Skip to main content

Advertisement

Log in

Carnosic Acid as a Promising Agent in Protecting Mitochondria of Brain Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Carnosic acid (CA; C20H28O4), a phenolic diterpene characterized as an ortho-dihydroquinone-type molecule, is a pro-electrophile agent that becomes an electrophile after reacting with free radicals. The electrophile generated from CA interacts with and activates the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor, which is a major modulator of redox biology in mammalian cells. CA induces antioxidant and anti-inflammatory effects in several cell types, as observed in both in vitro and in vivo experimental models. In this context, CA has been viewed as a neuroprotective agent by activating signaling pathways associated with cell survival during stressful conditions. Indeed, CA exhibits the ability to promote mitochondrial protection in neural cells. Mitochondria are the main source of both ATP and reactive species in animal cells. Mitochondrial dysfunction plays a central role in the start and development of neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, among others. Therefore, the study of strategies aiming to reduce mitochondrial impairment in the case of neurodegeneration is of pharmacological interest. In the present review, it is described and discussed the effects of CA on brain mitochondria in experimental models of neural lesion. Based on the data discussed here, CA is a potential candidate to be listed as a neuroprotective agent by acting on the mitochondria of neural cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Birtić S, Dussort P, Pierre FX, Bily AC, Roller M (2015) Carnosic acid. Phytochemistry 115:9–19. https://doi.org/10.1016/j.phytochem.2014.12.026

    Article  PubMed  CAS  Google Scholar 

  2. Satoh T, McKercher SR, Lipton SA (2013) Nrf2/ARE-mediated antioxidant actions of pro-electrophilic drugs. Free Radic Biol Med 65:645–657. https://doi.org/10.1016/j.freeradbiomed.2013.07.022

    Article  PubMed  CAS  Google Scholar 

  3. Erkan N, Ayranci G, Ayranci E (2008) Antioxidant activities of rosemary (Rosmarinus Officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chem 110(1):76–82. https://doi.org/10.1016/j.foodchem.2008.01.058

    Article  PubMed  CAS  Google Scholar 

  4. Pérez-Fons L, Garzón MT, Micol V (2010) Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. J Agric Food Chem 58(1):161–171. https://doi.org/10.1021/jf9026487

    Article  PubMed  CAS  Google Scholar 

  5. de Oliveira MR (2016) The dietary components carnosic acid and carnosol as neuroprotective agents: a mechanistic view. Mol Neurobiol 53(9):6155–6168. https://doi.org/10.1007/s12035-015-9519-1

    Article  PubMed  CAS  Google Scholar 

  6. Doolaege EH, Raes K, De Vos F, Verhé R, De Smet S (2011) Absorption, distribution and elimination of carnosic acid, a natural antioxidant from Rosmarinus officinalis, in rats. Plant Foods Hum Nutr 66(2):196–202. https://doi.org/10.1007/s11130-011-0233-5

    Article  PubMed  CAS  Google Scholar 

  7. Romo Vaquero M, García Villalba R, Larrosa M, Yáñez-Gascón MJ, Fromentin E, Flanagan J, Roller M, Tomás-Barberán FA et al (2013) Bioavailability of the major bioactive diterpenoids in a rosemary extract: metabolic profile in the intestine, liver, plasma, and brain of Zucker rats. Mol Nutr Food Res 57:1834–1846. https://doi.org/10.1002/mnfr.201300052

  8. Kang K, Tarchick MJ, Yu X, Beight C, Bu P, Yu M (2016) Carnosic acid slows photoreceptor degeneration in the Pde6b(rd10) mouse model of retinitis pigmentosa. Sci Rep 6(1):22632. https://doi.org/10.1038/srep22632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Miller DM, Singh IN, Wang JA, Hall ED (2015) Nrf2-ARE activator carnosic acid decreases mitochondrial dysfunction, oxidative damage and neuronal cytoskeletal degradation following traumatic brain injury in mice. Exp Neurol 264:103–110. https://doi.org/10.1016/j.expneurol.2014.11.008

    Article  PubMed  CAS  Google Scholar 

  10. Ozarowski M, Mikolajczak PL, Bogacz A, Gryszczynska A, Kujawska M, Jodynis-Liebert J, Piasecka A, Napieczynska H et al (2013) Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain. Fitoterapia 91:261–271. https://doi.org/10.1016/j.fitote.2013.09.012

  11. Farr SA, Niehoff ML, Ceddia MA, Herrlinger KA, Lewis BJ, Feng S, Welleford A, Butterfield DA et al (2016) Effect of botanical extracts containing carnosic acid or rosmarinic acid on learning and memory in SAMP8 mice. Physiol Behav 165:328–338. https://doi.org/10.1016/j.physbeh.2016.08.013

  12. Zhang D, Lee B, Nutter A, Song P, Dolatabadi N, Parker J, Sanz-Blasco S, Newmeyer T et al (2015) Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid. J Neurochem 133(6):898–908. https://doi.org/10.1111/jnc.13074

  13. Vaka SR, Murthy SN, Repka MA, Nagy T (2011) Upregulation of endogenous neurotrophin levels in the brain by intranasal administration of carnosic acid. J Pharm Sci 100(8):3139–3145. https://doi.org/10.1002/jps.22528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Vaka SR, Shivakumar HN, Repka MA, Murthy SN (2013) Formulation and evaluation of carnosic acid nanoparticulate system for upregulation of neurotrophins in the brain upon intranasal administration. J Drug Target 21(1):44–53. https://doi.org/10.3109/1061186X.2012.725405

