Skip to main content
Log in

Long-Term Regular Eccentric Exercise Decreases Neuropathic Pain-like Behavior and Improves Motor Functional Recovery in an Axonotmesis Mouse Model: the Role of Insulin-like Growth Factor-1

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although training programs with regular eccentric (ECC) exercise are more commonly used for improving muscular strength and mobility, ECC exercise effects upon functional recovery of the sciatic nerve has not yet been determined. After sciatic nerve crush, different mice groups were subjected to run on the treadmill for 30 min at a speed of 6, 10, or 14 m/min with − 16° slope, 5 days per week, over 8 weeks. During the training time, neuropathic pain-like behavior (mechanical and cold hyperalgesia) was assessed and functional recovery was determined with the grip strength test and the Sciatic Functional and Static indexes (SFI and SSI). After 9 weeks, triceps surae muscle weight and morphological alterations were assessed. Tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), interleukin-4 (IL-4), interleukin-1Ra (IL-1Ra), insulin-like growth factor-1 (IGF-1) levels, and markers pro- and anti-inflammatory and regeneration, respectively, were quantified in the muscle and sciatic nerve on day 14 post-crushing. Exercised groups presented less neuropathic pain-like behavior and better functional recovery than non-exercised groups. Biochemically, ECC exercise reduced TNF-α increase in the muscle. ECC exercise increased sciatic nerve IGF-1 levels in sciatic nerve crush-subjected animals. These findings provide new evidence indicating that treatment with ECC might be a potential approach for neuropathy induced by peripheral nerve injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Martyn CN, Hughes RA (1997) Epidemiology of peripheral neuropathy. J Neurol Neurosurg Psychiatry 62(4):310–318. https://doi.org/10.1136/jnnp.62.4.310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Siemionow M, Brzezicki G (2009) Chapter 8: current techniques and concepts in peripheral nerve repair. Int Rev Neurobiol 87:141–172. https://doi.org/10.1016/S0074-7742(09)87008-6

    Article  PubMed  CAS  Google Scholar 

  3. Gault ML, Clements RE, Willems ME (2013) Cardiovascular responses during downhill treadmill walking at self-selected intensity in older adults. J Aging Phys Act 21(3):335–347. https://doi.org/10.1123/japa.21.3.335

    Article  PubMed  Google Scholar 

  4. Varejão ASP, Cabrata AM, Meek MF, Bulas-Cruz J, Melo-Pinto P, Raimondo S, Geuna S, Giacobini-Roberto MG (2004) Functional and morphological assessment of a standardized rat sciatic nerve crush injury with a non-serrated clamp. J Neurotrauma 21(11):1652–1670. https://doi.org/10.1089/neu.2004.21.1652

    Article  PubMed  Google Scholar 

  5. Hayes HA, Gappmaier E, LaStayo PC (2011) Effects of high-intensity resistance training on strength, mobility, balance, and fatigue in individuals with multiple sclerosis: a randomized controlled trial. J Neurol Phys Ther 35(1):2–10. https://doi.org/10.1097/NPT.0b013e31820b5a9d

    Article  PubMed  Google Scholar 

  6. Roth J, Glick SM, Yalow RS, Berson SA (1963) Secretion of human growth hormone: physiologic and experimental modification. Metabolism 12:577–579

    PubMed  CAS  Google Scholar 

  7. Sakowski SA, Feldman EL (2012) Insulin-like growth factors in the peripheral nervous system. Endocrinol Metab Clin N Am 41(2):375–393. https://doi.org/10.1016/j.ecl.2012.04.020

    Article  CAS  Google Scholar 

  8. Russo VC, Gluckman PD, Feldman EL, Werther GA (2005) The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev 26(7):916–943. https://doi.org/10.1210/er.2004-0024

    Article  PubMed  CAS  Google Scholar 

  9. Bobinski F, Martins DF, Bratti T, Mazzardo-Martins L, Winkelmann-Duarte EC, Guglielmo LG, Santos AR (2011) Neuroprotective and neuroregenerative effects of low-intensity aerobic exercise on sciatic nerve crush injury in mice. Neuroscience 27:337–348

