Photobiomodulation Therapy Improves Acute Inflammatory Response in Mice: the Role of Cannabinoid Receptors/ATP-Sensitive K+ Channel/p38-MAPK Signalling Pathway

  • Laís M. S. Neves
  • Elaine C. D. Gonçalves
  • Juliana Cavalli
  • Graziela Vieira
  • Larissa R. Laurindo
  • Róli R. Simões
  • Igor S. Coelho
  • Adair R. S. Santos
  • Alexandre M. Marcolino
  • Maíra Cola
  • Rafael C. Dutra
Article

Abstract

Although photobiomodulation therapy (PBM) has been applied clinically for the treatment of pain and inflammation, wound healing, sports and soft tissue injuries, as well as to repair injured spinal cords and peripheral nerves, it remains unclear which molecular substrates (receptor) are implicated in the cellular mechanisms of PBM. Here, we reported that PBM (660 nm, 30 mW, 0.06 cm2, 50 J/cm2, plantar irradiation) significantly inhibited carrageenan-induced paw oedema, but not noxious thermal response, through positive modulation to both CB1 and CB2 cannabinoid receptors. The use of CB1 antagonist AM281 or CB2 antagonist AM630 significantly reversed the anti-inflammatory effect of PBM. Analysis of signalling pathway downstream of cannabinoid receptors activation reveals that anti-inflammatory effects of PBM depend, in great extent, on its ability to activate ATP-dependent K+ channels and p38 mitogen-activated protein kinase. Moreover, PBM therapy significantly reduced the levels of pro-inflammatory cytokine IL-6 in both paw and spinal cord, and restored the reduction of the level of anti-inflammatory cytokine IL-10 in spinal cord after carrageenan injection. Unlike the potent cannabinoid receptor agonist (WIN 55212-2), PBM did not exert any CNS-mediated effects in the tetrad assay. Finally, PBM does not reduce inflammation and noxious thermal response induced by LPS and zymosan, a TLR4 and TLR2/dectin-1 ligand, respectively. Thus, cannabinoid receptors and, possibly, the endocannabinoid system, represent an important site of action of PBM that opens the possibility of complementary and nonpsychotropic therapeutic interventions in clinical practice.

Graphical Abstract

Keywords

Phototherapy Laser Inflammation Cannabinoid receptors 

Notes

Acknowledgements

We acknowledge grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Apoio a Pesquisa do Estado de Santa Catarina (FAPESC), Programa INCT-INOVAMED (grant 465430/2014-7), Programa de Pós-Graduação em Neurociências (PGN), and Universidade Federal de Santa Catarina (UFSC), all from Brazil. E.C.D.G. and I.S.C. are MSc and PhD students in neuroscience receiving grants from FAPESC. R.R.S. holds a postdoctoral fellowship from CNPq. A.R.S.S and R.C.D. are recipient of a research productivity fellowship from the CNPq.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Lyons RF, Abergel RP, White RA, Dwyer RM, Castel JC, Uitto J (1987) Biostimulation of wound healing in vivo by a helium-neon laser. Ann Plast Surg 18(1):47–50CrossRefPubMedGoogle Scholar
  2. 2.
    Whelan HT, Smits RL, Buchman EV, Whelan NT, Turner SG, Margolis DA, Cevenini V, Stinson H et al (2001) Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 19(6):305–314.  https://doi.org/10.1089/104454701753342758 CrossRefPubMedGoogle Scholar
  3. 3.
    Whelan HT, Buchmann EV, Dhokalia A, Kane MP, Whelan NT, Wong-Riley MT, Eells JT, Gould LJ et al (2003) Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice. J Clin Laser Med Surg 21(2):67–74.  https://doi.org/10.1089/104454703765035484 CrossRefPubMedGoogle Scholar
  4. 4.
