Molecular Neurobiology

, Volume 55, Issue 7, pp 5798–5808 | Cite as

Role of 3-Acetyl-11-Keto-Beta-Boswellic Acid in Counteracting LPS-Induced Neuroinflammation via Modulation of miRNA-155

  • Aya Shoukry Sayed
  • Iman Emam Omar GomaaEmail author
  • Michael Bader
  • Nesrine Salah El Dine El Sayed


Neuroinflammation is one of the most important mechanisms underlying neurodegeneration. Lipopolysaccharide (LPS) is a potent inflammogen which causes cognitive dysfunction. Boswellia serrata is known since many years as a powerful anti-inflammatory herbal drug. Its beneficial effect mainly arises from inhibition of 5-lipoxygenase (5-LO) enzyme. 3-acetyl-11-keto-β-boswellic acid (AKBA) is the most potent 5-LO inhibitor extracted from the oleo-gum-resin of Boswellia serrata. The aim of the present work is to study the molecular mechanisms underlying the anti-inflammatory and neuroprotective effects of AKBA and dexamethasone (DEX) in LPS-induced neuroinflammatory model. A single intraperitoneal (i.p.) dose of LPS (0.8 mg/kg) was injected to induce cognitive dysfunction. The LPS-treated mice were administered for 7 days with either AKBA or DEX at intraperitoneal doses of 5 and 1 mg/kg, respectively. Cognitive, locomotor functions, and anxiety level were first examined. The level of the phosphorylated inhibitory protein for NF-κB, IκB-α (P-IκB-α), was measured, and the expression levels of the inflammatory microRNA-155 (miR-155) and its target gene, suppressor of cytokine signaling-1 (SOCS-1), were determined in the brain. Moreover, the level of carbonyl proteins as a measure of oxidative stress and several cytokines as well as markers for apoptosis and amyloidogenesis was detected. Results showed that AKBA and DEX reversed the behavioral dysfunction induced by LPS. AKBA decreased P-IκB-α, miRNA-155 expression level, and carbonyl protein content. It restored normal cytokine level and increased SOCS-1 expression level. It also showed anti-apoptotic and anti-amyloidogenic effects in LPS-injected mice. These findings suggest AKBA as a therapeutic drug for alleviating the symptoms of neuroinflammatory disorders.


LPS AKBA DEX Molecular markers Inflammatory markers 



Thanks are directed to Gabin Sihn, Phillip Schiele, and Karolina Wszołek-Meißner for their technical assistance at the western blot analysis both at Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, D-13125, Berlin, Germany.

Authors’ Contribution

German University in Cairo (GUC) led the conception, design acquisition of all experimental work, and the manuscript preparation. All authors read and approved the final manuscript. Conceived and designed the experiments: IG, MB, and NS. Participated at the experimental work: AS and IG. Contributed with reagents/materials/analysis equipment and tools: AS, IG, and MB. Analyzed the data: AS and IG. Wrote the paper: AS, IG, MB, and NS.

Funding Information

This work has been partially supported by equipment grants from the Centre for Special Studies and Programs (CSSP), Bibliotheca Alexandrina, grant no. “145”, as well as DAAD equipment funding, project no. “134.104401.347”, grant no. “ga43213.”

Compliance with Ethical Standards

The study received ethical approval on the animals’ procedures that were held according to the guidelines of the Animals Ethics Committee at the German University in Cairo in association with the recommendations of the National Institutes of Health (NIH) Guide for Care and Use of Laboratory Animals (Publication No. 85-23, revised 1985).