    Article  PubMed  CAS  Google Scholar 

  15. Genova ML, Bianchi C, Lenaz G (2005) Supercomplex organization of the mitochondrial respiratory chain and the role of the coenzyme Q pool: pathophysiological implications. Biofactors 25(1-4):5–20. https://doi.org/10.1002/biof.5520250103

    Article  PubMed  CAS  Google Scholar 

  16. Papa S, Martino PL, Capitanio G, Gaballo A, De Rasmo D, Signorile A, Petruzzella V (2012) The oxidative phosphorylation system in mammalian mitochondria. Adv Exp Med Biol 942:3–37. https://doi.org/10.1007/978-94-007-2869-1_1

    Article  PubMed  CAS  Google Scholar 

  17. Petersen MC, Vatner DF, Shulman GI (2017) Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol 13:572–587. https://doi.org/10.1038/nrendo.2017.80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Contreras L, Drago I, Zampese E, Pozzan T (2010) Mitochondria: the calcium connection. Biochim Biophys Acta 1797(6-7):607–618. https://doi.org/10.1016/j.bbabio.2010.05.005

    Article  PubMed  CAS  Google Scholar 

  19. Gibson GE, Blass JP, Beal MF, Bunik V (2005) The alpha-ketoglutarate-dehydrogenase complex: a mediator between mitochondria and oxidative stress in neurodegeneration. Mol Neurobiol 31:43–63

    Article  PubMed  CAS  Google Scholar 

  20. Schägger H (2001) Respiratory chain supercomplexes. IUBMB Life 52:119–128

    Article  PubMed  Google Scholar 

  21. Babbitt SE, Sutherland MC, San Francisco B, Mendez DL, Kranz RG (2015) Mitochondrial cytochrome c biogenesis: no longer an enigma. Trends Biochem Sci 40(8):446–455. https://doi.org/10.1016/j.tibs.2015.05.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Rich PR (2017) Mitochondrial cytochrome c oxidase: catalysis, coupling and controversies. Biochem Soc Trans 45(3):813–829. https://doi.org/10.1042/BST20160139

    Article  PubMed  CAS  Google Scholar 

  23. Genova ML, Lenaz G (2011) New developments on the functions of coenzyme Q in mitochondria. Biofactors 37:330–354

    Article  PubMed  CAS  Google Scholar 

  24. Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738. https://doi.org/10.1016/j.cmet.2011.08.016

    Article  PubMed  CAS  Google Scholar 

  25. Van Bergen NJ, Blake RE, Crowston JG, Trounce IA (2014) Oxidative phosphorylation measurement in cell lines and tissues. Mitochondrion 15:24–33. https://doi.org/10.1016/j.mito.2014.03.003

    Article  PubMed  CAS  Google Scholar 

  26. Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86(4):883–901. https://doi.org/10.1016/j.neuron.2015.03.035

    Article  PubMed  CAS  Google Scholar 

  27. Tsujimoto Y, Nakagawa T, Shimizu S (2006) Mitochondrial membrane permeability transition and cell death. Biochim Biophys Acta 1757:1297–1300

    Article  PubMed  CAS  Google Scholar 

  28. Green DR, Galluzzi L, Kroemer G (2014) Metabolic control of cell death. Science 345(6203):1250256. https://doi.org/10.1126/science.1250256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Galluzzi L, Bravo-San Pedro JM, Kroemer G (2014) Organelle-specific initiation of cell death. Nat Cell Biol 16(8):728–736. https://doi.org/10.1038/ncb3005

    Article  PubMed  CAS  Google Scholar 

  30. Candé C, Cohen I, Daugas E, Ravagnan L, Larochette N, Zamzami N, Kroemer G (2002) Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 84(2-3):215–222. https://doi.org/10.1016/S0300-9084(02)01374-3

    Article  PubMed  Google Scholar 

  31. Turk B, Stoka V (2007) Protease signalling in cell death: caspases versus cysteine cathepsins. FEBS Lett 581:2761–2767

    Article  PubMed  CAS  Google Scholar 

  32. Naoi M, Maruyama W, Shamoto-Nagai M, Yi H, Akao Y, Tanaka M (2005) Oxidative stress in mitochondria: decision to survival and death of neurons in neurodegenerative disorders. Mol Neurobiol 31(1-3):81–93. https://doi.org/10.1385/MN:31:1-3:081

    Article  PubMed  CAS  Google Scholar 

  33. Yan LJ, Levine RL, Sohal RS (1997) Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci U S A 94:11168–11172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Tretter L, Adam-Vizi V (2005) Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philos Trans R Soc Lond Ser B Biol Sci 360(1464):2335–2345. https://doi.org/10.1098/rstb.2005.1764

    Article  CAS  Google Scholar 

  35. McLain AL, Szweda PA, Szweda LI (2011) α-Ketoglutarate dehydrogenase: a mitochondrial redox sensor. Free Radic Res 45:29–36. https://doi.org/10.3109/10715762.2010.534163

    Article  PubMed  CAS  Google Scholar 

  36. Smolková K, Ježek P (2012) The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells. Int J Cell Biol 2012:273947. https://doi.org/10.1155/2012/273947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Pizzinat N, Copin N, Vindis C, Parini A, Cambon C (1999) Reactive oxygen species production by monoamine oxidases in intact cells. Naunyn Schmiedeberg's Arch Pharmacol 359:428–431

    Article  CAS  Google Scholar 

  38. Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27:325–355

    Article  PubMed  CAS  Google Scholar 

  39. Pun PB, Lu J, Kan EM, Moochhala S (2010) Gases in the mitochondria. Mitochondrion 10:83–93. https://doi.org/10.1016/j.mito.2009.12.142

