M, Fuchs S, Schwaibold E, Lingen M, Gärtner J, Brockmann K, Zirn B (2013) Microduplication of 3p26.3 in nonsyndromic intellectual disability indicates an important role of CHL1 for normal cognitive function. Neuropediatrics 44(05):268–271.  https://doi.org/10.1055/s-0033-1333874 CrossRefPubMedGoogle Scholar
  9. 9.
    Te Weehi L, Maikoo R, Mc Cormack A, Mazzaschi R, Ashton F, Zhang L, George AM, Love DR (2014) Microduplication of 3p26.3 implicated in cognitive development. Case Rep Genet 2014:295359.Google Scholar
  10. 10.
    Palumbo O, Fischetto R, Palumbo P, Nicastro F, Papadia F, Zelante L, Carella M (2015) De novo microduplication of CHL1 in a patient with non-syndromic developmental phenotypes. Mol Cytogenet 8(1):66.  https://doi.org/10.1186/s13039-015-0170-3 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hu J, Liao J, Sathanoori M, Kochmar S, Sebastian J, Yatsenko SA, Surti U (2015) CNTN6 copy number variations in 14 patients: a possible candidate gene for neurodevelopmental and neuropsychiatric disorders. J Neurodev Disord 7(1):26.  https://doi.org/10.1186/s11689-015-9122-9 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Li C, Liu C, Zhou B, Hu C, Xu X (2016) Novel microduplication of CHL1 gene in a patient with autism spectrum disorder: a case report and a brief literature review. Mol Cytogenet 9(1):51.  https://doi.org/10.1186/s13039-016-0261-9 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Huang AY, Yu D, Davis LK, Sul JH, Tsetsos F, Ramensky V, Zelaya I, Ramos EM et al (2017) Rare copy number variants in NRXN1 and CNTN6 increase risk for Tourette syndrome. Neuron 94(6):1101–1111.  https://doi.org/10.1016/j.neuron.2017.06.010 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kashevarova AA, Nazarenko LP, Schultz-Pedersen S, Skryabin NA, Salyukova OA, Chechetkina NN, Tolmacheva EN, Rudko AA et al (2014) Single gene microdeletions and microduplication of 3p26.3 in three unrelated families: CNTN6 as a new candidate gene for intellectual disability. Mol Cytogenet 7(1):97.  https://doi.org/10.1186/s13039-014-0097-0 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lin YC, Frei JA, Kilander MB, Shen W, Blatt GJ (2016) A subset of autism-associated genes regulate the structural stability of neurons. Front Cell Neurosci 10:263–268PubMedPubMedCentralGoogle Scholar
  16. 16.
    Mercati O, Huguet G, Danckaert A, André-Leroux G, Maruani A, Bellinzoni M, Rolland T, Gouder L et al (2017) CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders. Mol Psychiatry 22(4):625–633.  https://doi.org/10.1038/mp.2016.61 CrossRefPubMedGoogle Scholar
  17. 17.
    Ye H, Tan YL, Ponniah S, Takeda Y, Wang SQ, Schachner M, Watanabe K, Pallen CJ et al (2008) Neural recognition molecules CHL1 and NB-3 regulate apical dendrite orientation in the neocortex via PTP alpha. EMBO J 27(1):188–200.  https://doi.org/10.1038/sj.emboj.7601939 CrossRefPubMedGoogle Scholar
  18. 18.
    Sakurai K, Toyoshima M, Ueda H, Matsubara K, Takeda Y, Karagogeos D, Shimoda Y, Watanabe K (2009) Contribution of the neural cell recognition molecule NB-3 to synapse formation between parallel fibers and Purkinje cells in mouse. Dev Neurobiol 69(12):811–824.  https://doi.org/10.1002/dneu.20742 CrossRefPubMedGoogle Scholar
  19. 19.
    Van Esch H, Backx L, Pijkels E, Fryns JP (2009) Congenital diaphragmatic hernia is part of the new 15q24 microdeletion syndrome. Eur J Med Genet 52(2-3):153–156.  https://doi.org/10.1016/j.ejmg.2009.02.003 CrossRefPubMedGoogle Scholar
  20. 20.