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16(25):2766–2778CrossRefPubMedGoogle Scholar
  2. 2.
    Fischer R, Maier O (2015) Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxidative Med Cell Longev 2015:610813. CrossRefGoogle Scholar
  3. 3.
    Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10(2):389–406CrossRefPubMedGoogle Scholar
  4. 4.
    Bizzozero OA (2009) Protein carbonylation in neurodegenerative and demyelinating CNS diseases. In: Lajtha A (ed) Handbook of neurochemistry and molecular neurobiology: brain and spinal cord trauma. 3rd edn. Springer Science & Business Media, 543–562Google Scholar
  5. 5.
    Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM (2005) Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci 25(39):8843–8853. CrossRefPubMedGoogle Scholar
  6. 6.
    Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 100(14):8514–8519. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhao M, Zhou A, Xu L, Zhang X (2014) The role of TLR4-mediated PTEN/PI3K/AKT/NF-kappaB signaling pathway in neuroinflammation in hippocampal neurons. Neuroscience 269:93–101. CrossRefPubMedGoogle Scholar
  8. 8.
    Garate I, Garcia-Bueno B, Madrigal JL, Caso JR, Alou L, Gomez-Lus ML, Leza JC (2014) Toll-like 4 receptor inhibitor TAK-242 decreases neuroinflammation in rat brain frontal cortex after stress. J Neuroinflammation 11:8. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kempe S, Kestler H, Lasar A, Wirth T (2005) NF-kappaB controls the global pro-inflammatory response in endothelial cells: evidence for the regulation of a pro-atherogenic program. Nucleic Acids Res 33(16):5308–5319. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Badshah H, Ali T, Kim MO (2016) Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFkappaB signaling pathway. Sci Rep 6:24493. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefPubMedGoogle Scholar
  12. 12.
    Kutter C, Svoboda P (2008) miRNA, siRNA, piRNA: knowns of the unknown. RNA Biol 5(4):181–188CrossRefPubMedGoogle Scholar
  13. 13.
    Dai R, Ahmed SA (2011) MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res 157(4):163–179. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Martinez-Nunez RT, Louafi F, Sanchez-Elsner T (2011) The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). J Biol Chem 286(3):1786–1794. CrossRefPubMedGoogle Scholar
  15. 15.
    Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739CrossRefPubMedGoogle Scholar
  16. 16.
    Tam W (2001) Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA. Gene 274(1–2):157–167CrossRefPubMedGoogle Scholar
  17. 17.
    Guedes J, Cardoso AL, Pedroso de Lima MC (2013) Involvement of microRNA in microglia-mediated immune response. Clin Dev Immunol 2013:186872. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Liu CC, Chien CH, Lin MT (2000) Glucocorticoids reduce interleukin-1 concentration and result in neuroprotective effects in rat heatstroke. J Physiol 527(Pt 2):333–343CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M (1995) Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 270(5234):286–290CrossRefPubMedGoogle Scholar
  20. 20.
    Rosa L, Galant LS, Dall'Igna DM, Kolling J, Siebert C, Schuck PF, Ferreira GC, Wyse AT et al (2016) Cerebral oedema, blood-brain barrier breakdown and the decrease in Na(+),K(+)-ATPase activity in the cerebral cortex and hippocampus are prevented by dexamethasone in an animal model of maple syrup urine disease. Mol Neurobiol 53(6):3714–3723. CrossRefPubMedGoogle Scholar
  21. 21.
    Chantong B, Kratschmar DV, Nashev LG, Balazs Z, Odermatt A (2012) Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells. J Neuroinflammation 9:260. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wang ZH, Liang YB, Tang H, Chen ZB, Li ZY, Hu XC, Ma ZF (2013) Dexamethasone down-regulates the expression of microRNA-155 in the livers of septic mice. PLoS One 8(11):e80547. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Singh GB, Atal CK (1986) Pharmacology of an extract of salai guggal ex-Boswellia serrata, a new non-steroidal anti-inflammatory agent. Agents Actions 18(3–4):407–412CrossRefPubMedGoogle Scholar