    Liebert A, Krause A, Goonetilleke N, Bicknell B, Kiat H (2017) A role for photobiomodulation in the prevention of myocardial ischemic reperfusion injury: a systematic review and potential molecular mechanisms. Sci Rep 7:42386.  https://doi.org/10.1038/srep42386 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mandel A, Hamblin MR (2012) A renaissance in low-level laser (light) therapy–LLLT. Photon Lasers Med 1:231–234CrossRefGoogle Scholar
  6. 6.
    Xavier M, David DR, de Souza RA, Arrieiro AN, Miranda H, Santana ET, Silva JA, Salgado MA et al (2010) Anti-inflammatory effects of low-level light emitting diode therapy on Achilles tendinitis in rats. Lasers Surg Med 42(6):553–558.  https://doi.org/10.1002/lsm.20896 CrossRefPubMedGoogle Scholar
  7. 7.
    de Lima FM, Aimbire F, Miranda H, Vieira RP, de Oliveira AP, Albertini R (2014) Low-level laser therapy attenuates the myeloperoxidase activity and inflammatory mediator generation in lung inflammation induced by gut ischemia and reperfusion: a dose-response study. J Lasers Med Sci 5(2):63–70PubMedPubMedCentralGoogle Scholar
  8. 8.
    Kobiela Ketz A, Byrnes KR, Grunberg NE, Kasper CE, Osborne L, Pryor B, Tosini NL, Wu X et al (2017) Characterization of macrophage/microglial activation and effect of photobiomodulation in the spared nerve injury model of neuropathic pain. Pain Med 18(5):932–946.  https://doi.org/10.1093/pm/pnw144 PubMedGoogle Scholar
  9. 9.
    Peoples C, Spana S, Ashkan K, Benabid AL, Stone J, Baker GE, Mitrofanis J (2012) Photobiomodulation enhances nigral dopaminergic cell survival in a chronic MPTP mouse model of Parkinson’s disease. Parkinsonism Relat Disord 18(5):469–476.  https://doi.org/10.1016/j.parkreldis.2012.01.005 CrossRefPubMedGoogle Scholar
  10. 10.
    Muili KA, Gopalakrishnan S, Eells JT, Lyons JA (2013) Photobiomodulation induced by 670 nm light ameliorates MOG35-55 induced EAE in female C57BL/6 mice: a role for remediation of nitrosative stress. PLoS One 8(6):e67358.  https://doi.org/10.1371/journal.pone.0067358 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Goncalves ED, Souza PS, Lieberknecht V, Fidelis GS, Barbosa RI, Silveira PC, de Pinho RA, Dutra RC (2016) Low-level laser therapy ameliorates disease progression in a mouse model of multiple sclerosis. Autoimmunity 49(2):132–142.  https://doi.org/10.3109/08916934.2015.1124425 CrossRefPubMedGoogle Scholar
  12. 12.
    Xu Z, Guo X, Yang Y, Tucker D, Lu Y, Xin N, Zhang G, Yang L et al (2016) Low-level laser irradiation improves depression-like behaviors in mice. Mol Neurobiol.  https://doi.org/10.1007/s12035-016-9983-2
  13. 13.
    Reinhart F, El Massri N, Johnstone DM, Stone J, Mitrofanis J, Benabid AL, Moro C (2016) Near-infrared light (670 nm) reduces MPTP-induced parkinsonism within a broad therapeutic time window. Exp Brain Res 234(7):1787–1794.  https://doi.org/10.1007/s00221-016-4578-8 CrossRefPubMedGoogle Scholar
  14. 14.
    Karu T, Pyatibrat L, Kalendo G (1995) Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B 27(3):219–223CrossRefPubMedGoogle Scholar
  15. 15.
    Ihsan FR (2005) Low-level laser therapy accelerates collateral circulation and enhances microcirculation. Photomed Laser Surg 23(3):289–294.  https://doi.org/10.1089/pho.2005.23.289 CrossRefPubMedGoogle Scholar
  16. 16.
    Fillipin LI, Mauriz JL, Vedovelli K, Moreira AJ, Zettler CG, Lech O, Marroni NP, González-Gallego J (2005) Low-level laser therapy (LLLT) prevents oxidative stress and reduces fibrosis in rat traumatized Achilles tendon. Lasers Surg Med 37(4):293–300.  https://doi.org/10.1002/lsm.20225 CrossRefPubMedGoogle Scholar
  17. 17.
    Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2003) Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci 18(2):95–99.  https://doi.org/10.1007/s10103-003-0262-x CrossRefPubMedGoogle Scholar
  18. 18.
    Albertini R, Villaverde AB, Aimbire F, Salgado MA, Bjordal JM, Alves LP, Munin E, Costa MS (2007) Anti-inflammatory effects of low-level laser therapy (LLLT) with two different red wavelengths (660 nm and 684 nm) in carrageenan-induced rat paw oedema. J Photochem Photobiol B 89(1):50–55.  https://doi.org/10.1016/j.jphotobiol.2007.08.005 CrossRefPubMedGoogle Scholar
  19. 19.
    Poyton RO, Ball KA (2011) Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome c oxidase. Discov Med 11(57):154–159PubMedGoogle Scholar
  20. 20.
    Laraia EM, Silva IS, Pereira DM, dos Reis FA, Albertini R, de Almeida P, Leal Junior EC, de Tarso Camillo de Carvalho P (2012) Effect of low-level laser therapy (660 nm) on acute inflammation induced by tenotomy of Achilles tendon in rats. Photochem Photobiol 88(6):1546–1550.  https://doi.org/10.1111/j.1751-1097.2012.01179.x CrossRefPubMedGoogle Scholar
  21. 21.
    de Lima FM, Villaverde AB, Albertini R, Corrêa JC, Carvalho RL, Munin E, Araújo T, Silva JA et al (2011) Dual Effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: action on anti- and pro-inflammatory cytokines. Lasers Surg Med 43(5):410–420.  https://doi.org/10.1002/lsm.21053 CrossRefPubMedGoogle Scholar
  22. 22.
    Mafra de Lima F, Villaverde AB, Salgado MA, Castro-Faria-Neto HC, Munin E, Albertini R, Aimbire F (2010) Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from Escherichia coli in rat. J Photochem Photobiol B 101(3):271–278.  https://doi.org/10.1016/j.jphotobiol.2010.07.012 CrossRefPubMedGoogle Scholar
  23. 23.
    da Rosa AS, dos Santos AF, da Silva MM, Facco GG, Perreira DM, Alves AC, Leal Junior EC, de Carvalho Pde T (2012) Effects of low-level laser therapy at wavelengths of 660 and 808 nm in experimental model of osteoarthritis. Photochem Photobiol 88(1):161–166.  https://doi.org/10.1111/j.1751-1097.2011.01032.x CrossRefPubMedGoogle Scholar
  24. 24.
    Muili KA, Gopalakrishnan S, Meyer SL, Eells JT, Lyons JA (2012) Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by photobiomodulation induced by 670 nm light. PLoS One 7(1):e30655.  https://doi.org/10.1371/journal.pone.0030655 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lim J, Ali ZM, Sanders RA, Snyder AC, Eells JT, Henshel DS, Watkins JB (2009) Effects of low-level light therapy on hepatic antioxidant defense in acute and chronic diabetic rats. J Biochem Mol Toxicol 23(1):1–8.  https://doi.org/10.1002/jbt.20257 CrossRefPubMedGoogle Scholar
  26. 26.
    Lim J, Sanders RA, Yeager RL, Millsap DS, Watkins JB, Eells JT, Henshel DS (2008) Attenuation of TCDD-induced oxidative stress by 670 nm photobiomodulation in developmental chicken kidney. J Biochem Mol Toxicol 22(4):230–239.  https://doi.org/10.1002/jbt.20233 CrossRefPubMedGoogle Scholar
  27. 27.
    Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser MA, Hamblin MR (2010) Role of low-level laser therapy in neurorehabilitation. PM R 2(12 Suppl 2):S292–S305.  https://doi.org/10.1016/j.pmrj.2010.10.013 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wang Y, Huang YY, Lyu P, Hamblin MR (2017) Photobiomodulation of human adipose-derived stem cells using 810 nm and 980 nm lasers operates via different mechanisms of action. Biochim Biophys Acta 1861(2):441–449.  https://doi.org/10.1016/j.bbagen.2016.10.008 CrossRefPubMedGoogle Scholar
  29. 29.