    Article  PubMed  CAS  Google Scholar 

  40. Venditti P, Di Stefano L, Di Meo S (2013) Mitochondrial metabolism of reactive oxygen species. Mitochondrion 13:71–82. https://doi.org/10.1016/j.mito.2013.01.008

    Article  PubMed  CAS  Google Scholar 

  41. Witte ME, Geurts JJ, de Vries HE, van der Valk P, van Horssen J (2010) Mitochondrial dysfunction: A potential link between neuroinflammation and neurodegeneration? Mitochondrion 10(5):411–418. https://doi.org/10.1016/j.mito.2010.05.014

    Article  PubMed  CAS  Google Scholar 

  42. Wilkins HM, Swerdlow RH (2016) Relationships between mitochondria and neuroinflammation: implications for Alzheimer's disease. Curr Top Med Chem 16(8):849–857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Núñez MT (2015) Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21:92–105. https://doi.org/10.1016/j.mito.2015.02.001

    Article  PubMed  CAS  Google Scholar 

  44. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183. https://doi.org/10.1016/j.redox.2015.01.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748. https://doi.org/10.1146/annurev-biochem-061516-045037

    Article  PubMed  CAS  Google Scholar 

  46. Lu SC (2009) Regulation of glutathione synthesis. Mol Asp Med 30(1-2):42–59. https://doi.org/10.1016/j.mam.2008.05.005

    Article  CAS  Google Scholar 

  47. O'Donovan DJ, Fernandes CJ (2000) Mitochondrial glutathione and oxidative stress: implications for pulmonary oxygen toxicity in premature infants. Mol Genet Metab 71:352–358

    Article  PubMed  CAS  Google Scholar 

  48. Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830(5):3143–3153. https://doi.org/10.1016/j.bbagen.2012.09.008

    Article  PubMed  CAS  Google Scholar 

  49. Morris G, Anderson G, Dean O, Berk M, Galecki P, Martin-Subero M, Maes M (2014) The glutathione system: a new drug target in neuroimmune disorders. Mol Neurobiol 50:1059–1084. https://doi.org/10.1007/s12035-014-8705-x

    Article  PubMed  CAS  Google Scholar 

  50. Jornayvaz FR, Shulman GI (2010) Regulation of mitochondrial biogenesis. Essays Biochem 47:69–84. https://doi.org/10.1042/bse0470069

    Article  PubMed  CAS  Google Scholar 

  51. Virbasius CA, Virbasius JV, Scarpulla RC (1993) NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes Dev 7(12a):2431–2445. https://doi.org/10.1101/gad.7.12a.2431

    Article  PubMed  CAS  Google Scholar 

  52. Virbasius JV, Virbasius CA, Scarpulla RC (1993) Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters. Genes Dev 7:380–392

    Article  PubMed  CAS  Google Scholar 

  53. Schreiber SN, Knutti D, Brogli K, Uhlmann T, Kralli A (2003) The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor alpha (ERRalpha). J Biol Chem 278:9013–9018

    Article  PubMed  CAS  Google Scholar 

  54. Fisher RP, Clayton DA (1988) Purification and characterization of human mitochondrial transcription factor 1. Mol Cell Biol 8(8):3496–3509. https://doi.org/10.1128/MCB.8.8.3496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Asin-Cayuela J, Gustafsson CM (2007) Mitochondrial transcription and its regulation in mammalian cells. Trends Biochem Sci 32(3):111–117. https://doi.org/10.1016/j.tibs.2007.01.003

    Article  PubMed  CAS  Google Scholar 

  56. Canugovi C, Maynard S, Bayne AC, Sykora P, Tian J, de Souza-Pinto NC, Croteau DL, Bohr VA (2010) The mitochondrial transcription factor A functions in mitochondrial base excision repair. DNA Repair (Amst) 9(10):1080–1089. https://doi.org/10.1016/j.dnarep.2010.07.009

    Article  CAS  Google Scholar 

  57. Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060. https://doi.org/10.1038/nature07813

  58. Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A (2017) Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci Ther 23:5–22. https://doi.org/10.1111/cns.12655

    Article  PubMed  Google Scholar 

  59. Piantadosi CA, Carraway MS, Babiker A, Suliman HB (2008) Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res 103(11):1232–1240. https://doi.org/10.1161/01.RES.0000338597.71702.ad

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Dorn GW 2nd, Vega RB, Kelly DP (2015) Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev 29(19):1981–1991. https://doi.org/10.1101/gad.269894.115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Deas E, Wood NW, Plun-Favreau H (2011) Mitophagy and Parkinson's disease: the PINK1-parkin link. Biochim Biophys Acta 1813(4):623–633. https://doi.org/10.1016/j.bbamcr.2010.08.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Andreux PA, Houtkooper RH, Auwerx J (2013) Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov 12(6):465–483. https://doi.org/10.1038/nrd4023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Picone P, Nuzzo D, Caruana L, Scafidi V, Di Carlo M (2014) Mitochondrial dysfunction: different routes to Alzheimer's disease therapy. Oxidative Med Cell Longev 2014:780179–780111. https://doi.org/10.1155/2014/780179

    Article  CAS  Google Scholar 

  64. Jodeiri Farshbaf M, Ghaedi K (2017) Huntington's disease and mitochondria. Neurotox Res IN PRESS doi 32(3):518–529. https://doi.org/10.1007/s12640-017-9766-1

    Article  CAS  Google Scholar 

  65. Valero T (2014) Mitochondrial biogenesis: pharmacological approaches. Curr Pharm Des 20:5507–5509

    Article  PubMed  CAS  Google Scholar 

  66. Ito YA, Di Polo A (2017) Mitochondrial dynamics, transport, and quality control: a bottleneck for retinal ganglion cell viability in optic neuropathies. Mitochondrion IN PRESS. doi: https://doi.org/10.1016/j.mito.2017.08.014