    Article  CAS  Google Scholar 

  10. English AW, Cucoranu D, Mulligan A, Rodriguez JA, Sabatier MJ (2011) Neurotrophin-4/5 is implicated in the enhancement of axon regeneration produced by treadmill training following peripheral nerve injury. Eur J Neurosci 33(12):2265–2271. https://doi.org/10.1111/j.1460-9568.2011.07724.x

    Article  PubMed  PubMed Central  Google Scholar 

  11. Aguiar AS Jr, Speck AE, Prediger RD, Kapczinski F, Pinho RA (2008) Downhill training upregulates mice hippocampal and striatal brain-derived neurotrophic factor levels. J Neural Transm 115:1251–1255

    Article  PubMed  CAS  Google Scholar 

  12. Chavanelle V, Sirvent P, Ennequin G, Caillaud K, Montaurier C, Morio B, Boisseau N, Richard R (2014) Comparison of oxygen consumption in rats during uphill (concentric) and downhill (eccentric) treadmill exercise tests. J Sports Sci Med 13(3):689–694

    PubMed  PubMed Central  Google Scholar 

  13. Mazzardo-Martins L, Martins DF, Marcon R, Dos Santos UD, Speckhann B, Gadotti VM, Sigwalt AR, Guglielmo LG et al (2010) High-intensity extended swimming exercise reduces pain-related behavior in mice: involvement of endogenous opioids and the serotonergic system. J Pain 11(12):1384–1393. https://doi.org/10.1016/j.jpain.2010.03.015

    Article  PubMed  CAS  Google Scholar 

  14. Martins DF, Mazzardo-Martins L, Gadotti VM, Nascimento FP, Lima DA, Speckhann B et al (2011) Ankle joint mobilization reduces axonotmesis-induced neuropathic pain and glial activation in the spinal cord and enhances nerve regeneration in rats. Pain 152(11):2653–2661. https://doi.org/10.1016/j.pain.2011.08.014

    Article  PubMed  Google Scholar 

  15. Dutra RC, Simão da Silva KA, Bento AF, Marcon R, Paszcuk AF, Meotti FC et al (2012) Euphol, a tetracyclic triterpene produces antinociceptive effects in inflammatory and neuropathic pain: the involvement of cannabinoid system. Neuropharmacology 63(4):593–605. https://doi.org/10.1016/j.neuropharm.2012.05.008

    Article  PubMed  CAS  Google Scholar 

  16. Inserra MM, Bloch DA, Terris DJ (1998) Functional indices for sciatic, peroneal, and posterior tibial nerve lesions in the mouse. Microsurgery 18(2):119–124. https://doi.org/10.1002/(SICI)1098-2752(1998)18:2<119::AID-MICR10>3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  17. Baptista AF, Gomes JR, Oliveira JT, Santos SM, Vannier-Santos MA, Martinez AM (2007) A new approach to assess function after sciatic nerve lesion in the mouse—adaptation of the sciatic static index. J Neurosci Methods 161(2):259–264. https://doi.org/10.1016/j.jneumeth.2006.11.016

    Article  PubMed  Google Scholar 

  18. Alves IG, da Cruz KM, Mota CM, de Santana DS, Gaujac DP, de Carvalho VC et al (2013) Experimental hypothyroidism during pregnancy affects nociception and locomotor performance of offspring in rats. Eur J Pain 17(9):1291–1298. https://doi.org/10.1002/j.1532-2149.2013.00306.x

    Article  PubMed  CAS  Google Scholar 

  19. Hannon RM, Meek TH, Acosta W, Maciel RC, Schutz H, Garland T Jr (2011) Sex-specific heterosis in line crosses of mice selectively bred for high locomotor activity. Behav Genet 41(4):615–624. https://doi.org/10.1007/s10519-010-9432-3

    Article  PubMed  Google Scholar 

  20. Lovick TA (1991) Interactions between descending pathways from the dorsal and ventrolateral periaqueductal gray matter in the rat. In: Depaulis A, Bandler R (eds) The midbrain periaqueductal gray matter. Plenum Press, New York, pp. 101–120. https://doi.org/10.1007/978-1-4615-3302-3_7

    Chapter  Google Scholar 

  21. Tadaiesky MT, Dombrowski PA, Figueiredo CP, Cargnin-Ferreira E, Da Cunha C, Takahashi RN (2008) Emotional, cognitive and neurochemical alterations in a premotor stage model of Parkinson’s disease. Neuroscience 156(4):830–840. https://doi.org/10.1016/j.neuroscience.2008.08.035

    Article  PubMed  CAS  Google Scholar 

  22. Bobinski F, Ferreira TA, Córdova MM, Dombrowski PA, da Cunha C, Santo CC et al (2015) Role of brainstem serotonin in analgesia produced by low-intensity exercise on neuropathic pain after sciatic nerve injury in mice. Pain 12:2595–2606

    Article  CAS  Google Scholar 

  23. Cidral-Filho FJ, Martins DF, Moré AO, Mazzardo-Martins L, Silva MD, Cargnin-Ferreira E et al (2013) Light-emitting diode therapy induces analgesia and decreases spinal cord and sciatic nerve tumour necrosis factor-α levels after sciatic nerve crush in mice. Eur J Pain 17(8):1193–1204. https://doi.org/10.1002/j.1532-2149.2012.00280.x

    Article  PubMed  CAS  Google Scholar 

  24. Gault ML, Willems ME (2013) Aging, functional capacity and eccentric exercise training. Aging Dis 4(6):351–363. https://doi.org/10.14336/AD.2013.0400351

    Article  PubMed  PubMed Central  Google Scholar 

  25. Isner-Horobeti ME, Dufour SP, Vautravers P, Geny B, Coudeyre E, Richard R (2013) Eccentric exercise training: modalities, applications and perspectives. Sports Med 43(6):483–512. https://doi.org/10.1007/s40279-013-0052-y

    Article  PubMed  Google Scholar 

  26. Hyldahl RD, Hubal MJ (2014) Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise. Muscle Nerve 2:155–170

    Article  Google Scholar 

  27. Allodi I, Udina E, Navarro X (2012) Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol 98(1):16–37. https://doi.org/10.1016/j.pneurobio.2012.05.005

    Article  PubMed  CAS  Google Scholar 

  28. Sabatier MJ, Redmon N, Schwartz G, English AW (2008) Treadmill training promotes axon regeneration in injured peripheral nerves. Exp Neurol 211(2):489–493. https://doi.org/10.1016/j.expneurol.2008.02.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Udina E, Cobianchi S, Allodi I, Navarro X (2011) Effects of activity-dependent strategies on regeneration and plasticity after peripheral nerve injuries. Ann Anat 193(4):347–353. https://doi.org/10.1016/j.aanat.2011.02.012

    Article  PubMed  CAS  Google Scholar 

  30. Van Meeteren NL, Brakkee JH, Hamers FP, Helders PJ, Gispen WH (1997) Exercise training improves functional recovery and motor nerve conduction velocity after sciatic nerve crush lesion in the rat. Arch Phys Med Rehabil 78(1):70–77. https://doi.org/10.1016/S0003-9993(97)90013-7

    Article  PubMed  Google Scholar 

  31. Bridge PM, Ball DJ, Mackinnon SE, Nakao Y, Brandt K, Hunter DA, Hertl C (1994) Nerve crush injuries—a model for axonotmesis. Exp Neurol 127(2):284–290. https://doi.org/10.1006/exnr.1994.1104

    Article  PubMed  CAS  Google Scholar 

  32. Peterson M, Butler S, Eriksson M, Svärdsudd K (2014) A randomized controlled trial of eccentric vs. concentric graded exercise in chronic tennis elbow (lateral elbow tendinopathy). Clin Rehabil 28(9):862–872. https://doi.org/10.1177/0269215514527595

    Article  PubMed  Google Scholar 

  33. Faroni A, Mobasseri SA, Kingham PJ, Reid AJ (2015) Peripheral nerve regeneration: Experimental strategies and future perspectives. Adv Drug Deliv 82-83:160–167. https://doi.org/10.1016/j.addr.2014.11.010

    Article  CAS  Google Scholar 

  34. Navarro X, Vivó M, Valero-Cabré A (2007) Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 82(4):163–201. https://doi.org/10.1016/j.pneurobio.2007.06.005

    Article  PubMed  CAS  Google Scholar 

  35. Gudemez E, Ozer K, Cunningham B, Siemionow K, Browne E, Siemionow M (2002) Dehydroepiandrosterone as an enhancer of functional recovery following crush injury to rat sciatic nerve. Microsurgery 22(6):234–241. https://doi.org/10.1002/micr.10039

    Article  PubMed  Google Scholar 

  36. Sakakima H, Yoshida Y, Morimoto N (2002) The effect of denervation and subsequent reinnervation on the morphology of rat soleus muscles. J Phys Ther Sci 14(1):21–26. https://doi.org/10.1589/jpts.14.21

    Article  Google Scholar 

  37. Nindl BC, Pierce JR (2010) Insulin-like growth factor I as a biomarker of health, fitness, and training status. Med Sci Sports Exerc 42(1):39–49. https://doi.org/10.1249/MSS.0b013e3181b07c4d

    Article  PubMed  CAS  Google Scholar 

  38. Lee S, Zhang J (2012) Heterogeneity of macrophages in injured trigeminal nerves: cytokine/chemokine expressing vs. phagocytic macrophages. Brain Behav Immun 26(6):891–903. https://doi.org/10.1016/j.bbi.2012.03.004

    Article  PubMed  CAS  Google Scholar 

  39. Ristoiu V (2013) Contribution of macrophages to peripheral neuropathic pain pathogenesis. Life Sci 93(23):870–881. https://doi.org/10.1016/j.lfs.2013.10.005

    Article  PubMed  CAS  Google Scholar 

  40. George A, Buehl A, Sommer C (2004) Wallerian degeneration after crush injury of rat sciatic nerve increases endo- and epineurial tumor necrosis factor-alpha protein. Neurosci Lett 372(3):215–219. https://doi.org/10.1016/j.neulet.2004.09.075

    Article  PubMed  CAS  Google Scholar 

  41. Safakhah HA, Moradi Kor N, Bazargani A, Bandegi AR, Gholami Pourbadie H, Khoshkholgh-Sima B et al (2017) Forced exercise attenuates neuropathic pain in chronic constriction injury of male rat: an investigation of oxidative stress and inflammation. J Pain Res 10:1457–1466. https://doi.org/10.2147/JPR.S135081

    Article  PubMed  PubMed Central  Google Scholar 

  42. Drenth JP, van Uum SH, van Deuren M, Pesman GJ, van der ven Jongekrug J et al (1995) Endurance run increases circulating IL-6 and IL-1ra but downregulates ex vivo TNF- and IL-1 production. J Appl Physiol 79:1497–1403

    Article  PubMed  CAS  Google Scholar 

  43. Ostrowski K, Schjerling P, Pedersen BK (2000) Physical activity and plasma interleukin-6 in humans effect of intensity of exercise. Eur J Appl Physiol 83(6):512–515. https://doi.org/10.1007/s004210000312

    Article  PubMed  CAS  Google Scholar 

  44. Ostrowski K, Rohde T, Asp A, Schjerling P, Pedersen BK (2001) Chemokines are elevated in plasma after strenuous exercise in humans. Eur J Appl Physiol 84(3):244–245. https://doi.org/10.1007/s004210170012

    Article  PubMed  CAS  Google Scholar 

  45. Penkowa M, Keller C, Keller P, Jauffred S, Pedersen BK (2003) Immunohistochemical detection of interleukin-6 in human skeletal muscle fibers following exercise. FASEB J 17(14):2166–2168. https://doi.org/10.1096/fj.03-0311fje

    Article  PubMed  CAS  Google Scholar 

  46. Keller C, Steensberg A, Pilegaard H, Osada T, Saltin B, Pedersen BK, Neufer PD (2001) Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J 15(14):2748–2750. https://doi.org/10.1096/fj.01-0507fje

    Article  PubMed  CAS  Google Scholar 

  47. Steensberg A, Keller C, Starkie RL, Osada T, Febbraio MA, Pedersen BK (2002) IL- 6 and TNF-alpha expression in, and release from, contracting human skeletal muscle. Am J Physiol Endocrinol Metab 283(6):E1272–E1278. https://doi.org/10.1152/ajpendo.00255.2002

    Article  PubMed  CAS  Google Scholar 

  48. Petersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 4:1154–1162

    Article  Google Scholar 

  49. Alvarez P, Bogen O, Green PG, Levine JD (2017) Nociceptor interleukin 10 receptor 1 is critical for muscle analgesia induced by repeated bouts of eccentric exercise in the rat. Pain 158(8):1481–1488. https://doi.org/10.1097/j.pain.0000000000000936

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Hansson HA, Rozell B, Skottner A (1987) Rapid axoplasmic transport of insulin-like growth factor I in the sciatic nerve of adult rats. Cell Tissue Res 247(2):241–247

    Article  PubMed  CAS  Google Scholar 

  51. Glazner GW, Morrison AE, Ishii DN (1994) Elevated insulin-like growth factor (IGF) gene expression in sciatic nerves during IGF-supported nerve regeneration. Brain Res Mol Brain Res 25(3-4):265–272. https://doi.org/10.1016/0169-328X(94)90162-7

    Article  PubMed  CAS  Google Scholar 

  52. Cheng HL, Randolph A, Yee D, Delafontaine P, Tennekoon G, Feldman EL (1996) Characterization of insulin-like growth factor-I (IGF-I), IGF-I receptor and binding proteins in transected nerves and cultured Schwann cells. J Neurochem 66(2):525–536

    Article  PubMed  CAS  Google Scholar 

  53. Zochodne DW, Cheng C (2000) Neurotrophins and other growth factors in the regenerative milieu of proximal nerve stump tips. J Anat 196(2):279–283. https://doi.org/10.1046/j.1469-7580.2000.19620279.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Day CS, Buranapanitkit B, Riano FA, Tomaino MM, Somogyi G, Sotereanos DG, Kuroda R, Huard J (2002) Insulin growth factor-1 decreases muscle atrophy following denervation. Microsurgery 22(4):144–151. https://doi.org/10.1002/micr.21742

    Article  PubMed  Google Scholar 

  55. West CA, Ljungberg C, Wiberg M, Hart A (2013) Sensory neuron death after upper limb nerve injury and protective effect of repair: clinical evaluation using volumetric magnetic resonance imaging of dorsal root ganglia. Neurosurgery 73(4):632–639. https://doi.org/10.1227/NEU.0000000000000066

    Article  PubMed  Google Scholar 

  56. Frystyk J (2010) Exercise and the growth hormone-insulin-like growth factor axis. Med Sci Sports Exerc 42(1):58–66. https://doi.org/10.1249/MSS.0b013e3181b07d2d

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by grants from Universidade do Sul de Santa Catarina—Curso de Medicina and Programa Unisul de Iniciação Científica (PUIC), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—476454/2013-1), and Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC—3414/2012), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel F. Martins.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, D.F., Martins, T.C., Batisti, A.P. et al. Long-Term Regular Eccentric Exercise Decreases Neuropathic Pain-like Behavior and Improves Motor Functional Recovery in an Axonotmesis Mouse Model: the Role of Insulin-like Growth Factor-1. Mol Neurobiol 55, 6155–6168 (2018). https://doi.org/10.1007/s12035-017-0829-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0829-3

Keywords

Navigation