    Cidral-Filho FJ, Mazzardo-Martins L, Martins DF, Santos AR (2014) Light-emitting diode therapy induces analgesia in a mouse model of postoperative pain through activation of peripheral opioid receptors and the L-arginine/nitric oxide pathway. Lasers Med Sci 29(2):695–702.  https://doi.org/10.1007/s10103-013-1385-3 CrossRefPubMedGoogle Scholar
  30. 30.
    Pertwee RG (2005) Pharmacological actions of cannabinoids. Handb Exp Pharmacol 168:1–51CrossRefGoogle Scholar
  31. 31.
    Pertwee RG (2009) Emerging strategies for exploiting cannabinoid receptor agonists as medicines. Br J Pharmacol 156(3):397–411.  https://doi.org/10.1111/j.1476-5381.2008.00048.x CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS et al (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62(4):588–631.  https://doi.org/10.1124/pr.110.003004 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Di Marzo V (2008) Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov 7(5):438–455.  https://doi.org/10.1038/nrd2553 CrossRefPubMedGoogle Scholar
  34. 34.
    Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564.  https://doi.org/10.1038/346561a0 CrossRefPubMedGoogle Scholar
  35. 35.
    Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365(6441):61–65.  https://doi.org/10.1038/365061a0 CrossRefPubMedGoogle Scholar
  36. 36.
    Gasperi V, Dainese E, Oddi S, Sabatucci A, Maccarrone M (2013) GPR55 and its interaction with membrane lipids: comparison with other endocannabinoid-binding receptors. Curr Med Chem 20(1):64–78CrossRefPubMedGoogle Scholar
  37. 37.
    Pertwee RG (2012) Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities. Philos Trans R Soc Lond Ser B Biol Sci 367(1607):3353–3363.  https://doi.org/10.1098/rstb.2011.0381 CrossRefGoogle Scholar
  38. 38.
    Chen J, Varga A, Selvarajah S, Jenes A, Dienes B, Sousa-Valente J, Kulik A, Veress G et al (2016) Spatial distribution of the cannabinoid type 1 and capsaicin receptors may contribute to the complexity of their crosstalk. Sci Rep 6:33307.  https://doi.org/10.1038/srep33307 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Panikashvili D, Simeonidou C, Ben-Shabat S, Hanus L, Breuer A, Mechoulam R, Shohami E (2001) An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413(6855):527–531.  https://doi.org/10.1038/35097089 CrossRefPubMedGoogle Scholar
  40. 40.
    Eisenstein TK, Meissler JJ, Wilson Q, Gaughan JP, Adler MW (2007) Anandamide and Delta9-tetrahydrocannabinol directly inhibit cells of the immune system via CB2 receptors. J Neuroimmunol 189(1–2):17–22.  https://doi.org/10.1016/j.jneuroim.2007.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Maresz K, Pryce G, Ponomarev ED, Marsicano G, Croxford JL, Shriver LP, Ledent C, Cheng X et al (2007) Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nat Med 13(4):492–497.  https://doi.org/10.1038/nm1561 CrossRefPubMedGoogle Scholar
  42. 42.
    Wen J, Ribeiro R, Tanaka M, Zhang Y (2015) Activation of CB2 receptor is required for the therapeutic effect of ABHD6 inhibition in experimental autoimmune encephalomyelitis. Neuropharmacology 99:196–209.  https://doi.org/10.1016/j.neuropharm.2015.07.010 CrossRefPubMedGoogle Scholar
  43. 43.
    Sun L, Tai L, Qiu Q, Mitchell R, Fleetwood-Walker S, Joosten EA, Cheung CW (2017) Endocannabinoid activation of CB1 receptors contributes to long-lasting reversal of neuropathic pain by repetitive spinal cord stimulation. Eur J Pain 21(5):804–814.  https://doi.org/10.1002/ejp.983 CrossRefPubMedGoogle Scholar
  44. 44.
    Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–110CrossRefPubMedGoogle Scholar
  45. 45.
    de Vasconcelos DI, Leite JA, Carneiro LT, Piuvezam MR, de Lima MR, de Morais LC, Rumjanek VM, Rodrigues-Mascarenhas S (2011) Anti-inflammatory and antinociceptive activity of ouabain in mice. Mediat Inflamm 2011:912925.  https://doi.org/10.1155/2011/912925 CrossRefGoogle Scholar
  46. 46.
    Kanaan SA, Saadé NE, Haddad JJ, Abdelnoor AM, Atweh SF, Jabbur SJ, Safieh-Garabedian B (1996) Endotoxin-induced local inflammation and hyperalgesia in rats and mice: a new model for inflammatory pain. Pain 66(2–3):373–379CrossRefPubMedGoogle Scholar
  47. 47.
    Silva MA, Trevisan G, Klafke JZ, Rossato MF, Walker CI, Oliveira SM, Silva CR, Boligon AA et al (2013) Antinociceptive and anti-inflammatory effects of Aloe saponaria Haw on thermal injury in rats. J Ethnopharmacol 146(1):393–401.  https://doi.org/10.1016/j.jep.2012.12.055 CrossRefPubMedGoogle Scholar
  48. 48.
    Paszcuk AF, Dutra RC, da Silva KA, Quintão NL, Campos MM, Calixto JB (2011) Cannabinoid agonists inhibit neuropathic pain induced by brachial plexus avulsion in mice by affecting glial cells and MAP kinases. PLoS One 6(9):e24034.  https://doi.org/10.1371/journal.pone.0024034 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Nguelefack TB, Dutra RC, Paszcuk AF, Andrade EL, Tapondjou LA, Calixto JB (2010) Antinociceptive activities of the methanol extract of the bulbs of Dioscorea bulbifera L. var sativa in mice is dependent of NO-cGMP-ATP-sensitive-K(+) channel activation. J Ethnopharmacol 128(3):567–574.  https://doi.org/10.1016/j.jep.2010.01.061 CrossRefPubMedGoogle Scholar
  50. 50.
    Chen MM, O'Halloran EB, Shults JA, Kovacs EJ (2016) Kupffer Cell p38 mitogen-activated protein kinase signaling drives postburn hepatic damage and pulmonary inflammation when alcohol intoxication precedes burn injury. Crit Care Med 44(10):e973–e979.  https://doi.org/10.1097/CCM.0000000000001817 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Li D, Wang Y, Wu H, Lu L, Wang X, Zhang J, Zhang H, Fan S et al (2013) The effects of p38 MAPK inhibition combined with G-CSF administration on the hematoimmune system in mice with irradiation injury. PLoS One 8(4):e62921.  https://doi.org/10.1371/journal.pone.0062921 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Martin RS, Secchi RL, Sung E, Lemaire M, Bonhaus DW, Hedley LR, Lowe DA (2003) Effects of cannabinoid receptor ligands on psychosis-relevant behavior models in the rat. Psychopharmacology 165(2):128–135.  https://doi.org/10.1007/s00213-002-1240-x CrossRefPubMedGoogle Scholar
  53. 53.
    Vigolo A, Ossato A, Trapella C, Vincenzi F, Rimondo C, Seri C, Varani K, Serpelloni G et al (2015) Novel halogenated derivates of JWH-018: behavioral and binding studies in mice. Neuropharmacology 95:68–82.  https://doi.org/10.1016/j.neuropharm.2015.02.008 CrossRefPubMedGoogle Scholar
  54. 54.
    Ossato A, Vigolo A, Trapella C, Seri C, Rimondo C, Serpelloni G, Marti M (2015) JWH-018 impairs sensorimotor functions in mice. Neuroscience 300:174–188.  https://doi.org/10.1016/j.neuroscience.2015.05.021 CrossRefPubMedGoogle Scholar
  55. 55.