  67. Rodolfo C, Campello S, Cecconi F (2017) Mitophagy in neurodegenerative diseases. Neurochem Int IN PRESS. doi: https://doi.org/10.1016/j.neuint.2017.08.004

  68. Chiang S, Kalinowski DS, Jansson PJ, Richardson DR, Huang ML (2017) Mitochondrial dysfunction in the neuro-degenerative and cardio-degenerative disease, Friedreich's ataxia Neurochem Int IN PRESS. doi: https://doi.org/10.1016/j.neuint.2017.08.002

  69. VanderVeen BN, Fix DK, Carson JA (2017) Disrupted skeletal muscle mitochondrial dynamics, mitophagy, and biogenesis during cancer cachexia: a role for inflammation. Oxidative Med Cell Longev 2017:3292087. https://doi.org/10.1155/2017/3292087

    Article  Google Scholar 

  70. Durcan TM, Fon EA (2015) The three ‘P’s of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev 29(10):989–999. https://doi.org/10.1101/gad.262758.115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Song M, Mihara K, Chen Y, Scorrano L, Dorn GW 2nd (2015) Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab 21(2):273–285. https://doi.org/10.1016/j.cmet.2014.12.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A 101(45):15927–15932. https://doi.org/10.1073/pnas.0407043101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280(28):26185–26192. https://doi.org/10.1074/jbc.M503062200

    Article  PubMed  CAS  Google Scholar 

  74. Labrousse AM, Zappaterra MD, Rube DA, van der Bliek AM (1999) C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell 4:815–826

    Article  PubMed  CAS  Google Scholar 

  75. Wong ED, Wagner JA, Scott SV, Okreglak V, Holewinske TJ, Cassidy-Stone A, Nunnari J (2003) The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion. J Cell Biol 160:303–311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9(7):505–518. https://doi.org/10.1038/nrn2417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Fukae J, Mizuno Y, Hattori N (2007) Mitochondrial dysfunction in Parkinson’s disease. Mitochondrion 7(1-2):58–62. https://doi.org/10.1016/j.mito.2006.12.002

    Article  PubMed  CAS  Google Scholar 

  78. Goswami P, Joshi N, Singh S (2017) Neurodegenerative signaling factors and mechanisms in Parkinson’s pathology. Toxicol in Vitro 43:104–112. https://doi.org/10.1016/j.tiv.2017.06.008

    Article  PubMed  CAS  Google Scholar 

  79. Wilkins HM, Weidling IW, Ji Y, Swerdlow RH (2017) Mitochondria-derived damage-associated molecular patterns in neurodegeneration. Front Immunol 8:508. https://doi.org/10.3389/fimmu.2017.00508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. de Castro IP, Martins LM, Loh SH (2011) Mitochondrial quality control and Parkinson’s disease: a pathway unfolds. Mol Neurobiol 43(2):80–86. https://doi.org/10.1007/s12035-010-8150-4

    Article  PubMed  CAS  Google Scholar 

  81. Fonseca AC, Moreira PI, Oliveira CR, Cardoso SM, Pinton P, Pereira CF (2015) Amyloid-beta disrupts calcium and redox homeostasis in brain endothelial cells. Mol Neurobiol 51(2):610–622. https://doi.org/10.1007/s12035-014-8740-7

    Article  PubMed  CAS  Google Scholar 

  82. Brustovetsky N (2016) Mutant huntingtin and elusive defects in oxidative metabolism and mitochondrial calcium handling. Mol Neurobiol 53(5):2944–2953. https://doi.org/10.1007/s12035-015-9188-0

    Article  PubMed  CAS  Google Scholar 

  83. Hu H, Tan CC, Tan L, Yu JT (2016) A Mitocentric view of Alzheimer’s disease. Mol Neurobiol 54(8):6046–6060. https://doi.org/10.1007/s12035-016-0117-7

    Article  PubMed  CAS  Google Scholar 

  84. Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L (2017) Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxidative Med Cell Longev 2017:2525967. https://doi.org/10.1155/2017/2525967

    Article  Google Scholar 

  85. Saraiva AA, Borges MM, Madeira MD, Tavares MA, Paula-Barbosa MM (1985) Mitochondrial abnormalities in cortical dendrites from patients with Alzheimer’s disease. J Submicrosc Cytol 17:459–464

    PubMed  CAS  Google Scholar 

  86. Parker WD Jr, Filley CM, Parks JK (1990) Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology 40:1302–1303

    Article  PubMed  Google Scholar 

  87. Wilkins HM, Koppel SJ, Bothwell R, Mahnken J, Burns JM, Swerdlow RH (2017) Platelet cytochrome oxidase and citrate synthase activities in APOE ε4 carrier and non-carrier Alzheimer’s disease patients. Redox Biol 12:828–832. https://doi.org/10.1016/j.redox.2017.04.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Asiimwe N, Yeo SG, Kim MS, Jung J, Jeong NY (2016) Nitric oxide: exploring the contextual link with Alzheimer’s disease. Oxidative Med Cell Longev 2016:7205747. https://doi.org/10.1155/2016/7205747

    Article  CAS  Google Scholar 

  89. Cai Q, Tammineni P (2017) Mitochondrial aspects of synaptic dysfunction in Alzheimer’s disease. J Alzheimers Dis 57(4):1087–1103. https://doi.org/10.3233/JAD-160726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Gibson GE, Thakkar A (2017) Mitochondria/metabolic reprogramming in the formation of neurons from peripheral cells: cause or consequence and the implications to their utility. Neurochem Int IN PRESS. doi: https://doi.org/10.1016/j.neuint.2017.06.007

