Skip to main content
Log in

Validation of Reference Genes for Expression Studies in Human Meningiomas under Different Experimental Settings

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Quantitative polymerase chain reaction (qPCR) is a sensitive technique for the quantitative analysis of gene expression levels. To compare mRNA transcripts across tumour and non-pathological tissue, appropriate reference genes are required for internal standardisation. Validation of these reference genes in meningiomas has not yet been reported. After mRNA transcription of meningioma (WHO grade I-III) and meningeal tissue from three different experimental sample types (fresh tissue, primary cell cultures and FFPE tissue), 13 candidate reference genes (ACTB, B2M, HPRT, VIM, GAPDH, YWHAZ, EIF4A2, MUC1, ATP5B, GNB2L, TUBB, CYC1, RPL13A) were chosen for quantitative expression analysis. Two statistical algorithms (GeNorm and NormFinder) were used for validation of gene expression stability. All candidate housekeepers tested for stability were checked within and across the three tissue analysis groups. Pearson correlation, the ΔC t method and ranking analysis identified the most non-regulated genes suitable for internal standardisation. TUBB, HPRT and ACTB were the most stably expressed genes for all analysis groups across meningioma and non-pathological meningeal tissue combined. In contrast, analysis of the consistency of reference gene expression within specific meningioma and meningeal tissues resulted in specific reference gene rankings for each tissue type. Future gene expression analyses require reference genes to be chosen that are suitable for the tissue types and for the experimental paradigms being studied. Validation of candidate housekeeper genes in meningiomas for quantitative real-time polymerase chain reaction revealed for the first time TUBB, ACTB and HPRT as the most consistently expressed genes among meningioma and non-pathological meningeal tissue across a range of experimental settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6(4):279–284. https://doi.org/10.1038/sj.gene.6364190

    Article  PubMed  CAS  Google Scholar 

  2. Lee PD, Sladek R, Greenwood CM, Hudson TJ (2002) Control genes and variability: Absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res 12(2):292–297. https://doi.org/10.1101/gr.217802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496

    Article  PubMed  CAS  Google Scholar 

  4. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J Mol Endocrinol 29(1):23–39

    Article  PubMed  CAS  Google Scholar 

  5. Gebhardt FM, Scott HA, Dodd PR (2010) Housekeepers for accurate transcript expression analysis in Alzheimer's disease autopsy brain tissue. Alzheimers Dement 6(6):465–474. https://doi.org/10.1016/j.jalz.2009.11.002

    Article  PubMed  CAS  Google Scholar 

  6. Guenin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L (2009) Normalization of qRT-PCR data: The necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60(2):487–493. https://doi.org/10.1093/jxb/ern305

    Article  PubMed  CAS  Google Scholar 

  7. Hurteau GJ, Spivack SD (2002) mRNA-specific reverse transcription-polymerase chain reaction from human tissue extracts. Anal Biochem 307(2):304–315

    Article  PubMed  CAS  Google Scholar 

  8. Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. BioTechniques 29(2):332–337

    Article  PubMed  CAS  Google Scholar 

  9. Sieber MW, Guenther M, Kohl M, Witte OW, Claus RA, Frahm C (2010) Inter-age variability of bona fide unvaried transcripts normalization of quantitative PCR data in ischemic stroke. Neurobiol Aging 31(4):654–664. https://doi.org/10.1016/j.neurobiolaging.2008.05.023

    Article  PubMed  CAS  Google Scholar 

  10. Stephens AS, Stephens SR, Morrison NA (2011) Internal control genes for quantitative RT-PCR expression analysis in mouse osteoblasts, osteoclasts and macrophages. BMC Res Notes 4:410. https://doi.org/10.1186/1756-0500-4-410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Modha A, Gutin PH (2005) Diagnosis and treatment of atypical and anaplastic meningiomas: A review. Neurosurgery 57(3):538–550 discussion 538-550

    Article  PubMed  Google Scholar 

  12. Whittle IR, Smith C, Navoo P, Collie D (2004) Meningiomas. Lancet 363(9420):1535–1543. https://doi.org/10.1016/S0140-6736(04)16153-9

    Article  PubMed  Google Scholar 

  13. Kleihues P, Sobin LH (2000) World Health Organization classification of tumors. Cancer 88(12):2887

    Article  PubMed  CAS  Google Scholar 

  14. Al-Mefty O, Kadri PA, Pravdenkova S, Sawyer JR, Stangeby C, Husain M (2004) Malignant progression in meningioma: Documentation of a series and analysis of cytogenetic findings. J Neurosurg 101(2):210–218. https://doi.org/10.3171/jns.2004.101.2.0210

    Article  PubMed  Google Scholar 

  15. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. https://doi.org/10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  16. Perry A, Stafford SL, Scheithauer BW, Suman VJ, Lohse CM (1997) Meningioma grading: An analysis of histologic parameters. Am J Surg Pathol 21(12):1455–1465

    Article  PubMed  CAS  Google Scholar 

  17. Alexiou GA, Vartholomatos G, Karamoutsios A, Batistatou A, Kyritsis AP, Voulgaris S (2013) Circulating progenitor cells: A comparison of patients with glioblastoma or meningioma. Acta Neurol Belg 113(1):7–11. https://doi.org/10.1007/s13760-012-0097-y