    Sherwood ER, Toliver-Kinsky T (2004) Mechanisms of the inflammatory response. Best Pract Res Clin Anaesthesiol 18(3):385–405CrossRefPubMedGoogle Scholar
  56. 56.
    Castardo JC, Prudente AS, Ferreira J, Guimarães CL, Monache FD, Filho VC, Otuki MF, Cabrini DA (2008) Anti-inflammatory effects of hydroalcoholic extract and two biflavonoids from Garcinia gardneriana leaves in mouse paw ooedema. J Ethnopharmacol 118(3):405–411.  https://doi.org/10.1016/j.jep.2008.05.002 CrossRefPubMedGoogle Scholar
  57. 57.
    Vinegar R, Truax JF, Selph JL, Johnston PR, Venable AL, McKenzie KK (1987) Pathway to carrageenan-induced inflammation in the hind limb of the rat. Fed Proc 46(1):118–126PubMedGoogle Scholar
  58. 58.
    Oliveira-Fusaro MC, Zanoni CI, Dos Santos GG, Manzo LP, Araldi D, Bonet IJ, Tambeli CH, Dias EV et al (2017) Antihyperalgesic effect of CB1 receptor activation involves the modulation of P2X3 receptor in the primary afferent neuron. Eur J Pharmacol 798:113–121.  https://doi.org/10.1016/j.ejphar.2017.01.030 CrossRefPubMedGoogle Scholar
  59. 59.
    Ignatowska-Jankowska BM, Baillie GL, Kinsey S, Crowe M, Ghosh S, Owens RA, Damaj IM, Poklis J et al (2015) A cannabinoid CB1 receptor-positive allosteric modulator reduces neuropathic pain in the mouse with no psychoactive effects. Neuropsychopharmacology 40(13):2948–2959.  https://doi.org/10.1038/npp.2015.148 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Demuth DG, Molleman A (2006) Cannabinoid signalling. Life Sci 78(6):549–563.  https://doi.org/10.1016/j.lfs.2005.05.055 CrossRefPubMedGoogle Scholar
  61. 61.
    Busquets Garcia A, Soria-Gomez E, Bellocchio L, Marsicano G (2016) Cannabinoid receptor type-1: breaking the dogmas. F1000Res 5. doi: 10.12688/f1000research.8245.1
  62. 62.
    Howlett AC (2005) Cannabinoid receptor signaling. Handb Exp Pharmacol 168:53–79CrossRefGoogle Scholar
  63. 63.
    Little PJ, Compton DR, Johnson MR, Melvin LS, Martin BR (1988) Pharmacology and stereoselectivity of structurally novel cannabinoids in mice. J Pharmacol Exp Ther 247(3):1046–1051PubMedGoogle Scholar
  64. 64.
    Martin BR, Compton DR, Prescott WR, Barrett RL, Razdan RK (1995) Pharmacological evaluation of dimethylheptyl analogs of delta 9-THC: reassessment of the putative three-point cannabinoid-receptor interaction. Drug Alcohol Depend 37(3):231–240CrossRefPubMedGoogle Scholar
  65. 65.
    Varvel SA, Bridgen DT, Tao Q, Thomas BF, Martin BR, Lichtman AH (2005) Delta9-tetrahydrocannbinol accounts for the antinociceptive, hypothermic, and cataleptic effects of marijuana in mice. J Pharmacol Exp Ther 314(1):329–337.  https://doi.org/10.1124/jpet.104.080739 CrossRefPubMedGoogle Scholar
  66. 66.
    Canazza I, Ossato A, Trapella C, Fantinati A, De Luca MA, Margiani G, Vincenzi F, Rimondo C et al (2016) Effect of the novel synthetic cannabinoids AKB48 and 5F-AKB48 on “tetrad”, sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo pharmacological studies. Psychopharmacology 233(21–22):3685–3709.  https://doi.org/10.1007/s00213-016-4402-y CrossRefPubMedGoogle Scholar
  67. 67.