  91. Toulorge D, Schapira AH, Hajj R (2016) Molecular changes in the postmortem parkinsonian brain. J Neurochem 139 Suppl 1:27–58. https://doi.org/10.1111/jnc.13696

    Article  PubMed  CAS  Google Scholar 

  92. Brennan WA Jr, Bird ED, Aprille JR (1985) Regional mitochondrial respiratory activity in Huntington’s disease brain. J Neurochem 44(6):1948–1950. https://doi.org/10.1111/j.1471-4159.1985.tb07192.x

    Article  PubMed  CAS  Google Scholar 

  93. Arenas J, Campos Y, Ribacoba R, Martín MA, Rubio JC, Ablanedo P, Cabello A (1998) Complex I defect in muscle from patients with Huntington’s disease. Ann Neurol 43:397–400

    Article  PubMed  CAS  Google Scholar 

  94. Naseri NN, Bonica J, Xu H, Park LC, Arjomand J, Chen Z, Gibson GE (2016) Novel metabolic abnormalities in the tricarboxylic acid cycle in peripheral cells from Huntington’s disease patients. PLoS One 11(9):e0160384. https://doi.org/10.1371/journal.pone.0160384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Vaváková M, Ďuračková Z, Trebatická J (2015) Markers of oxidative stress and neuroprogression in depression disorder. Oxidative Med Cell Longev 2015:898393. https://doi.org/10.1155/2015/898393

    Article  CAS  Google Scholar 

  96. Bansal Y, Kuhad A (2016) Mitochondrial dysfunction in depression. Curr Neuropharmacol 14(6):610–618. https://doi.org/10.2174/1570159X14666160229114755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Scaini G, Rezin GT, Carvalho AF, Streck EL, Berk M, Quevedo J (2016) Mitochondrial dysfunction in bipolar disorder: evidence, pathophysiology and translational implications. Neurosci Biobehav Rev 68:694–713. https://doi.org/10.1016/j.neubiorev.2016.06.040

    Article  PubMed  CAS  Google Scholar 

  98. Flippo KH, Strack S (2017) An emerging role for mitochondrial dynamics in schizophrenia. Schizophr Res 187:26–32. https://doi.org/10.1016/j.schres.2017.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  99. Cannino G, Ferruggia E, Luparello C, Rinaldi AM (2009) Cadmium and mitochondria. Mitochondrion 9:377–384. https://doi.org/10.1016/j.mito.2009.08.009

    Article  PubMed  CAS  Google Scholar 

  100. de Oliveira MR (2015) Vitamin A and retinoids as mitochondrial toxicants. Oxidative Med Cell Longev 2015:140267–140213. https://doi.org/10.1155/2015/140267

    Article  CAS  Google Scholar 

  101. Blanco-Ayala T, Andérica-Romero AC, Pedraza-Chaverri J (2014) New insights into antioxidant strategies against paraquat toxicity. Free Radic Res 48(6):623–640. https://doi.org/10.3109/10715762.2014.899694

    Article  PubMed  CAS  Google Scholar 

  102. de Oliveira MR, Jardim FR (2016) Cocaine and mitochondria-related signaling in the brain: a mechanistic view and future directions. Neurochem Int 92:58–66. https://doi.org/10.1016/j.neuint.2015.12.006

    Article  PubMed  CAS  Google Scholar 

  103. Maiti AK, Saha NC, More SS, Panigrahi AK, Paul G (2017) Neuroprotective efficacy of mitochondrial antioxidant MitoQ in suppressing peroxynitrite-mediated mitochondrial dysfunction inflicted by lead toxicity in the rat brain. Neurotox Res 31(3):358–372. https://doi.org/10.1007/s12640-016-9692-7

    Article  PubMed  CAS  Google Scholar 

  104. Atamna H, Mackey J, Dhahbi JM (2012) Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction. Biofactors 38(2):158–166. https://doi.org/10.1002/biof.197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Gruber J, Fong S, Chen CB, Yoong S, Pastorin G, Schaffer S, Cheah I, Halliwell B (2013) Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing. Biotechnol Adv 31(5):563–592. https://doi.org/10.1016/j.biotechadv.2012.09.005

    Article  PubMed  CAS  Google Scholar 

  106. Kasote DM, Hegde MV, Katyare SS (2013) Mitochondrial dysfunction in psychiatric and neurological diseases: cause(s), consequence(s), and implications of antioxidant therapy. Biofactors 39(4):392–406. https://doi.org/10.1002/biof.1093

    Article  PubMed  CAS  Google Scholar 

  107. Cardoso S, Seiça RM, Moreira PI (2017) Mitochondria as a target for neuroprotection: implications for Alzheimer’s disease. Expert Rev Neurother 17:77–91

    Article  PubMed  CAS  Google Scholar 

  108. Tucker D, Lu Y, Zhang Q (2017) From mitochondrial function to neuroprotection-an emerging role for methylene blue. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0712-2

  109. Salvatori I, Valle C, Ferri A, Carrì MT (2017) SIRT3 and mitochondrial metabolism in neurodegenerative diseases. Neurochem Int IN PRESS. doi: https://doi.org/10.1016/j.neuint.2017.04.012

  110. Fetisova EK, Chernyak BV, Korshunova GA, Muntyan MS, Skulachev VP (2017) Mitochondria-targeted antioxidants as a prospective therapeutic strategy for multiple sclerosis. Curr Med Chem 24(19):2086–2114. https://doi.org/10.2174/0929867324666170316114452

