Skip to main content

Advertisement

Log in

Time Is Motor Neuron: Therapeutic Window and Its Correlation with Pathogenetic Mechanisms in Spinal Muscular Atrophy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder characterized by the degeneration of lower motor neurons (MNs) in the spinal cord and brain stem, which results in relentless muscle weakness and wasting, leading to premature death due to respiratory complications. The identification of the specific mutations in the survival motor neuron 1 (SMN1) gene that causes SMA has led to the development of experimental therapeutic strategies to increase SMN protein expression, including antisense oligonucleotides, small molecules, and gene therapy, which have so far shown promising results. The timing of therapeutic intervention is crucial since most of the degeneration in MNs occurs in the first months of life in patients with SMA type 1, which is the most severe and common form of SMA. Nevertheless, a precise temporal window for therapeutic intervention has not yet been identified. Evidence from in vivo studies in mice and large animals suggested that early therapeutic intervention for SMA correlated with better motor performance, longer survival, and, occasionally, rescue of the pathological phenotype. Indeed, the need to compensate for the loss of SMN protein function seemed to diminish during adulthood (even though repair ability after nerve injury remained impaired), suggesting the possibility of tapering the therapy administration late in the disease course. Moreover, recent clinical trials on children afflicted with SMA type 1 have shown a more rapid achievement of motor milestones and diminished disease severity when therapy was administered at an early age and earlier in the disease course. Finally, these results highlight the importance of newborn screening for SMA to facilitate early diagnosis and present the patient with available treatments while they are still in the presymptomatic stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Faravelli I, Nizzardo M, Comi GP, Corti S (2015) Spinal muscular atrophy—recent therapeutic advances for an old challenge. Nat Rev Neurol 11(6):351–359. https://doi.org/10.1038/nrneurol.2015.77

    Article  PubMed  CAS  Google Scholar 

  2. Sumner C, Paushkin S, Ko CP. Spinal muscular atrophy disease mechanisms and therapy. 1st Edition ISBN: 9780128036853 Academic Press 4th November 2016, Spinal Muscular Atrophy: 125 Years Later and on the Verge of a Cure M. Oskoui1, B.T. Darras2, D.C. De Vivo3 cap 1, 3–17

  3. Monani UR (2005) Spinal muscular atrophy: a deficiency in a ubiquitous protein; a motor neuron-specific disease. Neuron 48(6):885–896. Review. https://doi.org/10.1016/j.neuron.2005.12.001

    Article  PubMed  CAS  Google Scholar 

  4. Pearn J (1978) Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy. J Med Genet 15(6):409–413. https://doi.org/10.1136/jmg.15.6.409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Talbot K, Davies KE (2001) Spinal muscular atrophy. Semin Neurol 21(2):189–197. https://doi.org/10.1055/s-2001-15264

    Article  PubMed  CAS  Google Scholar 

  6. Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AH, McPherson JD (1999) A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 8(7):1177–1183. https://doi.org/10.1093/hmg/8.7.1177

    Article  PubMed  CAS  Google Scholar 

  7. Wirth B (2000) An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15(3):228–237. https://doi.org/10.1002/(SICI)1098-1004(200003)15:3<228::AID-HUMU3>3.0.CO;2-9

    Article  PubMed  CAS  Google Scholar 

  8. Ogino S, Leonard DG, Rennert H, Ewens WJ, Wilson RB (2002) Genetic risk assessment in carrier testing for spinal muscular atrophy. Am J Med Genet 110(4):301–307. https://doi.org/10.1002/ajmg.10425

    Article  PubMed  Google Scholar 

  9. Frugier T, Nicole S, Cifuentes-Diaz C, Melki J (2002) The molecular bases of spinal muscular atrophy. Curr Opin Genet Dev 12(3):294–298. https://doi.org/10.1016/S0959-437X(02)00301-5

    Article  PubMed  CAS  Google Scholar 

  10. Finkel RS (2013) Electrophysiological and motor function scale association in a pre-symptomatic infant with spinal muscular atrophy type I. Neuromuscul Disord 23(2):112–115. https://doi.org/10.1016/j.nmd.2012.09.006

    Article  PubMed  Google Scholar 

  11. Sumner C, Paushkin S, Ko CP. Spinal muscular atrophy disease mechanisms and therapy. 1st Edition ISBN: 9780128036853 Academic Press 4th November 2016, Transcriptional and Splicing Regulation of Spinal Muscular Atrophy Genes N.N. Singh, M.D. Howell, R.N. Singh cap 5, 75–97

  12. Kolb SJ, Coffey CS, Yankey JW, Krosschell K, Arnold WD, Rutkove SB, Swoboda KJ, Reyna SP, Sakonju A, Darras BT, Shell R, Kuntz N, Castro D, Parsons J, Connolly AM, Chiriboga CA, McDonald C, Burnette WB, Werner K, Thangarajh M, Shieh PB, Finanger E, Cudkowicz ME, McGovern MM, McNeil DE, Finkel R, Iannaccone ST, Kaye E, Kingsley A, Renusch SR, McGovern VL, Wang X, Zaworski PG, Prior TW, Burghes AHM, Bartlett A, Kissel JT, NeuroNEXT Clinical Trial Network on behalf of the NN101 SMA Biomarker Investigators (2017) Natural history of infantile-onset spinal muscular atrophy. Ann Neurol. https://doi.org/10.1002/ana.25101

  13. Swoboda KJ, Prior TW, Scott CB, NcNaught TP, Wride MC, Reyna SP (2005) Natural history of denervation in SMA: relation to age, SMN2 copy number, and function. Ann Neurol 57(5):704–712. https://doi.org/10.1002/ana.20473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Soler-Botija C, Ferrer I, Gich I, Baiget M, Tizzano EF (2002) Neuronal death is enhanced and begins during foetal development in type I spinal muscular atrophy spinal cord. Brain 125(Pt. 7):1624–1634. https://doi.org/10.1093/brain/awf155

    Article  PubMed  Google Scholar 

  15. Simic G, Seso-Simic D, Lucassen PJ, Islam A, Krsnik Z, Cviko A, Jelasic D, Barisic N et al (2000) Ultrastructural analysis and TUNEL demonstrate motor neuron apoptosis in Werdnig-Hoffmann disease. J Neuropathol Exp Neurol 59(5):398–407. https://doi.org/10.1093/jnen/59.5.398

    Article  PubMed  CAS  Google Scholar 

  16. Sumner C, Paushkin S, Ko CP. Spinal muscular atrophy disease mechanisms and therapy. 1st Edition ISBN: 9780128036853 Academic Press 4th November 2016, Developmental Aspects and Pathological Findings in Spinal Muscular Atrophy M.J. Pérez-García1, L. Kong2, C.J. Sumner2, E.F. Tizzano1,3 cap 2, 21–42

  17. Kaufmann P, McDermott MP, Darras BT, Finkel R, Kang P, Oskoui M, Constantinescu A, Sproule DM et al (2011) Observational study of spinal muscular atrophy type 2 and 3: functional outcomes over 1 year. Arch Neurol 68(6):779–786. https://doi.org/10.1001/archneurol.2010.373

    Article  PubMed  Google Scholar 

  18. Hao le T, Duy PQ, Jontes JD, Wolman M, Granato M, Beattie CE (2013) Temporal requirement for SMN in motoneuron development. Hum Mol Genet 22(13):2612–2625. https://doi.org/10.1093/hmg/ddt110

  19. Murray LM, Lee S, Bäumer D, Parson SH, Talbot K, Gillingwater TH (2010) Pre-symptomatic development of lower motor neuron connectivity in a mouse model of severe spinal muscular atrophy. Hum Mol Genet 19(3):420–433. https://doi.org/10.1093/hmg/ddp506

    Article  PubMed  CAS  Google Scholar 

  20. McGovern VL, Gavrilina TO, Beattie CE, Burghes AH (2008) Embryonic motor axon development in the severe SMA mouse. Hum Mol Genet 17(18):2900–2909. https://doi.org/10.1093/hmg/ddn189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Le TT, McGovern VL, Alwine IE, Wang X, Massoni-Laporte A, Rich MM, Burghes AH (2011) Temporal requirement for high SMN expression in SMA mice. Hum Mol Genet 20(18):3578–3591. https://doi.org/10.1093/hmg/ddr275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lutz CM, Kariya S, Patruni S, Osborne MA, Liu D, Henderson CE, Li DK, Pellizzoni L et al (2011) Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. J Clin Invest 121(8):3029–3041. https://doi.org/10.1172/JCI57291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Gray SJ, Matagne V, Bachaboina L, Yadav S, Ojeda SR, Samulski RJ (2011) Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther 19(6):1058–1069. https://doi.org/10.1038/mt.2011.72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kariya S, Park GH, Maeno-Hikichi Y, Leykekhman O, Lutz C, Arkovitz MS, Landmesser LT, Monani UR (2008) Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy. Hum Mol Genet 17(16):2552–2569. https://doi.org/10.1093/hmg/ddn156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bogdanik LP, Osborne MA, Davis C, Martin WP, Austin A, Rigo F, Bennett CF, Lutz CM (2015) Systemic, postsymptomatic antisense oligonucleotide rescues motor unit maturation delay in a new mouse model for type II/III spinal muscular atrophy. Proc Natl Acad Sci U S A 112(43):E5863–E5872. https://doi.org/10.1073/pnas.1509758112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhou H, Meng J, Marrosu E, Janghra N, Morgan J, Muntoni F (2015) Repeated low doses of morpholino antisense oligomer: an intermediate mouse model of spinal muscular atrophy to explore the window of therapeutic response. Hum Mol Genet 24(22):6265–6277. https://doi.org/10.1093/hmg/ddv329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Feng Z, Ling KK, Zhao X, Zhou C, Karp G, Welch EM, Naryshkin N, Ratni H et al (2016) Pharmacologically induced mouse model of adult spinal muscular atrophy to evaluate effectiveness of therapeutics after disease onset. Hum Mol Genet 25(5):964–975. https://doi.org/10.1093/hmg/ddv629

    Article  PubMed  CAS  Google Scholar 

  28. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27(1):59–65. https://doi.org/10.1038/nbt.1515

    Article  PubMed  CAS  Google Scholar 

  29. Foust KD, Wang X, McGovern VL, Braun L, Bevan AK, Haidet AM, Le TT, Morales PR et al (2010) Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol 28(3):271–274. https://doi.org/10.1038/nbt.1610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Passini MA, Bu J, Richards AM, Treleaven CM, Sullivan JA, O’Riordan CR, Scaria A, Kells AP et al (2014) Translational fidelity of intrathecal delivery of self-complementary AAV9-survival motor neuron 1 for spinal muscular atrophy. Hum Gene Ther 25(7):619–630. https://doi.org/10.1089/hum.2014.011

    Article  PubMed  CAS  Google Scholar 

  31. Bevan AK, Duque S, Foust KD, Morales PR, Braun L, Schmelzer L, Chan CM, McCrate M et al (2011) Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol Ther 19(11):1971–1980. https://doi.org/10.1038/mt.2011.157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gray SJ, Nagabhushan Kalburgi S, McCown TJ, Samulski RJ (2013) Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther 20(4):450–459. Erratum in: Gene Ther 2013 Apr;20(4):465. https://doi.org/10.1038/gt.2012.101

  33. Samaranch L, Salegio EA, San Sebastian W, Kells AP, Foust KD, Bringas JR, Lamarre C, Forsayeth J et al (2012) Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates. Hum Gene Ther 23(4):382–389. https://doi.org/10.1089/hum.2011.200

    Article  PubMed  CAS  Google Scholar 

  34. Samaranch L, Salegio EA, San Sebastian W, Kells AP, Bringas JR, Forsayeth J, Bankiewicz KS (2013) Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum Gene Ther 24(5):526–532. https://doi.org/10.1089/hum.2013.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Meyer K, Ferraiuolo L, Schmelzer L, Braun L, McGovern V, Likhite S, Michels O, Govoni A et al (2015) Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA—a dose response study in mice and nonhuman primates. Mol Ther 23(3):477–487. https://doi.org/10.1038/mt.2014.210

    Article  PubMed  CAS  Google Scholar 

  36. Federici T, Taub JS, Baum GR, Gray SJ, Grieger JC, Matthews KA, Handy CR, Passini MA et al (2012) Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs. Gene Ther 19(8):852–859. https://doi.org/10.1038/gt.2011.130

    Article  PubMed  CAS  Google Scholar 

  37. Duque SI, Arnold WD, Odermatt P, Li X, Porensky PN, Schmelzer L, Meyer K, Kolb SJ et al (2015) A large animal model of spinal muscular atrophy and correction of phenotype. Ann Neurol 77(3):399–414. https://doi.org/10.1002/ana.24332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Chiriboga CA, Swoboda KJ, Darras BT, Iannaccone ST, Montes J, De Vivo DC, Norris DA, Bennett CF et al (2016) Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology 86(10):890–897. https://doi.org/10.1212/WNL.0000000000002445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, De Vivo DC, Yamashita M, Rigo F et al (2016) Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388(10063):3017–3026. https://doi.org/10.1016/S0140-6736(16)31408-8

    Article  PubMed  CAS  Google Scholar 

  40. Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J, Chiriboga CA, Saito K et al (2017) Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med 377(18):1723–1173. https://doi.org/10.1056/NEJMoa1702752

    Article  PubMed  CAS  Google Scholar 

  41. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, Lowes L, Alfano L et al (2017) Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 377(18):1713–1722. https://doi.org/10.1056/NEJMoa1706198

    Article  PubMed  CAS  Google Scholar 

  42. Sulaiman W, Gordon T (2013) Neurobiology of peripheral nerve injury, regeneration, and functional recovery: from bench top research to bedside application. Ochsner J 13(1):100–108

    PubMed  PubMed Central  Google Scholar 

  43. Domingues-Faria C, Vasson MP, Goncalves-Mendes N, Boirie Y, Walrand S (2016) Skeletal muscle regeneration and impact of aging and nutrition. Ageing Res Rev 26:22–36. https://doi.org/10.1016/j.arr.2015.12.004

    Article  PubMed  CAS  Google Scholar 

  44. Darabid H, Perez-Gonzalez AP, Robitaille R (2014) Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nat Rev Neurosci 15(11):703–718. https://doi.org/10.1038/nrn3821

    Article  PubMed  CAS  Google Scholar 

  45. Bertini E, Dessaud E, Mercuri E, Muntoni F, Kirschner J, Reid C, Lusakowska A, Comi GP et al (2017) Safety and efficacy of olesoxime in patients with type 2 or non-ambulatory type 3 spinal muscular atrophy: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 16(7):513–522. https://doi.org/10.1016/S1474-4422(17)30085-6

    Article  PubMed  CAS  Google Scholar 

  46. Niranjan V, Bach JR (1998) Noninvasive management of pediatric neuromuscular ventilatory failure. Crit Care Med 26(12):2061–2065

  47. Bach JR, Saltstein K, Sinquee D, Weaver B, Komaroff E (2007) Long-term survival in Werdnig-Hoffmann disease. Am J Phys Med Rehabil 86(5):339–345 quiz 346–348, 379

  48. Finkel RS, McDermott MP, Kaufmann P, Darras BT, Chung WK, Sproule DM, Kang PB, Foley AR et al (2014) Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 83(9):810–817. https://doi.org/10.1212/WNL.0000000000000741

    Article  PubMed  PubMed Central  Google Scholar 

  49. Arnold WD, Burghes AH (2013) Spinal muscular atrophy: development and implementation of potential treatments. Ann Neurol 74(3):348–362. https://doi.org/10.1002/ana.23995

    Article  PubMed  CAS  Google Scholar 

  50. Glanzman AM, Mazzone E, Main M, Pelliccioni M, Wood J, Swoboda KJ, Scott C, Pane M et al (2010) The Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND): test development and reliability. Neuromuscul Disord 20(3):155–161. https://doi.org/10.1016/j.nmd.2009.11.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Nizzardo M, Simone C, Rizzo F, Salani S, Dametti S, Rinchetti P, Del Bo R, Foust K et al (2015) Gene therapy rescues disease phenotype in a spinal muscular atrophy with respiratory distress type 1 (SMARD1) mouse model. Science Ad 1(2):e1500078. https://doi.org/10.1126/sciadv.1500078

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Joint Program Neurodegenerative Disease (JPND) Research grant DAMNDPATHS (2014) awarded to SC and the Ginevra SMARD1 fund. We thank the Associazione Amici del Centro Dino Ferrari for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Corti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govoni, A., Gagliardi, D., Comi, G. et al. Time Is Motor Neuron: Therapeutic Window and Its Correlation with Pathogenetic Mechanisms in Spinal Muscular Atrophy. Mol Neurobiol 55, 6307–6318 (2018). https://doi.org/10.1007/s12035-017-0831-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0831-9

Keywords

Navigation