    Moghadasi S, van Haeringen A, Langendonck L, Gijsbers ACJ, Ruivenkamp CAL (2014) A terminal 3p26.3 deletion is not associated with dysmorphic features and intellectual disability in a four-generation family. Am J Med Genet A 164A(11):2863–2868.  https://doi.org/10.1002/ajmg.a.36700 CrossRefPubMedGoogle Scholar
  21. 21.
    Kruglova AA, Kizilova EA, Zhelezova AI, Gridina MM, Golubitsa AN, Serov OL (2008) Embryonic stem cell/fibroblast hybrid cells with near-tetraploid karyotype provide high yield of chimeras. Cell Tissue Res 334(3):371–380.  https://doi.org/10.1007/s00441-008-0702-9 CrossRefPubMedGoogle Scholar
  22. 22.
    Prokhorovich MA, Lagar'kova MA, Shilov AG, Karamysheva TV, Kiselyov SL, Rubtsov NB (2007) Cultures of hESM human embryonic stem cells: chromosomal aberrations and karyotype stability. Bull Exp Biol Med 144(1):126–129.  https://doi.org/10.1007/s10517-007-0271-z CrossRefPubMedGoogle Scholar
  23. 23.
    Current protocols in human genetics/editorial board, Nicholas C. Dracopoli et al. 1994. V. 1: 4.6.6.Google Scholar
  24. 24.
    Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, Cox AJ, Kruglyak S et al (2016) Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32(8):1220–1222.  https://doi.org/10.1093/bioinformatics/btv710 CrossRefPubMedGoogle Scholar
  25. 25.
    Roller E, Ivakhno S, Lee S, Royce T, Tanner S (2016) Canvas: versatile and scalable detection of copy number variants. Bioinformatics 32(15):2375–2377.  https://doi.org/10.1093/bioinformatics/btw163 CrossRefPubMedGoogle Scholar
  26. 26.
    Zeitouni B, Boeva V, Janoueix-Lerosey I, Loeillet S, Legoix-né P, Nicolas A, Delattre O, Barillot E (2010) SVDetect: a tool to identify genomic structural variations from paired-end and mate-pair sequencing data. Bioinformatics 26(15):1895–1896.  https://doi.org/10.1093/bioinformatics/btq293 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10):1289–1291.  https://doi.org/10.1093/bioinformatics/btm091 CrossRefPubMedGoogle Scholar
  28. 28.
    Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115.  https://doi.org/10.1093/nar/gks596 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13(1):134.  https://doi.org/10.1186/1471-2105-13-134 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2(3):198–210.  https://doi.org/10.1016/j.scr.2009.02.002 CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang Y, Pak CH, Han Y, Ahlenius H, Zhang Z, Chanda S, Marro S, Patzke C et al (2013) Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78(5):785–798.  https://doi.org/10.1016/j.neuron.2013.05.029 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Muratore CR, Srikanth P, Callahan DG, Young-Pearse TL (2014) Comparison and optimization of hiPSC forebrain cortical differentiation protocols. PLoS One 9(8):e105807.  https://doi.org/10.1371/journal.pone.0105807 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041.  https://doi.org/10.1038/nature08797 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gridina MM, Serov OL (2010) Bidirectional reprogramming of mouse embryonic stem cell/fibroblast hybrid cells is initiated at the heterokaryon stage. Cell Tiss Res 342(3):377–389.  https://doi.org/10.1007/s00441-010-1085-2 CrossRefGoogle Scholar
  35. 35.
    Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharvand H, Baker J, Baker D et al (2011) Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 29:1132–1144CrossRefPubMedGoogle Scholar
  36. 36.
    Baker D, Hirst AJ, Gokhale PJ, Juarez MA, Williams S, Wheeler M, Bean K, Allison TF et al (2016) Detecting genetic mosaicism in cultures of human pluripotent stem cells. Stem Cell Reports 7(5):998–1012.  https://doi.org/10.1016/j.stemcr.2016.10.003 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Shimoda Y, Watanabe K (2009) Contactins: emerging key roles in the development and function of the nervous system. Cell Adh 3(1):64–70.  https://doi.org/10.4161/cam.3.1.7764 CrossRefGoogle Scholar
  38. 38.