  24. 24.
    Siddiqui MZ (2011) Boswellia serrata, a potential antiinflammatory agent: an overview. Indian J Pharm Sci 73(3):255–261. PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kruger P, Daneshfar R, Eckert GP, Klein J, Volmer DA, Bahr U, Muller WE, Karas M et al (2008) Metabolism of boswellic acids in vitro and in vivo. Drug Metab Dispos 36(6):1135–1142. CrossRefPubMedGoogle Scholar
  26. 26.
    Khalaj-Kondori M, Sadeghi F, Hosseinpourfeizi MA, Shaikhzadeh-Hesari F, Nakhlband A, Rahmati-Yamchi M (2016) Boswellia serrata gum resin aqueous extract upregulates BDNF but not CREB expression in adult male rat hippocampus. Turk J Med Sci 46(5):1573–1578. CrossRefPubMedGoogle Scholar
  27. 27.
    Jalili C, Salahshoor MR, Moradi S, Pourmotabbed A, Motaghi M (2014) The therapeutic effect of the aqueous extract of boswellia serrata on the learning deficit in kindled rats. Int J Prev Med 5(5):563–568PubMedPubMedCentralGoogle Scholar
  28. 28.
    Gokaraju GR, Gokaraju RR, Gokaraju VK, Golakoti T, Bhupathiraju K, Alluri VK (2013) Boswellia oil, its fractions and compositions for enhancing brain functionGoogle Scholar
  29. 29.
    Assimopoulou A, Zlatanos S, Papageorgiou V (2005) Antioxidant activity of natural resins and bioactive triterpenes in oil substrates. Food Chem 92(4):721–727. CrossRefGoogle Scholar
  30. 30.
    Sayed AS, El Sayed NS (2016) Co-administration of 3-acetyl-11-keto-beta-boswellic acid potentiates the protective effect of celecoxib in lipopolysaccharide-induced cognitive impairment in mice: possible implication of anti-inflammatory and antiglutamatergic pathways. J Mol Neurosci 59(1):58–67. CrossRefPubMedGoogle Scholar
  31. 31.
    Arai K, Matsuki N, Ikegaya Y, Nishiyama N (2001) Deterioration of spatial learning performances in lipopolysaccharide-treated mice. Jpn J Pharmacol 87(3):195–201CrossRefPubMedGoogle Scholar
  32. 32.
    Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL, Koliatsos VE (2003) Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol Dis 14(1):133–145CrossRefPubMedGoogle Scholar
  33. 33.
    Anthoni C, Laukoetter MG, Rijcken E, Vowinkel T, Mennigen R, Muller S, Senninger N, Russell J et al (2006) Mechanisms underlying the anti-inflammatory actions of boswellic acid derivatives in experimental colitis. Am J Physiol Gastrointest Liver Physiol 290(6):G1131–G1137. CrossRefPubMedGoogle Scholar
  34. 34.
    Cuaz-Perolin C, Billiet L, Bauge E, Copin C, Scott-Algara D, Genze F, Buchele B, Syrovets T et al (2008) Antiinflammatory and antiatherogenic effects of the NF-kappaB inhibitor acetyl-11-keto-beta-boswellic acid in LPS-challenged ApoE-/- mice. Arterioscler Thromb Vasc Biol 28(2):272–277. CrossRefPubMedGoogle Scholar
  35. 35.
    Puccio S, Chu J, Pratico D (2011) Involvement of 5-lipoxygenase in the corticosteroid-dependent amyloid beta formation: in vitro and in vivo evidence. PLoS One 6 (1):e15163. doi:
  36. 36.
    Bryan KJ, Lee H, Perry G, Smith MA, Casadesus G (2009) Transgenic mouse models of Alzheimer’s disease: behavioral testing and considerations. In: Buccafusco JJ (ed) Methods of behavior analysis in neuroscience. 2nd edn. Frontiers in neuroscienceGoogle Scholar
  37. 37.
    Jackson LL (1943) VTE on an elevated T-maze. J Comp Psychol 36(2):99–107CrossRefGoogle Scholar
  38. 38.
    Camara ML, Corrigan F, Jaehne EJ, Jawahar MC, Anscomb H, Baune BT (2015) Effects of centrally administered etanercept on behavior, microglia, and astrocytes in mice following a peripheral immune challenge. Neuropsychopharmacology 40(2):502–512. CrossRefPubMedGoogle Scholar
  39. 39.
    Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2(2):322–328. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Onaolapo OJ, Onaolapo AY, Mosaku TJ, Akanji OO, Abiodun OR (2012) Elevated plus maze and Y-maze behavioral effects of subchronic, oral low dose monosodium glutamate in Swiss albino mice. J Pharm Biol Sci 3:21–27. CrossRefGoogle Scholar
  41. 41.