    Guay J, Bateman K, Gordon R, Mancini J, Riendeau D (2004) Carrageenan-induced paw oedema in rat elicits a predominant prostaglandin E2 (PGE2) response in the central nervous system associated with the induction of microsomal PGE2 synthase-1. J Biol Chem 279(23):24866–24872.  https://doi.org/10.1074/jbc.M403106200 CrossRefPubMedGoogle Scholar
  68. 68.
    Impellizzeri D, Cordaro M, Bruschetta G, Crupi R, Pascali J, Alfonsi D, Marcolongo G, Cuzzocrea S (2016) 2-Pentadecyl-2-oxazoline: identification in coffee, synthesis and activity in a rat model of carrageenan-induced hindpaw inflammation. Pharmacol Res 108:23–30.  https://doi.org/10.1016/j.phrs.2016.04.007 CrossRefPubMedGoogle Scholar
  69. 69.
    Bulugonda RK, Kumar KA, Gangappa D, Beeda H, Philip GH, Muralidhara Rao D, Faisal SM (2017) Mangiferin from Pueraria tuberosa reduces inflammation via inactivation of NLRP3 inflammasome. Sci Rep 7:42683.  https://doi.org/10.1038/srep42683 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F (2008) CB2 receptors in the brain: role in central immune function. Br J Pharmacol 153(2):240–251.  https://doi.org/10.1038/sj.bjp.0707584 CrossRefPubMedGoogle Scholar
  71. 71.
    Miller AM, Stella N (2008) CB2 receptor-mediated migration of immune cells: it can go either way. Br J Pharmacol 153(2):299–308.  https://doi.org/10.1038/sj.bjp.0707523 CrossRefPubMedGoogle Scholar
  72. 72.
    Lin S, Li Y, Shen L, Zhang R, Yang L, Li M, Li K, Fichna J (2017) The anti-inflammatory effect and intestinal barrier protection of HU210 differentially depend on TLR4 signaling in dextran sulfate sodium-induced murine colitis. Dig Dis Sci 62(2):372–386.  https://doi.org/10.1007/s10620-016-4404-y CrossRefPubMedGoogle Scholar
  73. 73.
    Feng YJ, Li YY, Lin XH, Li K, Cao MH (2016) Anti-inflammatory effect of cannabinoid agonist WIN55,212 on mouse experimental colitis is related to inhibition of p38MAPK. World J Gastroenterol 22(43):9515–9524.  https://doi.org/10.3748/wjg.v22.i43.9515 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Yoshinaga T, Uwabe K, Naito S, Higashino K, Nakano T, Numata Y, Kihara A (2016) AM251 suppresses epithelial-mesenchymal transition of renal tubular epithelial cells. PLoS One 11(12):e0167848.  https://doi.org/10.1371/journal.pone.0167848 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Siqueira VPC, Evangelista MIS, Dos Santos A, Marcos RL, Ligeiro-de-Oliveira AP, Pavani C, Damazo AS, Lino-Dos-Santos-Franco A (2017) Light-emitting diode treatment ameliorates allergic lung inflammation in experimental model of asthma induced by ovalbumin. J Biophotonics.  https://doi.org/10.1002/jbio.201600247
  76. 76.
    Manchini MT, Serra AJ, Feliciano RS, Santana ET, Antônio EL, de Tarso Camillo de Carvalho P, Montemor J, Crajoinas RO et al (2014) Amelioration of cardiac function and activation of anti-inflammatory vasoactive peptides expression in the rat myocardium by low level laser therapy. PLoS One 9, e101270(7).  https://doi.org/10.1371/journal.pone.0101270
  77. 77.
    Yang Z, Wu Y, Zhang H, Jin P, Wang W, Hou J, Wei Y, Hu S (2011) Low-level laser irradiation alters cardiac cytokine expression following acute myocardial infarction: a potential mechanism for laser therapy. Photomed Laser Surg 29(6):391–398.  https://doi.org/10.1089/pho.2010.2866 CrossRefPubMedGoogle Scholar
  78. 78.