    Article  PubMed  Google Scholar 

  18. Smith MJ (2015) Germline and somatic mutations in meningiomas. Cancer Genet 208(4):107–114. https://doi.org/10.1016/j.cancergen.2015.02.003

    Article  PubMed  CAS  Google Scholar 

  19. Alexiou GA, Markoula S, Gogou P, Kyritsis AP (2011) Genetic and molecular alterations in meningiomas. Clin Neurol Neurosurg 113(4):261–267. https://doi.org/10.1016/j.clineuro.2010.12.007

    Article  PubMed  Google Scholar 

  20. Tang M, Wei H, Han L, Deng J, Wang Y, Yang M, Tang Y, Guo G, Zhou L, Tong A (2017) Whole-genome sequencing identifies new genetic alterations in meningiomas. Oncotarget 8 (10):17070-17080. Doi:10.18632/oncotarget.15043

  21. Watson MA, Gutmann DH, Peterson K, Chicoine MR, Kleinschmidt-DeMasters BK, Brown HG, Perry A (2002) Molecular characterization of human meningiomas by gene expression profiling using high-density oligonucleotide microarrays. Am J Pathol 161(2):665–672. https://doi.org/10.1016/S0002-9440(10)64222-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3 (7):RESEARCH0034

  23. Silver N, Best S, Jiang J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7:33. https://doi.org/10.1186/1471-2199-7-33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Grube S, Gottig T, Freitag D, Ewald C, Kalff R, Walter J (2015) Selection of suitable reference genes for expression analysis in human glioma using RT-qPCR. J Neuro-Oncol. https://doi.org/10.1007/s11060-015-1772-7

  25. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Chen D, Pan X, Xiao P, Farwell MA, Zhang B (2011) Evaluation and identification of reliable reference genes for pharmacogenomics, toxicogenomics, and small RNA expression analysis. J Cell Physiol 226(10):2469–2477. https://doi.org/10.1002/jcp.22725

    Article  PubMed  CAS  Google Scholar 

  27. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25(2):169–193

    Article  PubMed  CAS  Google Scholar 

  28. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A et al (1999) Housekeeping genes as internal standards: Use and limits. J Biotechnol 75(2–3):291–295

    Article  PubMed  CAS  Google Scholar 

  29. Karge WH 3rd, Schaefer EJ, Ordovas JM (1998) Quantification of mRNA by polymerase chain reaction (PCR) using an internal standard and a nonradioactive detection method. Methods Mol Biol 110:43–61. https://doi.org/10.1385/1-59259-582-0:43

    Article  PubMed  CAS  Google Scholar 

  30. Haberhausen G, Pinsl J, Kuhn CC, Markert-Hahn C (1998) Comparative study of different standardization concepts in quantitative competitive reverse transcription-PCR assays. J Clin Microbiol 36(3):628–633

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Ponnusamy MP, Seshacharyulu P, Lakshmanan I, Vaz AP, Chugh S, Batra SK (2013) Emerging role of mucins in epithelial to mesenchymal transition. Curr Cancer Drug Targets 13(9):945–956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Satelli A, Li S (2011) Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci : CMLS 68(18):3033–3046. https://doi.org/10.1007/s00018-011-0735-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Dowling CM, Walsh D, Coffey JC, Kiely PA (2016) The importance of selecting the appropriate reference genes for quantitative real time PCR as illustrated using colon cancer cells and tissue. F100. 0. Research 5:99. 10.12688/f1000research.7656.2

    Article  CAS  Google Scholar 

  34. Jacob F, Guertler R, Naim S, Nixdorf S, Fedier A, Hacker NF, Heinzelmann-Schwarz V (2013) Careful selection of reference genes is required for reliable performance of RT-qPCR in human normal and cancer cell lines. PLoS One 8(3):e59180. https://doi.org/10.1371/journal.pone.0059180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lewis F, Maughan NJ, Smith V, Hillan K, Quirke P (2001) Unlocking the archive--gene expression in paraffin-embedded tissue. J Pathol 195(1):66–71. https://doi.org/10.1002/1096-9896(200109)195:1<66::AID-PATH921>3.0.CO;2-F

    Article  PubMed  CAS  Google Scholar 

  36. Ibusuki M, Fu P, Yamamoto S, Fujiwara S, Yamamoto Y, Honda Y, Iyama K, Iwase H (2013) Establishment of a standardized gene-expression analysis system using formalin-fixed, paraffin-embedded, breast cancer specimens. Breast Cancer 20(2):159–166. https://doi.org/10.1007/s12282-011-0318-x

    Article  PubMed  Google Scholar 

  37. Walter RF, Mairinger FD, Wohlschlaeger J, Worm K, Ting S, Vollbrecht C, Schmid KW, Hager T (2013) FFPE tissue as a feasible source for gene expression analysis--a comparison of three reference genes and one tumor marker. Pathol Res Pract 209(12):784–789. https://doi.org/10.1016/j.prp.2013.09.007

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Freitag.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitag, D., Koch, A., Lawson McLean, A. et al. Validation of Reference Genes for Expression Studies in Human Meningiomas under Different Experimental Settings. Mol Neurobiol 55, 5787–5797 (2018). https://doi.org/10.1007/s12035-017-0800-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0800-3

Keywords

Navigation