    Metz GA, Whishaw IQ (2009) The ladder rung walking task: a scoring system and its practical application. J Vis Exp (28). doi:
  42. 42.
    Scali M, Begenisic T, Mainardi M, Milanese M, Bonifacino T, Bonanno G, Sale A, Maffei L (2013) Fluoxetine treatment promotes functional recovery in a rat model of cervical spinal cord injury. Sci Rep 3:2217. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Couch Y, Anthony DC, Dolgov O, Revischin A, Festoff B, Santos AI, Steinbusch HW, Strekalova T (2013) Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia. Brain Behav Immun 29:136–146. CrossRefPubMedGoogle Scholar
  44. 44.
    Onaolapo OJ, Onaolapo AY, Akinola OR, Anisulowo TO (2014) Dexamethasone regimens alter spatial memory and anxiety levels in mice. J Behav Brain Sci 04:159–167. CrossRefGoogle Scholar
  45. 45.
    Beheshti S, Karimi B (2016) Frankincense improves memory retrieval in rats treated with lipopolysaccharide. J HerbMed Pharmacol 5(1):12–16Google Scholar
  46. 46.
    Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T et al (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281(30):21362–21368. CrossRefPubMedGoogle Scholar
  47. 47.
    Skelly DT, Hennessy E, Dansereau MA, Cunningham C (2013) A systematic analysis of the peripheral and CNS effects of systemic LPS, IL-1beta, [corrected] TNF-alpha and IL-6 challenges in C57BL/6 mice. PLoS One 8(7):e69123. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Adake P, Petimani MS, Jayaraj M, Rao SN (2015) Preclinical evaluation of Boswellia serrata for anxiolytic activity. Int J Basic Clin Pharmacol 4(3):551–555CrossRefGoogle Scholar
  49. 49.
    Yassin N, El-Shenawy S, Mahdy KA, Gouda N, Marrie A, Farrag A, Ibrahim BMM (2013) Effect of Boswellia serrata on Alzheimer’s disease induced in rats. J Arab Soc Med Res 8:1–11. CrossRefGoogle Scholar
  50. 50.
    Zheng Y, Xiong S, Jiang P, Liu R, Liu X, Qian J, Zheng X, Chu Y (2012) Glucocorticoids inhibit lipopolysaccharide-mediated inflammatory response by downregulating microRNA-155: a novel anti-inflammation mechanism. Free Radic Biol Med 52(8):1307–1317. CrossRefPubMedGoogle Scholar
  51. 51.
    Li X, Tian F, Wang F (2013) Rheumatoid arthritis-associated microRNA-155 targets SOCS1 and upregulates TNF-alpha and IL-1beta in PBMCs. Int J Mol Sci 14(12):23910–23921. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Xu HF, Fang XY, Zhu SH, Xu XH, Zhang ZX, Wang ZF, Zhao ZQ, Ding YJ et al (2016) Glucocorticoid treatment inhibits intracerebral hemorrhage induced inflammation by targeting the microRNA155/SOCS1 signaling pathway. Mol Med Rep 14(4):3798–3804. CrossRefPubMedGoogle Scholar
  53. 53.
    Fruhauf PK, Ineu RP, Tomazi L, Duarte T, Mello CF, Rubin MA (2015) Spermine reverses lipopolysaccharide-induced memory deficit in mice. J Neuroinflammation 12:3. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gamal M, Abdel Wahab Z, Eshra M, Rashed L, Sharawy N (2014) Comparative neuroprotective effects of dexamethasone and minocycline during hepatic encephalopathy. Neurol Res Int 2014:254683. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Al-Harbi NO, Imam F, Al-Harbi MM, Ansari MA, Zoheir KM, Korashy HM, Sayed-Ahmed MM, Attia SM et al (2016) Dexamethasone attenuates LPS-induced acute lung injury through inhibition of NF-kappaB, COX-2, and pro-inflammatory mediators. Immunol Investig 45(4):349–369. CrossRefGoogle Scholar
  56. 56.
    Umar S, Umar K, Sarwar AH, Khan A, Ahmad N, Ahmad S, Katiyar CK, Husain SA et al (2014) Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis. Phytomedicine 21(6):847–856. CrossRefPubMedGoogle Scholar
  57. 57.
    Syrovets T, Buchele B, Krauss C, Laumonnier Y, Simmet T (2005) Acetyl-boswellic acids inhibit lipopolysaccharide-mediated TNF-alpha induction in monocytes by direct interaction with IkappaB kinases. J Immunol 174(1):498–506CrossRefPubMedGoogle Scholar
  58. 58.