    Haslerud S, Lopes-Martins RA, Frigo L, Bjordal JM, Marcos RL, Naterstad IF, Magnussen LH, Joensen J (2017) Low-level laser therapy and cryotherapy as mono- and adjunctive therapies for Achilles tendinopathy in rats. Photomed Laser Surg 35(1):32–42.  https://doi.org/10.1089/pho.2016.4150 CrossRefPubMedGoogle Scholar
  79. 79.
    Bartos A, Grondin Y, Bortoni ME, Ghelfi E, Sepulveda R, Carroll J, Rogers RA (2016) Pre-conditioning with near infrared photobiomodulation reduces inflammatory cytokines and markers of oxidative stress in cochlear hair cells. J Biophotonics 9(11–12):1125–1135.  https://doi.org/10.1002/jbio.201500209 CrossRefPubMedGoogle Scholar
  80. 80.
    Rosenberg EC, Patra PH, Whalley BJ (2017) Therapeutic effects of cannabinoids in animal models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection. Epilepsy Behav 70(Pt B):319–327.  https://doi.org/10.1016/j.yebeh.2016.11.006 CrossRefPubMedGoogle Scholar
  81. 81.
    Javed H, Azimullah S, Haque ME, Ojha SK (2016) Cannabinoid type 2 (CB2) receptors activation protects against oxidative stress and neuroinflammation associated dopaminergic neurodegeneration in rotenone model of Parkinson’s disease. Front Neurosci 10:321.  https://doi.org/10.3389/fnins.2016.00321 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Malek N, Mrugala M, Makuch W, Kolosowska N, Przewlocka B, Binkowski M, Czaja M, Morera E et al (2015) A multi-target approach for pain treatment: dual inhibition of fatty acid amide hydrolase and TRPV1 in a rat model of osteoarthritis. Pain 156(5):890–903.  https://doi.org/10.1097/j.pain.0000000000000132 CrossRefPubMedGoogle Scholar
  83. 83.
    Kay E, Scotland RS, Whiteford JR (2014) Toll-like receptors: role in inflammation and therapeutic potential. Biofactors 40(3):284–294.  https://doi.org/10.1002/biof.1156 CrossRefPubMedGoogle Scholar
  84. 84.
    Broz P, Monack DM (2013) Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol 13(8):551–565.  https://doi.org/10.1038/nri3479 CrossRefPubMedGoogle Scholar
  85. 85.
    Sepehri Z, Kiani Z, Kohan F, Alavian SM, Ghavami S (2017) Toll like receptor 4 and hepatocellular carcinoma: a systematic review. Life Sci 179:80–87.  https://doi.org/10.1016/j.lfs.2017.04.025 CrossRefPubMedGoogle Scholar
  86. 86.
    Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376.  https://doi.org/10.1146/annurev.immunol.21.120601.141126 CrossRefPubMedGoogle Scholar
  87. 87.
    Podda G, Nyirenda M, Crooks J, Gran B (2013) Innate immune responses in the CNS: role of toll-like receptors, mechanisms, and therapeutic opportunities in multiple sclerosis. J NeuroImmune Pharmacol 8(4):791–806.  https://doi.org/10.1007/s11481-013-9483-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Laís M. S. Neves
    • 1
    • 2
  • Elaine C. D. Gonçalves
    • 1
    • 3
  • Juliana Cavalli
    • 1
  • Graziela Vieira
    • 1
  • Larissa R. Laurindo
    • 1
  • Róli R. Simões
    • 4
  • Igor S. Coelho
    • 3
    • 4
  • Adair R. S. Santos
    • 3
    • 4
  • Alexandre M. Marcolino
    • 2
  • Maíra Cola
    • 1
  • Rafael C. Dutra
    • 1
    • 3
  1. 1.Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Center AraranguáUniversidade Federal de Santa CatarinaAraranguáBrazil
  2. 2.Laboratory of Assessment and Rehabilitation of the Locomotor Apparatus, Department of Health Sciences, Center AraranguáUniversidade Federal de Santa CatarinaAraranguáBrazil
  3. 3.Post-Graduate Program of Neuroscience, Center of Biological SciencesUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  4. 4.Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological SciencesUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations