Skip to main content

Advertisement

Log in

Elevated Surfactant Protein Levels and Increased Flow of Cerebrospinal Fluid in Cranial Magnetic Resonance Imaging

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Surfactant proteins (SPs) are a multifunctional group of proteins, responsible for the regulation of rheological properties of body fluids, host defense, and cellular waste clearance. Their concentrations are changed in cerebrospinal fluid (CSF) of patients suffering from communicating hydrocephalus. Hydrocephalic conditions are accompanied by altered CSF flow dynamics; however, the association of CSF-SP concentrations and CSF flow has not yet been investigated. Hence, the aim of this study was to evaluate the association between SP concentrations in the CSF and marked CSF flow phenomena at different anatomical landmarks of CSF spaces. Sixty-one individuals (15 healthy subjects and 46 hydrocephalus patients) were included in this study. CSF specimens were analyzed for SP-A, SP-B, SP-C, and SP-D concentrations by the use of enzyme-linked immunosorbent assays (ELISA). CSF flow was evaluated in axial T2_turbo inversion recovery magnitude (TIRM)-weighted and sagittal T2-weighted magnetic resonance imaging sections using a 4-grade scale (1—no flow, 2—subtle flow, 3—moderate flow, and 4—strong flow). CSF-SP concentrations (mean ± standard deviation) of the overall collective were as follows: SP-A = 0.73 ± 0.58 ng/ml, SP-B = 0.17 ± 0.93 ng/ml, SP-C = 0.95 ± 0.75 ng/ml, and SP-D = 7.43 ± 5.17 ng/ml. The difference between healthy controls and hydrocephalic patients regarding CSF concentrations of SP-A (0.34 ± 0.22 vs. 0.81 ± 0.59 ng/ml) and SP-C (0.48 ± 0.29 vs. 1.10 ± 0.79 ng/ml) revealed to be statistically significant as calculated by means of ANOVA (p values of 0.022 and 0.007, respectively). CSF flow voids were detectable at all investigated landmarks of the CSF spaces (foramina of Monro, third ventricle, mesencephalic aqueduct, prepontine cistern, fourth ventricle, cisterna magna, and craniocervical junction). CSF flow voids, reported as mean ± standard deviation, revealed to be significantly increased in hydrocephalic patients compared to controls as calculated by means of ANOVA (respective p values are given in brackets following values of descriptive statistics) at the following sites: foramina of Monro (1.60 ± 0.91 vs. 2.37 ± 0.99, p = 0.01), fourth ventricle (1.67 ± 0.98 vs. 2.52 ± 1.05, p = 0.007), and the cisterna magna (1.93 ± 1.10 vs. 2.72 ± 1.13, p = 0.022). Spearman’s rank order calculation identified significant correlations for CSF flow voids at the foramina of Monro and the third ventricle with SP-A (r = 0.429, p = 0.001 and r = 0.464, p < 0.001) and CSF flow void at the mesencephalic duct with SP-D (r = − 0.371, p = 0.039). Furthermore, SP-C showed a moderate inverse correlation with age (r = − 0.302, p = 0.022). The present study confirmed statistically significant differences in SP-CSF concentrations between healthy controls and hydrocephalic patients. Additionally, significant correlations between SP concentrations in CSF with increased CSF flow were identified. These findings underline the role of SPs as regulators of CSF rheology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Phizackerley PJ, Town MH, Newman GE (1979) Hydrophobic proteins of lamellated osmiophilic bodies isolated from pig lung. Biochem J 183(3):731–736. https://doi.org/10.1042/bj1830731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Palaniyar N (2010) Antibody equivalent molecules of the innate immune system: parallels between innate and adaptive immune proteins. Innate Immun 16(3):131–137. https://doi.org/10.1177/1753425910370498

    Article  PubMed  CAS  Google Scholar 

  3. Wright JR (2005) Immunoregulatory functions of surfactant proteins. Nat Rev Immunol 5(1):58–68. https://doi.org/10.1038/nri1528

    Article  PubMed  CAS  Google Scholar 

  4. Hawgood S, Derrick M, Poulain F (1998) Structure and properties of surfactant protein B. Biochim Biophys Acta 1408(2-3):150–160. https://doi.org/10.1016/S0925-4439(98)00064-7

    Article  PubMed  CAS  Google Scholar 

  5. Johansson J (1998) Structure and properties of surfactant protein C. Biochim Biophys Acta 1408(2-3):161–172. https://doi.org/10.1016/S0925-4439(98)00065-9

    Article  PubMed  CAS  Google Scholar 

  6. Schürch D, Ospina OL, Cruz A, Pérez-Gil J (2010) Combined and independent action of proteins SP-B and SP-C in the surface behavior and mechanical stability of pulmonary surfactant films. Biophys J 99(10):3290–3299. https://doi.org/10.1016/j.bpj.2010.09.039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Chroneos ZC, Sever-Chroneos Z, Shepherd VL (2010) Pulmonary surfactant: an immunological perspective. Cell Physiol Biochem 25(001):13–26. https://doi.org/10.1159/000272047

    Article  PubMed  CAS  Google Scholar 

  8. Whitsett JA (2014) The molecular era of surfactant biology. Neonatology 105(4):337–343. https://doi.org/10.1159/000360649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sardesai S, Biniwale M, Wertheimer F, Garingo A, Ramanathan R (2016) Evolution of surfactant therapy for respiratory distress syndrome: past, present, and future. Pediatr Res 81(1-2):240–248. https://doi.org/10.1038/pr.2016.203

    Article  PubMed  Google Scholar 

  10. Enhörning G, Robertson B (1972) Lung expansion in the premature rabbit fetus after tracheal deposition of surfactant. Pediatrics 50(1):58–66

    PubMed  Google Scholar 

  11. Fujiwara T, Maeta H, Chida S, Morita T, Watabe Y, Abe T (1980) Artificial surfactant therapy in hyaline-membrane disease. Lancet 1(8159):55–59

    Article  PubMed  CAS  Google Scholar 

  12. Schicht M, Stengl C, Sel S, Heinemann F, Götz W, Petschelt A, Pelka M, Scholz M et al (2015) The distribution of human surfactant proteins within the oral cavity and their role during infectious diseases of the gingiva. Ann Anat 199:92–97. https://doi.org/10.1016/j.aanat.2014.05.040

    Article  PubMed  Google Scholar 

  13. Yadav AK, Madan T, Bernal AL (2011) Surfactant proteins A and D in pregnancy and parturition. Front Biosci (Elite Ed) 3:291–300

    Google Scholar 

  14. Beileke S, Claassen H, Wagner W, Matthies C, Ruf C, Hartmann A, Garreis F, Paulsen F et al (2015) Expression and localization of lung surfactant proteins in human testis. PLoS One 10(11):e0143058. https://doi.org/10.1371/journal.pone.0143058.s001

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schob S, Schicht M, Sel S, Stiller D, Kekulé A, Paulsen F, Maronde E, Bräuer L (2013) The detection of surfactant proteins A, B, C and D in the human brain and their regulation in cerebral infarction, autoimmune conditions and infections of the CNS. PLoS One 8(9):e74412. https://doi.org/10.1371/journal.pone.0074412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Schob S, Dieckow J, Fehrenbach M, et al (2016) Occurrence and colocalization of surfactant proteins A, B, C and D in the developing and adult rat brain. Ann Anat:210:121–127. https://doi.org/10.1016/j.aanat.2016.10.006

  17. Schob S, Weiss A, Dieckow J et al (2017) Correlations of ventricular enlargement with rheologically active surfactant proteins in cerebrospinal fluid. Front Aging Neurosci 8:1–4. https://doi.org/10.3389/fnagi.2016.00324

    Article  CAS  Google Scholar 

  18. Schob S, Lobsien D, Friedrich B, Bernhard MK, Gebauer C, Dieckow J, Gawlitza M, Pirlich M et al (2016) The cerebral surfactant system and its alteration in hydrocephalic conditions. PLoS One 11(9):e0160680. https://doi.org/10.1371/journal.pone.0160680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Preuss M, Hoffmann KT, Reiss-Zimmermann M, Hirsch W, Merkenschlager A, Meixensberger J, Dengl M (2013) Updated physiology and pathophysiology of CSF circulation—the pulsatile vector theory. Childs Nerv Syst 29(10):1811–1825. https://doi.org/10.1007/s00381-013-2219-0

    Article  PubMed  CAS  Google Scholar 

  20. Simon MJ, Iliff JJ (2016) Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim Biophys Acta 1862(3):442–451. https://doi.org/10.1016/j.bbadis.2015.10.014

    Article  PubMed  CAS  Google Scholar 

  21. Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123(3):1299–1309. https://doi.org/10.1172/JCI67677DS1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, Singh I, Deane R et al (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34(49):16180–16193. https://doi.org/10.1523/JNEUROSCI.3020-14.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L, Kang H et al (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76(6):845–861. https://doi.org/10.1002/ana.24271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bakker ENTP, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AWJ, Weller RO, Carare RO (2016) Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol 36(2):181–194. https://doi.org/10.1007/s10571-015-0273-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Morris AWJ, Sharp MM, Albargothy NJ et al (2016) Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol 131(5):725–736. https://doi.org/10.1007/s00401-016-1555-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bradley WG Jr (2015) CSF flow in the brain in the context of normal pressure hydrocephalus. AJNR 36(5):831–838. https://doi.org/10.3174/ajnr.A4124

    Article  PubMed  Google Scholar 

  27. Tarnaris A, Toma AK, Pullen E, Chapman MD, Petzold A, Cipolotti L, Kitchen ND, Keir G et al (2011) Cognitive, biochemical, and imaging profile of patients suffering from idiopathic normal pressure hydrocephalus. Alzheimers Dement 7(5):501–508. https://doi.org/10.1016/j.jalz.2011.01.003

    Article  PubMed  CAS  Google Scholar 

  28. Ray B, Reyes PF, Lahiri DK (2011) Biochemical studies in normal pressure hydrocephalus (NPH) patients: change in CSF levels of amyloid precursor protein (APP), amyloid-beta (Aß) peptide and phospho-tau. J Psychiatr Res 45(4):539–547. https://doi.org/10.1016/j.jpsychires.2010.07.011

    Article  PubMed  Google Scholar 

  29. Rodis I, Mahr CV, Fehrenbach MK, Meixensberger J, Merkenschlager A, Bernhard MK, Schob S, Thome U et al (2016) Hydrocephalus in aqueductal stenosis—a retrospective outcome analysis and proposal of subtype classification. Childs Nerv Syst 32(4):617–627. https://doi.org/10.1007/s00381-016-3029-y

    Article  PubMed  Google Scholar 

  30. Mahr CV, Dengl M, Nestler U, Reiss-Zimmermann M, Eichner G, Preuß M, Meixensberger J (2016) Idiopathic normal pressure hydrocephalus: diagnostic and predictive value of clinical testing, lumbar drainage, and CSF dynamics. J Neurosurg 125(3):591–597. https://doi.org/10.3171/2015.8.JNS151112

    Article  PubMed  CAS  Google Scholar 

  31. Lieb JM, Stippich C, Ahlhelm FJ (2015) Normal pressure hydrocephalus. Radiologe 55(5):389–396. https://doi.org/10.1007/s00117-014-2797-1

    Article  PubMed  CAS  Google Scholar 

  32. Freeman WD (2015) Raised intracranial pressure. In: Demaerschalk BM, Wingerchuk DM (eds) Evidence-based neurology: management of neurological disorders. John Wiley & Sons, Ltd, Chichester

  33. Lisanti C, Carlin C, Banks KP, Wang D (2007) Normal MRI appearance and motion-related phenomena of CSF. AJR Am J Roentgenol 188(3):716–725. https://doi.org/10.2214/AJR.05.0003

    Article  PubMed  Google Scholar 

  34. Simonson TM, Magnotta VA, Ehrhardt JC, Crosby DL, Fisher DJ, Yuh WT (1996) Echo-planar FLAIR imaging in evaluation of intracranial lesions. Radiographics 16(3):575–584. https://doi.org/10.1148/radiographics.16.3.8897625

    Article  PubMed  CAS  Google Scholar 

  35. Von Schulthess GK, Higgins CB (1985) Blood flow imaging with MR: spin-phase phenomena. Radiology 157(3):687–695. https://doi.org/10.1148/radiology.157.3.2997836

    Article  Google Scholar 

  36. Sherman JL, Citrin CM (1986) Magnetic resonance demonstration of normal CSF flow. AJNR 7(1):3–6

  37. Nayak A, Dodagatta-Marri E, Tsolaki AG, Kishore U (2012) An insight into the diverse roles of surfactant proteins, SP-A and SP-D in innate and adaptive immunity. Front Immunol 3:131. https://doi.org/10.3389/fimmu.2012.00131

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wolburg H, Paulus W (2009) Choroid plexus: biology and pathology. Acta Neuropathol 119(1):75–88. https://doi.org/10.1007/s00401-009-0627-8

    Article  PubMed  Google Scholar 

  39. Sunde M, Pham CLL, Kwan AH (2016) Molecular characteristics and biological functions of surface-active and surfactant proteins. Annu Rev Biochem 86(1):585–608. https://doi.org/10.1146/annurev-biochem-061516-044847

    Article  CAS  Google Scholar 

  40. Willander H, Presto J, Askarieh G (2012) BRICHOS domains efficiently delay fibrillation of amyloid β-peptide. J Biol Chem 287(37):31608–31617. https://doi.org/10.1074/jbc.M112.393157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Landreh M, Rising A, Presto J, Jörnvall H, Johansson J (2015) Specific chaperones and regulatory domains in control of amyloid formation. J Biol Chem 290(44):26430–26436. https://doi.org/10.1074/jbc.R115.653097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Le Bihan D, Breton E, Lallemand D, Grenier P (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407. https://doi.org/10.1148/radiology.161.2.3763909

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schob.

Ethics declarations

This study with retrospective design was approved by an institutional review board (Ethikkommission Universität Leipzig Az 330-13-18112013). Informed consent for the scientific use of CSF samples and clinical and radiological data were obtained in writing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schob, S., Weiß, A., Surov, A. et al. Elevated Surfactant Protein Levels and Increased Flow of Cerebrospinal Fluid in Cranial Magnetic Resonance Imaging. Mol Neurobiol 55, 6227–6236 (2018). https://doi.org/10.1007/s12035-017-0835-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0835-5

Keywords

Navigation