    Erickson MA, Hansen K, Banks WA (2012) Inflammation-induced dysfunction of the low-density lipoprotein receptor-related protein-1 at the blood-brain barrier: protection by the antioxidant N-acetylcysteine. Brain Behav Immun 26(7):1085–1094. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Pereira DV, Steckert AV, Mina F, Petronilho F, Roesler R, Schwartsmann G, Ritter C, Dal-Pizzol F (2009) Effects of an antagonist of the gastrin-releasing peptide receptor in an animal model of uveitis. Invest Ophthalmol Vis Sci 50(11):5300–5303. CrossRefPubMedGoogle Scholar
  60. 60.
    Ding Y, Chen M, Wang M, Zhang T, Park J, Zhu Y, Guo C, Jia Y et al (2014) Neuroprotection by acetyl-11-keto-beta-Boswellic acid, in ischemic brain injury involves the Nrf2/HO-1 defense pathway. Sci Rep 4:7002. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Moussaieff A, Shein NA, Tsenter J, Grigoriadis S, Simeonidou C, Alexandrovich AG, Trembovler V, Ben-Neriah Y et al (2008) Incensole acetate: a novel neuroprotective agent isolated from Boswellia carterii. J Cereb Blood Flow Metab 28(7):1341–1352. CrossRefPubMedGoogle Scholar
  62. 62.
    Omura Y, Horiuchi N, Jones MK, Lu DP, Shimotsuura Y, Duvvi H, Pallos A, Ohki M et al (2009) Temporary anti-cancer & anti-pain effects of mechanical stimulation of any one of 3 front teeth (1st incisor, 2nd incisor, & canine) of right & left side of upper & lower jaws and their possible mechanism, & relatively long term disappearance of pain & cancer parameters by one optimal dose of DHEA, Astragalus, Boswellia Serrata, often with press needle stimulation of True ST. 36. Acupunct Electrother Res 34(3–4):175–203CrossRefPubMedGoogle Scholar
  63. 63.
    Eklind S, Hagberg H, Wang X, Savman K, Leverin AL, Hedtjarn M, Mallard C (2006) Effect of lipopolysaccharide on global gene expression in the immature rat brain. Pediatr Res 60(2):161–168. CrossRefPubMedGoogle Scholar
  64. 64.
    Deng X, Li M, Ai W, He L, Lu D, Patrylo PR, Cai H, Luo X et al (2014) Lipolysaccharide-induced neuroinflammation is associated with Alzheimer-like amyloidogenic axonal pathology and dendritic degeneration in rats. Adv Alzheimer Dis 3(2):78–93. CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Lee YJ, Choi DY, Yun YP, Han SB, Oh KW, Hong JT (2013) Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties. J Nutr Biochem 24(1):298–310. CrossRefPubMedGoogle Scholar
  66. 66.
    Lee IN, Cheng WC, Chung CY, Lee MH, Lin MH, Kuo CH, Weng HH, Yang JT (2015) Dexamethasone reduces brain cell apoptosis and inhibits inflammatory response in rats with intracerebral hemorrhage. J Neurosci Res 93(1):178–188. CrossRefPubMedGoogle Scholar
  67. 67.
    Wang H, Wu YB, Du XH (2005) Effect of dexamethasone on nitric oxide synthase and caspase-3 gene expressions in endotoxemia in neonate rat brain. Biomed Environ Sci 18(3):181–186PubMedGoogle Scholar
  68. 68.
    Hosseini-sharifabad M, Esfandiari E (2015) Effect of Boswellia serrata gum resin on the morphology of hippocampal CA1 pyramidal cells in aged rat. Anat Sci Int 90(1):47–53. CrossRefPubMedGoogle Scholar
  69. 69.
    Ahmed HH, Mohamed EM, El-Dsoki SM (2014) Evidences for the promising therapeutic potential of boswellia serrata against Alzheimer’s disease: pre-clinical study. Int J Pharm Pharm Sci 6(11):384–392Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Aya Shoukry Sayed
    • 1
  • Iman Emam Omar Gomaa
    • 2
    • 3
    • 4
    • 5
    Email author
  • Michael Bader
    • 6
  • Nesrine Salah El Dine El Sayed
    • 7
    • 8
  1. 1.Department of Pharmaceutical Biology, Faculty of Pharmacy and BiotechnologyGerman University in CairoNew Cairo CityEgypt
  2. 2.Biotechnology Sector, Faculty of Pharmacy and BiotechnologyGerman University in CairoCairoEgypt
  3. 3.School of Engineering and Applied SciencesNile UniversityCairoEgypt
  4. 4.Nano Science and Technology InstituteKafr El-Sheikh UniversityKafr El-SheikhEgypt
  5. 5.CairoEgypt
  6. 6.Max-Delbrück-Center for Molecular Medicine (MDC)BerlinGermany
  7. 7.Department of Pharmacology and Toxicology, Faculty of PharmacyCairo UniversityGizaEgypt
  8. 8.Department of Pharmacology and Toxicology, Faculty of Pharmacy and BiotechnologyGerman University in CairoNew Cairo CityEgypt

Personalised recommendations