    Article  PubMed  CAS  Google Scholar 

  111. de Oliveira MR, Nabavi SF, Habtemariam S, Erdogan Orhan I, Daglia M, Nabavi SM (2015) The effects of baicalein and baicalin on mitochondrial function and dynamics: a review. Pharmacol Res 100:296–308. https://doi.org/10.1016/j.phrs.2015.08.021

    Article  PubMed  CAS  Google Scholar 

  112. Oliveira MR, Nabavi SF, Daglia M, Rastrelli L, Nabavi SM (2016) Epigallocatechin gallate and mitochondria—a story of life and death. Pharmacol Res 104:70–85. https://doi.org/10.1016/j.phrs.2015.12.027

    Article  PubMed  CAS  Google Scholar 

  113. de Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF (2016) Quercetin and the mitochondria: a mechanistic view. Biotechnol Adv 34(5):532–549. https://doi.org/10.1016/j.biotechadv.2015.12.014

    Article  PubMed  CAS  Google Scholar 

  114. de Oliveira MR, Jardim FR, Setzer WN, Nabavi SM, Nabavi SF (2016) Curcumin, mitochondrial biogenesis, and mitophagy: exploring recent data and indicating future needs. Biotechnol Adv 34:813–826. https://doi.org/10.1016/j.biotechadv.2016.04.004

    Article  PubMed  CAS  Google Scholar 

  115. de Oliveira MR, Nabavi SF, Manayi A, Daglia M, Hajheydari Z, Nabavi SM (2016) Resveratrol and the mitochondria: from triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta 1860(4):727–745. https://doi.org/10.1016/j.bbagen.2016.01.017

    Article  PubMed  CAS  Google Scholar 

  116. Jardim FR, de Rossi FT, Nascimento MX, da Silva Barros RG, Borges PA, Prescilio IC, de Oliveira MR (2017) Resveratrol and brain mitochondria: a review. Mol Neurobiol IN PRESS. doi: https://doi.org/10.1007/s12035-017-0448-z

  117. de Oliveira MR (2016) Evidence for genistein as a mitochondriotropic molecule. Mitochondrion 29:35–44. https://doi.org/10.1016/j.mito.2016.05.005

    Article  PubMed  CAS  Google Scholar 

  118. de Oliveira MR (2016) Phloretin-induced cytoprotective effects on mammalian cells: a mechanistic view and future directions. Biofactors 42:13–40

    PubMed  Google Scholar 

  119. de Oliveira MR, Nabavi SF, Nabavi SM, Jardim FR (2017) Omega-3 polyunsaturated fatty acids and mitochondria, back to the future. Trends Food Sci Technol 67:76–92. https://doi.org/10.1016/j.tifs.2017.06.019

    Article  CAS  Google Scholar 

  120. Meng P, Yoshida H, Tanji K, Matsumiya T, Xing F, Hayakari R, Wang L, Tsuruga K et al (2015) Carnosic acid attenuates apoptosis induced by amyloid-β 1-42 or 1-43 in SH-SY5Y human neuroblastoma cells. Neurosci Res 94:1–9. https://doi.org/10.1016/j.neures.2014.12.003

  121. Lin CY, Tsai CW (2017) Carnosic acid attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells by inducing autophagy through an enhanced interaction of Parkin and Beclin1. Mol Neurobiol 54(4):2813–2822. https://doi.org/10.1007/s12035-016-9873-7

    Article  PubMed  CAS  Google Scholar 

  122. Chen JH, Ou HP, Lin CY, Lin FJ, Wu CR, Chang SW, Tsai CW (2012) Carnosic acid prevents 6-hydroxydopamine-induced cell death in SH-SY5Y cells via mediation of glutathione synthesis. Chem Res Toxicol 25(9):1893–1901. https://doi.org/10.1021/tx300171u

    Article  PubMed  CAS  Google Scholar 

  123. de Oliveira MR, Ferreira GC, Schuck PF, Dal Bosco SM (2015) Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Chem Biol Interact 242:396–406. https://doi.org/10.1016/j.cbi.2015.11.003

    Article  PubMed  CAS  Google Scholar 

  124. de Oliveira MR, Ferreira GC, Schuck PF (2016) Protective effect of carnosic acid against paraquat-induced redox impairment and mitochondrial dysfunction in SH-SY5Y cells: role for PI3K/Akt/Nrf2 pathway. Toxicol in Vitro 32:41–54. https://doi.org/10.1016/j.tiv.2015.12.005

    Article  PubMed  CAS  Google Scholar 

  125. de Oliveira MR, Peres A, Ferreira GC, Schuck PF, Bosco SM (2016) Carnosic acid affords mitochondrial protection in chlorpyrifos-treated Sh-Sy5y cells. Neurotox Res 30:367–379. https://doi.org/10.1007/s12640-016-9620-x

    Article  PubMed  CAS  Google Scholar 

  126. de Oliveira MR, da Costa Ferreira G, Peres A, Bosco SM (2017) Carnosic acid suppresses the H2O2-induced mitochondria-related bioenergetics disturbances and redox impairment in SH-SY5Y cells: role for Nrf2. Mol Neurobiol. https://doi.org/10.1007/s12035-016-0372-7

  127. Miller DM, Singh IN, Wang JA, Hall ED (2013) Administration of the Nrf2-ARE activators sulforaphane and carnosic acid attenuates 4-hydroxy-2-nonenal-induced mitochondrial dysfunction ex vivo. Free Radic Biol Med 57:1–9. https://doi.org/10.1016/j.freeradbiomed.2012.12.011

    Article  PubMed  CAS  Google Scholar 

  128. Balietti M, Giorgetti B, Casoli T, Solazzi M, Tamagnini F, Burattini C, Aicardi G, Fattoretti P (2013) Early selective vulnerability of synapses and synaptic mitochondria in the hippocampal CA1 region of the Tg2576 mouse model of Alzheimer’s disease. J Alzheimers Dis 34(4):887–896. https://doi.org/10.3233/JAD-121711