    Zuko A, Kleijer KTE, Oguro-Ando A, Kas MJH, van Daalen E, Zwaag B, Burbach JPH (2013) Contactins in the neurobiology of autism. Eur J Pharmacol 719(1-3):63–74.  https://doi.org/10.1016/j.ejphar.2013.07.016 CrossRefPubMedGoogle Scholar
  39. 39.
    Koch P, Opitz T, Steinbeck JA, Ladewig J, Bruüstle O (2009) A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Nat Acad Sci USA 106(9):3225–3230.  https://doi.org/10.1073/pnas.0808387106 CrossRefPubMedGoogle Scholar
  40. 40.
    Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280.  https://doi.org/10.1038/nbt.1529 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yuan SH, Martin J, Elia J, Flippin J, Paramban RI, Hefferan MP, Vidal JG, Mu Y et al (2011) Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells. PLoS One 6(3):e17540.  https://doi.org/10.1371/journal.pone.0017540 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kim D-S, Lee DR, Kim H-S, Yoo J-E, Jung SJ, Lim BY, Jang J, Kang H-C et al (2012) Highly pure and expandable PSA-NCAM-positive neural precursors from human ESC and iPSC derived neural rosettes. PLoS One 7(7):e39715.  https://doi.org/10.1371/journal.pone.0039715 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gendrel AV, Attia M, Chen C-J, Diabangouaya P, Servant N, Barillot E, Heard E (2014) Developmental dynamics and disease potential of random monoallelic gene expression. Develop Cell 28(4):366–380.  https://doi.org/10.1016/j.devcel.2014.01.016 CrossRefGoogle Scholar
  44. 44.
    Li SM, Valo Z, Wang J, Gao H, Bowers CW, Singer-Sam J (2012) Transcriptome-wide survey of mouse CNS-derived cells reveals monoallelic expression within novel gene families. PLoS One 7(2):e31751.  https://doi.org/10.1371/journal.pone.0031751 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gimelbrant A, Hutchinson JN, Thompson BR, Chess A (2007) Widespread monoallelic expression on human autosomes. Science 318(5853):1136–1140.  https://doi.org/10.1126/science.1148910 CrossRefPubMedGoogle Scholar
  46. 46.
    Xu J, Carter AC, Gendrel AV, Attia M, Loftus J, Greenleaf WJ, Tibshirani R, Heard E et al (2017) Landscape of monoallelic DNA accessibility in mouse embryonic stem cells and neural progenitor cells. Nature Genet 49(3):377–386.  https://doi.org/10.1038/ng.3769 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Maria M. Gridina
    • 1
  • Natalia M. Matveeva
    • 1
  • Veniamin S. Fishman
    • 1
    • 2
  • Aleksei G. Menzorov
    • 1
    • 2
  • Helen A. Kizilova
    • 1
  • Nikolay A. Beregovoy
    • 3
  • Igor I. Kovrigin
    • 2
  • Inna E. Pristyazhnyuk
    • 1
  • Igor P. Oscorbin
    • 4
  • Maxim L. Filipenko
    • 4
  • Anna A. Kashevarova
    • 5
  • Nikolay A. Skryabin
    • 5
  • Tatyana V. Nikitina
    • 5
  • Elena A. Sazhenova
    • 5
  • Ludmila P. Nazarenko
    • 5
    • 6
  • Igor N. Lebedev
    • 5
    • 6
  • Oleg L. Serov
    • 1
    • 2
  1. 1.Institute of Cytology and Genetics SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institute of Molecular Biology and BiophysicsNovosibirskRussia
  4. 4.Institute of Chemical Biology and Fundamental Medicine SB RASNovosibirskRussia
  5. 5.Research Institute of Medical GeneticsTomsk National Research Medical Center Russian Academy of SciencesTomskRussia
  6. 6.Siberian State Medical UniversityTomskRussia

Personalised recommendations