Advertisement

Molecular Neurobiology

, Volume 55, Issue 7, pp 5565–5579 | Cite as

Age-Dependent Neurochemical Remodeling of Hypothalamic Astrocytes

  • Camila Leite Santos
  • Paola Haack Amaral Roppa
  • Pedro Truccolo
  • Fernanda Urruth Fontella
  • Diogo Onofre Souza
  • Larissa Daniele Bobermin
  • André Quincozes-Santos
Article

Abstract

The hypothalamus is a crucial integrative center in the central nervous system, responsible for the regulation of homeostatic activities, including systemic energy balance. Increasing evidence has highlighted a critical role of astrocytes in orchestrating hypothalamic functions; they participate in the modulation of synaptic transmission, metabolic and trophic support to neurons, immune defense, and nutrient sensing. In this context, disturbance of systemic energy homeostasis, which is a common feature of obesity and the aging process, involves inflammatory responses. This may be related to dysfunction of hypothalamic astrocytes. In this regard, the aim of this study was to evaluate the neurochemical properties of hypothalamic astrocyte cultures from newborn, adult, and aged Wistar rats. Age-dependent changes in the regulation of glutamatergic homeostasis, glutathione biosynthesis, amino acid profile, glucose metabolism, trophic support, and inflammatory response were observed. Additionally, signaling pathways including nuclear factor erythroid-derived 2-like 2/heme oxygenase-1 p38 mitogen-activated protein kinase, nuclear factor kappa B, phosphatidylinositide 3-kinase/Akt, and leptin receptor expression may represent putative mechanisms associated with the cellular alterations. In summary, our findings indicate that as age increases, hypothalamic astrocytes remodel and exhibit changes in their neurochemical properties. This process may play a role in the onset and/or progression of metabolic disorders.

Keywords

Hypothalamus Astrocytes Aging Energy homeostasis Inflammatory response Leptin 

Notes

Acknowledgements

This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Universidade Federal do Rio Grande do Sul, and Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteção (INCTEN/CNPq).