    Article  PubMed  CAS  Google Scholar 

  129. Flippo KH, Strack S (2017) Mitochondrial dynamics in neuronal injury, development and plasticity. J Cell Sci 130(4):671–681. https://doi.org/10.1242/jcs.171017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Sevrioukova IF (2011) Apoptosis-inducing factor: structure, function, and redox regulation. Antioxid Redox Signal 14(12):2545–2579. https://doi.org/10.1089/ars.2010.3445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87(1):99–163. https://doi.org/10.1152/physrev.00013.2006

    Article  PubMed  CAS  Google Scholar 

  132. Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11(9):621–632. https://doi.org/10.1038/nrm2952

    Article  PubMed  CAS  Google Scholar 

  133. Covill-Cooke C, Howden JH, Birsa N, Kittler JT (2017) Ubiquitination at the mitochondria in neuronal health and disease. Neurochem Int IN PRESS. doi: https://doi.org/10.1016/j.neuint.2017.07.003

  134. Lluis JM, Morales A, Blasco C, Colell A, Mari M, Garcia-Ruiz C, Fernandez-Checa JC (2005) Critical role of mitochondrial glutathione in the survival of hepatocytes during hypoxia. J Biol Chem 280(5):3224–3232. https://doi.org/10.1074/jbc.M408244200

    Article  PubMed  CAS  Google Scholar 

  135. Jarrett SG, Milder JB, Liang LP, Patel M (2008) The ketogenic diet increases mitochondrial glutathione levels. J Neurochem 106(3):1044–1051. https://doi.org/10.1111/j.1471-4159.2008.05460.x

    Article  PubMed  CAS  Google Scholar 

  136. Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11(11):2685–2700. https://doi.org/10.1089/ARS.2009.2695

    Article  PubMed  PubMed Central  Google Scholar 

  137. de Oliveira MR, Peres A, Ferreira GC, Schuck PF, Gama CS, Bosco SM (2016) Carnosic acid protects mitochondria of human neuroblastoma SH-SY5Y cells exposed to Paraquat through activation of the Nrf2/HO-1 Axis. Mol Neurobiol 54(8):5961–5972. https://doi.org/10.1007/s12035-016-0100-3

    Article  PubMed  CAS  Google Scholar 

  138. Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354. https://doi.org/10.1146/annurev.pharmtox.010909.105600

    Article  PubMed  CAS  Google Scholar 

  139. Kaminskyy VO, Zhivotovsky B (2014) Free radicals in cross talk between autophagy and apoptosis. Antioxid Redox Signal 21(1):86–102. https://doi.org/10.1089/ars.2013.5746

    Article  PubMed  CAS  Google Scholar 

  140. Ott M, Zhivotovsky B, Orrenius S (2007) Role of cardiolipin in cytochrome c release from mitochondria. Cell Death Differ 14(7):1243–1247. https://doi.org/10.1038/sj.cdd.4402135

    Article  PubMed  CAS  Google Scholar 

  141. Izzo V, Bravo-San Pedro JM, Sica V, Kroemer G, Galluzzi L (2016) Mitochondrial permeability transition: new findings and persisting uncertainties. Trends Cell Biol 26(9):655–667. https://doi.org/10.1016/j.tcb.2016.04.006

    Article  PubMed  CAS  Google Scholar 

  142. Esteras N, Dinkova-Kostova AT, Abramov AY (2016) Nrf2 activation in the treatment of neurodegenerative diseases: a focus on its role in mitochondrial bioenergetics and function. Biol Chem 397(5):383–400. https://doi.org/10.1515/hsz-2015-0295

    Article  PubMed  CAS  Google Scholar 

  143. Holmström KM, Kostov RV, Dinkova-Kostova AT (2016) The multifaceted role of Nrf2 in mitochondrial function. Curr Opin Toxicol 1:80–91. https://doi.org/10.1016/j.cotox.2016.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  144. Holmström KM, Baird L, Zhang Y, Hargreaves I, Chalasani A, Land JM, Stanyer L, Yamamoto M et al (2013) Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol Open 2(8):761–770. https://doi.org/10.1242/bio.20134853

  145. Ludtmann MH, Angelova PR, Zhang Y, Abramov AY, Dinkova-Kostova AT (2014) Nrf2 affects the efficiency of mitochondrial fatty acid oxidation. Biochem J 457(3):415–424. https://doi.org/10.1042/BJ20130863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. East DA, Fagiani F, Crosby J, Georgakopoulos ND, Bertrand H, Schaap M, Fowkes A, Wells G et al (2014) PMI: a ΔΨm independent pharmacological regulator of mitophagy. Chem Biol 21(11):1585–1596. https://doi.org/10.1016/j.chembiol.2014.09.019

  147. Converso DP, Taillé C, Carreras MC, Jaitovich A, Poderoso JJ, Boczkowski J (2006) HO-1 is located in liver mitochondria and modulates mitochondrial heme content and metabolism. FASEB J 20(8):1236–1238. https://doi.org/10.1096/fj.05-4204fje

    Article  PubMed  Google Scholar 

  148. Bindu S, Pal C, Dey S, Goyal M, Alam A, Iqbal MS, Dutta S, Sarkar S et al (2011) Translocation of heme oxygenase-1 to mitochondria is a novel cytoprotective mechanism against non-steroidal anti-inflammatory drug-induced mitochondrial oxidative stress, apoptosis, and gastric mucosal injury. J Biol Chem 286(45):39387–39402. https://doi.org/10.1074/jbc.M111.279893

  149. Bolisetty S, Traylor A, Zarjou A, Johnson MS, Benavides GA, Ricart K, Boddu R, Moore RD et al (2013) Mitochondria-targeted heme oxygenase-1 decreases oxidative stress in renal epithelial cells. Am J Physiol Renal Physiol 305(3):F255–F264. https://doi.org/10.1152/ajprenal.00160.2013

  150. Chen D, Jin Z, Zhang J, Jiang L, Chen K, He X, Song Y, Ke J et al (2016) HO-1 protects against hypoxia/reoxygenation-induced mitochondrial dysfunction in H9c2 cardiomyocytes. PLoS One 11(5):e0153587. https://doi.org/10.1371/journal.pone.0153587

  151. Hull TD, Boddu R, Guo L, Tisher CC, Traylor AM, Patel B, Joseph R, Prabhu SD et al (2016) Heme oxygenase-1 regulates mitochondrial quality control in the heart. JCI Insight 1:e85817

  152. Bansal S, Biswas G, Avadhani NG (2013) Mitochondria-targeted heme oxygenase-1 induces oxidative stress and mitochondrial dysfunction in macrophages, kidney fibroblasts and in chronic alcohol hepatotoxicity. Redox Biol 2:273–283. https://doi.org/10.1016/j.redox.2013.07.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Richetin K, Moulis M, Millet A, Arràzola MS, Andraini T, Hua J, Davezac N, Roybon L et al (2017) Amplifying mitochondrial function rescues adult neurogenesis in a mouse model of Alzheimer’s disease. Neurobiol Dis 102:113–124. https://doi.org/10.1016/j.nbd.2017.03.002

  154. Kosaka K, Mimura J, Itoh K, Satoh T, Shimojo Y, Kitajima C, Maruyama A, Yamamoto M et al (2010) Role of Nrf2 and p62/ZIP in the neurite outgrowth by carnosic acid in PC12h cells. J Biochem 147(1):73–81. https://doi.org/10.1093/jb/mvp149

  155. de Oliveira MR, de Bittencourt Brasil F, Fürstenau CR (2017) Sulforaphane promotes mitochondrial protection in SH-SY5Y cells exposed to hydrogen peroxide by an Nrf2-dependent mechanism. Mol Neurobiol IN PRESS doi: https://doi.org/10.1007/s12035-017-0684-2

  156. Tarozzi A, Morroni F, Merlicco A, Hrelia S, Angeloni C, Cantelli-Forti G, Hrelia P (2009) Sulforaphane as an inducer of glutathione prevents oxidative stress-induced cell death in a dopaminergic-like neuroblastoma cell line. J Neurochem 111:1161–1171. https://doi.org/10.1111/j.1471-4159.2009.06394.x

    Article  PubMed  CAS  Google Scholar 

  157. Angeloni C, Malaguti M, Rizzo B, Barbalace MC, Fabbri D, Hrelia S (2015) Neuroprotective effect of sulforaphane against methylglyoxal cytotoxicity. Chem Res Toxicol 28(6):1234–1245. https://doi.org/10.1021/acs.chemrestox.5b00067

    Article  PubMed  CAS  Google Scholar 

  158. de Oliveira MR, Fürstenau CR, de Souza ICC, da Costa Ferreira G (2017) Tanshinone I attenuates the effects of a challenge with H2O2 on the functions of tricarboxylic acid cycle and respiratory chain in SH-SY5Y cells. Mol Neurobiol 54(10):7858–7868. https://doi.org/10.1007/s12035-016-0267-7

    Article  PubMed  CAS  Google Scholar 

  159. de Oliveira MR, da Costa Ferreira G, Brasil FB, Peres A (2017) Pinocembrin suppresses H2O2-induced mitochondrial dysfunction by a mechanism dependent on the Nrf2/HO-1 Axis in SH-SY5Y cells. Mol Neurobiol IN PRESS. doi: https://doi.org/10.1007/s12035-016-0380-7

  160. de Oliveira MR, Brasil FB, Andrade CMB (2017) Naringenin attenuates H2O2-induced mitochondrial dysfunction by an Nrf2-dependent mechanism in SH-SY5Y cells. Neurochem Res 42(11):3341–3350. https://doi.org/10.1007/s11064-017-2376-8

    Article  PubMed  CAS  Google Scholar 

  161. Wang Y, Miao Y, Mir AZ, Cheng L, Wang L, Zhao L, Cui Q, Zhao W et al (2016) Inhibition of beta-amyloid-induced neurotoxicity by pinocembrin through Nrf2/HO-1 pathway in SH-SY5Y cells. J Neurol Sci 368:223–230. https://doi.org/10.1016/j.jns.2016.07.010

  162. Cortese K, Daga A, Monticone M, Tavella S, Stefanelli A, Aiello C, Bisio A, Bellese G et al (2016) Carnosic acid induces proteasomal degradation of cyclin B1, RB and SOX2 along with cell growth arrest and apoptosis in GBM cells. Phytomedicine 23(7):679–685. https://doi.org/10.1016/j.phymed.2016.03.007

  163. Tsai CW, Lin CY, Lin HH, Chen JH (2011) Carnosic acid, a rosemary phenolic compound, induces apoptosis through reactive oxygen species-mediated p38 activation in human neuroblastoma IMR-32 cells. Neurochem Res 36:2442–2451. https://doi.org/10.1007/s11064-011-0573-4

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Roberto de Oliveira.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, M.R. Carnosic Acid as a Promising Agent in Protecting Mitochondria of Brain Cells. Mol Neurobiol 55, 6687–6699 (2018). https://doi.org/10.1007/s12035-017-0842-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0842-6

Keywords

Navigation