References

  1. 1.
    Cone RD, Cowley MA, Butler AA et al (2001) The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord J Int Assoc Study Obes 25(Suppl 5):S63–S67.  https://doi.org/10.1038/sj.ijo.0801913 CrossRefGoogle Scholar
  2. 2.
    Schneeberger M, Gomis R, Claret M (2014) Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol 220:T25–T46.  https://doi.org/10.1530/JOE-13-0398 CrossRefPubMedGoogle Scholar
  3. 3.
    Webber ES, Bonci A, Krashes MJ (2015) The elegance of energy balance: insight from circuit-level manipulations. Synap N Y N 69:461–474.  https://doi.org/10.1002/syn.21837 CrossRefGoogle Scholar
  4. 4.
    Argente-Arizón P, Freire-Regatillo A, Argente J, Chowen JA (2015) Role of non-neuronal cells in body weight and appetite control. Front Endocrinol 6:42.  https://doi.org/10.3389/fendo.2015.00042 Google Scholar
  5. 5.
    Chowen JA, Argente-Arizón P, Freire-Regatillo A et al (2016) The role of astrocytes in the hypothalamic response and adaptation to metabolic signals. Prog Neurobiol 144:68–87.  https://doi.org/10.1016/j.pneurobio.2016.03.001 CrossRefPubMedGoogle Scholar
  6. 6.
    De Souza CT, Araujo EP, Bordin S et al (2005) Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146:4192–4199.  https://doi.org/10.1210/en.2004-1520 CrossRefPubMedGoogle Scholar
  7. 7.
    Argente-Arizón P, Guerra-Cantera S, Garcia-Segura LM et al (2017) Glial cells and energy balance. J Mol Endocrinol 58:R59–R71.  https://doi.org/10.1530/JME-16-0182 CrossRefPubMedGoogle Scholar
  8. 8.
    Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738.  https://doi.org/10.1016/j.cmet.2011.08.016 CrossRefPubMedGoogle Scholar
  9. 9.
    Jourdain P, Bergersen LH, Bhaukaurally K et al (2007) Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10:331–339.  https://doi.org/10.1038/nn1849 CrossRefPubMedGoogle Scholar
  10. 10.
    Panatier A, Theodosis DT, Mothet J-P et al (2006) Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 125:775–784.  https://doi.org/10.1016/j.cell.2006.02.051 CrossRefPubMedGoogle Scholar
  11. 11.
    Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431.  https://doi.org/10.1016/j.tins.2009.05.001 CrossRefPubMedGoogle Scholar
  12. 12.
    Zhou Y, Danbolt NC (2013) GABA and glutamate transporters in brain. Front Endocrinol 4:165.  https://doi.org/10.3389/fendo.2013.00165 CrossRefGoogle Scholar
  13. 13.
    Fuente-Martín E, García-Cáceres C, Granado M et al (2012) Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes. J Clin Invest 122:3900–3913.  https://doi.org/10.1172/JCI64102 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hsuchou H, Pan W, Barnes MJ, Kastin AJ (2009) Leptin receptor mRNA in rat brain astrocytes. Peptides 30:2275–2280.  https://doi.org/10.1016/j.peptides.2009.08.023 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Leloup C, Allard C, Carneiro L et al (2016) Glucose and hypothalamic astrocytes: more than a fueling role? Neuroscience 323:110–120.  https://doi.org/10.1016/j.neuroscience.2015.06.007 CrossRefPubMedGoogle Scholar
  16. 16.
    Teschemacher AG, Gourine AV, Kasparov S (2015) A role for astrocytes in sensing the brain microenvironment and neuro-metabolic integration. Neurochem Res 40:2386–2393.  https://doi.org/10.1007/s11064-015-1562-9 CrossRefPubMedGoogle Scholar
  17. 17.
    Ahima RS (2009) Connecting obesity, aging and diabetes. Nat Med 15:996–997.  https://doi.org/10.1038/nm0909-996 CrossRefPubMedGoogle Scholar
  18. 18.
    Rostás I, Tenk J, Mikó A et al (2016) Age-related changes in acute central leptin effects on energy balance are promoted by obesity. Exp Gerontol 85:118–127.  https://doi.org/10.1016/j.exger.2016.10.006 CrossRefPubMedGoogle Scholar
  19. 19.
    Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138–145.  https://doi.org/10.1016/j.it.2007.01.005 CrossRefPubMedGoogle Scholar
  20. 20.
    Jensen CJ, Massie A, De Keyser J (2013) Immune players in the CNS: the astrocyte. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol 8:824–839.  https://doi.org/10.1007/s11481-013-9480-6 CrossRefGoogle Scholar
  21. 21.
    Valdearcos M, Xu AW, Koliwad SK (2015) Hypothalamic inflammation in the control of metabolic function. Annu Rev Physiol 77:131–160.  https://doi.org/10.1146/annurev-physiol-021014-071656 CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang X, Zhang G, Zhang H et al (2008) Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 135:61–73.  https://doi.org/10.1016/j.cell.2008.07.043 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jiang T, Cadenas E (2014) Astrocytic metabolic and inflammatory changes as a function of age. Aging Cell 13:1059–1067.  https://doi.org/10.1111/acel.12268 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhang G, Li J, Purkayastha S et al (2013) Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497:211–216.  https://doi.org/10.1038/nature12143 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mitteldorf J (2015) Is programmed aging a cause for optimism? Curr Aging Sci 8:69–75CrossRefPubMedGoogle Scholar
  26. 26.
    Salminen LE, Paul RH (2014) Oxidative stress and genetic markers of suboptimal antioxidant defense in the aging brain: a theoretical review. Rev Neurosci 25:805–819.  https://doi.org/10.1515/revneuro-2014-0046 CrossRefPubMedGoogle Scholar
  27. 27.
    Soreq L, UK Brain Expression Consortium, North American Brain Expression Consortium et al (2017) Major shifts in glial regional identity are a transcriptional hallmark of human brain aging. Cell Rep 18:557–570.  https://doi.org/10.1016/j.celrep.2016.12.011 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bellaver B, Dos Santos JP, Leffa DT et al (2017) Systemic inflammation as a driver of brain injury: the astrocyte as an emerging player. Mol Neurobiol.  https://doi.org/10.1007/s12035-017-0526-2
  29. 29.
    Souza DG, Bellaver B, Bobermin LD et al (2016) Anti-aging effects of guanosine in glial cells. Purinergic Signal 12:697–706.  https://doi.org/10.1007/s11302-016-9533-4 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2016) Hippocampal astrocyte cultures from adult and aged rats reproduce changes in glial functionality observed in the aging brain. Mol Neurobiol.  https://doi.org/10.1007/s12035-016-9880-8
  31. 31.
    Souza DG, Bellaver B, Souza DO, Quincozes-Santos A (2013) Characterization of adult rat astrocyte cultures. PLoS One 8:e60282.  https://doi.org/10.1371/journal.pone.0060282 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bobermin LD, Hansel G, Scherer EBS et al (2015) Ammonia impairs glutamatergic communication in astroglial cells: protective role of resveratrol. Toxicol Vitro Int J Publ Assoc BIBRA 29:2022–2029.  https://doi.org/10.1016/j.tiv.2015.08.008 CrossRefGoogle Scholar
  33. 33.
    Pellegrini D, Onor M, Degano I, Bramanti E (2014) Development and validation of a novel derivatization method for the determination of lactate in urine and saliva by liquid chromatography with UV and fluorescence detection. Talanta 130:280–287.  https://doi.org/10.1016/j.talanta.2014.07.015 CrossRefPubMedGoogle Scholar
  34. 34.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods San Diego Calif 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  35. 35.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  36. 36.
    Kim SK, Nabekura J, Koizumi S (2017) Astrocyte-mediated synapse remodeling in the pathological brain: astrocyte-mediated synapse remodeling. Glia.  https://doi.org/10.1002/glia.23169
  37. 37.
    Parpura V, Verkhratsky A (2013) Astroglial amino acid-based transmitter receptors. Amino Acids 44:1151–1158.  https://doi.org/10.1007/s00726-013-1458-4 CrossRefPubMedGoogle Scholar
  38. 38.
    Karaca M, Frigerio F, Migrenne S et al (2015) GDH-dependent glutamate oxidation in the brain dictates peripheral energy substrate distribution. Cell Rep 13:365–375.  https://doi.org/10.1016/j.celrep.2015.09.003 CrossRefPubMedGoogle Scholar
  39. 39.
    Kreft M, Bak LK, Waagepetersen HS, Schousboe A (2012) Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation. ASN Neuro.  https://doi.org/10.1042/AN20120007
  40. 40.
    Wolosker H (2011) Serine racemase and the serine shuttle between neurons and astrocytes. Biochim Biophys Acta 1814:1558–1566.  https://doi.org/10.1016/j.bbapap.2011.01.001 CrossRefPubMedGoogle Scholar
  41. 41.
    McBean GJ (2012) The transsulfuration pathway: a source of cysteine for glutathione in astrocytes. Amino Acids 42:199–205.  https://doi.org/10.1007/s00726-011-0864-8 CrossRefPubMedGoogle Scholar
  42. 42.
    Dadsetan S, Kukolj E, Bak LK et al (2013) Brain alanine formation as an ammonia-scavenging pathway during hyperammonemia: effects of glutamine synthetase inhibition in rats and astrocyte-neuron co-cultures. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 33:1235–1241.  https://doi.org/10.1038/jcbfm.2013.73 CrossRefGoogle Scholar
  43. 43.
    Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A (2000) A possible role of alanine for ammonia transfer between astrocytes and glutamatergic neurons. J Neurochem 75:471–479CrossRefPubMedGoogle Scholar
  44. 44.
    Oliet SH, Piet R, Poulain DA (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292:923–926.  https://doi.org/10.1126/science.1059162 CrossRefPubMedGoogle Scholar
  45. 45.
    Delgado TC (2013) Glutamate and GABA in appetite regulation. Front Endocrinol.  https://doi.org/10.3389/fendo.2013.00103
  46. 46.
    Collin M, Bäckberg M, Ovesjö M-L et al (2003) Plasma membrane and vesicular glutamate transporter mRNAs/proteins in hypothalamic neurons that regulate body weight. Eur J Neurosci 18:1265–1278CrossRefPubMedGoogle Scholar
  47. 47.
    Jarvie BC, Hentges ST (2012) Expression of GABAergic and glutamatergic phenotypic markers in hypothalamic proopiomelanocortin neurons. J Comp Neurol 520:3863–3876.  https://doi.org/10.1002/cne.23127 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Stanley BG, Ha LH, Spears LC, Dee MG (1993) Lateral hypothalamic injections of glutamate, kainic acid, D,L-alpha-amino-3-hydroxy-5-methyl-isoxazole propionic acid or N-methyl-D-aspartic acid rapidly elicit intense transient eating in rats. Brain Res 613:88–95CrossRefPubMedGoogle Scholar
  49. 49.
    Stricker-Krongrad A, Beck B, Nicolas JP, Burlet C (1992) Central effects of monosodium glutamate on feeding behavior in adult Long-Evans rats. Pharmacol Biochem Behav 43:881–886CrossRefPubMedGoogle Scholar
  50. 50.
    Delgado-Rubín A, Chowen JA, Argente J, Frago LM (2009) Growth hormone-releasing peptide 6 protection of hypothalamic neurons from glutamate excitotoxicity is caspase independent and not mediated by insulin-like growth factor I. Eur J Neurosci 29:2115–2124.  https://doi.org/10.1111/j.1460-9568.2009.06770.x CrossRefPubMedGoogle Scholar
  51. 51.
    Fuente-Martín E, García-Cáceres C, Argente-Arizón P et al (2016) Ghrelin regulates glucose and glutamate transporters in hypothalamic astrocytes. Sci Rep 6:23673.  https://doi.org/10.1038/srep23673 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Tani H, Dulla CG, Farzampour Z et al (2014) A local glutamate-glutamine cycle sustains synaptic excitatory transmitter release. Neuron 81:888–900.  https://doi.org/10.1016/j.neuron.2013.12.026 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27:735–743.  https://doi.org/10.1016/j.tins.2004.10.008 CrossRefPubMedGoogle Scholar
  54. 54.
    Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671CrossRefPubMedGoogle Scholar
  55. 55.
    Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830:3143–3153.  https://doi.org/10.1016/j.bbagen.2012.09.008 CrossRefPubMedGoogle Scholar
  56. 56.
    Liddell JR, Robinson SR, Dringen R, Bishop GM (2010) Astrocytes retain their antioxidant capacity into advanced old age. Glia 58:1500–1509.  https://doi.org/10.1002/glia.21024 PubMedGoogle Scholar
  57. 57.
    Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2-an update. Free Radic Biol Med 66:36–44.  https://doi.org/10.1016/j.freeradbiomed.2013.02.008 CrossRefPubMedGoogle Scholar
  58. 58.
    Alam J, Cook JL (2003) Transcriptional regulation of the heme oxygenase-1 gene via the stress response element pathway. Curr Pharm Des 9:2499–2511CrossRefPubMedGoogle Scholar
  59. 59.
    Vargas MR, Johnson DA, Sirkis DW et al (2008) Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci 28:13574–13581.  https://doi.org/10.1523/JNEUROSCI.4099-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Dunn LL, Midwinter RG, Ni J et al (2014) New insights into intracellular locations and functions of heme oxygenase-1. Antioxid Redox Signal 20:1723–1742.  https://doi.org/10.1089/ars.2013.5675 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Motterlini R, Foresti R (2014) Heme oxygenase-1 as a target for drug discovery. Antioxid Redox Signal 20:1810–1826.  https://doi.org/10.1089/ars.2013.5658 CrossRefPubMedGoogle Scholar
  62. 62.
    Arús BA, Souza DG, Bellaver B et al (2017) Resveratrol modulates GSH system in C6 astroglial cells through heme oxygenase 1 pathway. Mol Cell Biochem 428:67–77.  https://doi.org/10.1007/s11010-016-2917-5 CrossRefPubMedGoogle Scholar
  63. 63.
    Bellaver B, Bobermin LD, Souza DG et al (2016) Signaling mechanisms underlying the glioprotective effects of resveratrol against mitochondrial dysfunction. Biochim Biophys Acta (BBA) - Mol Basis Dis 1862:1827–1838.  https://doi.org/10.1016/j.bbadis.2016.06.018 CrossRefGoogle Scholar
  64. 64.
    Quincozes-Santos A, Bobermin LD, Latini A et al (2013) Resveratrol protects C6 astrocyte cell line against hydrogen peroxide-induced oxidative stress through heme oxygenase 1. PLoS One 8:e64372.  https://doi.org/10.1371/journal.pone.0064372 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Quincozes-Santos A, Bobermin LD, Souza DG et al (2014) Guanosine protects C6 astroglial cells against azide-induced oxidative damage: a putative role of heme oxygenase 1. J Neurochem 130:61–74.  https://doi.org/10.1111/jnc.12694 CrossRefPubMedGoogle Scholar
  66. 66.
    Mächler P, Wyss MT, Elsayed M et al (2016) In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab 23:94–102.  https://doi.org/10.1016/j.cmet.2015.10.010 CrossRefPubMedGoogle Scholar
  67. 67.
    Pellerin L (2005) How astrocytes feed hungry neurons. Mol Neurobiol 32:59–72.  https://doi.org/10.1385/MN:32:1:059 CrossRefPubMedGoogle Scholar
  68. 68.
    Song Z, Routh VH (2005) Differential effects of glucose and lactate on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes 54:15–22CrossRefPubMedGoogle Scholar
  69. 69.
    Allen SJ, Watson JJ, Shoemark DK et al (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138:155–175.  https://doi.org/10.1016/j.pharmthera.2013.01.004 CrossRefPubMedGoogle Scholar
  70. 70.
    Diniz LP, Matias ICP, Garcia MN, Gomes FCA (2014) Astrocytic control of neural circuit formation: highlights on TGF-beta signaling. Neurochem Int 78:18–27.  https://doi.org/10.1016/j.neuint.2014.07.008 CrossRefPubMedGoogle Scholar
  71. 71.
    Markiewicz I, Lukomska B (2006) The role of astrocytes in the physiology and pathology of the central nervous system. Acta Neurobiol Exp (Warsz) 66:343–358Google Scholar
  72. 72.
    Cordeira J, Rios M (2011) Weighing in the role of BDNF in the central control of eating behavior. Mol Neurobiol 44:441–448.  https://doi.org/10.1007/s12035-011-8212-2 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Gray J, Yeo GSH, Cox JJ et al (2006) Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes 55:3366–3371.  https://doi.org/10.2337/db06-0550 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Tümer N, Scarpace PJ, Dogan MD et al (2006) Hypothalamic rAAV-mediated GDNF gene delivery ameliorates age-related obesity. Neurobiol Aging 27:459–470.  https://doi.org/10.1016/j.neurobiolaging.2005.03.018 CrossRefPubMedGoogle Scholar
  75. 75.
    Doyle KP, Cekanaviciute E, Mamer LE, Buckwalter MS (2010) TGFβ signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke. J Neuroinflammation 7:62.  https://doi.org/10.1186/1742-2094-7-62 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Villarreal A, Seoane R, González Torres A et al (2014) S100B protein activates a RAGE-dependent autocrine loop in astrocytes: implications for its role in the propagation of reactive gliosis. J Neurochem 131:190–205.  https://doi.org/10.1111/jnc.12790 CrossRefPubMedGoogle Scholar
  77. 77.
    Yan J, Zhang H, Yin Y et al (2014) Obesity- and aging-induced excess of central transforming growth factor-β potentiates diabetic development via an RNA stress response. Nat Med 20:1001–1008.  https://doi.org/10.1038/nm.3616 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Buckman LB, Thompson MM, Lippert RN et al (2015) Evidence for a novel functional role of astrocytes in the acute homeostatic response to high-fat diet intake in mice. Mol Metab 4:58–63.  https://doi.org/10.1016/j.molmet.2014.10.001 CrossRefPubMedGoogle Scholar
  79. 79.
    Barzilai N, Huffman DM, Muzumdar RH, Bartke A (2012) The critical role of metabolic pathways in aging. Diabetes 61:1315–1322.  https://doi.org/10.2337/db11-1300 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Krishna KB, Stefanovic-Racic M, Dedousis N et al (2016) Similar degrees of obesity induced by diet or aging cause strikingly different immunologic and metabolic outcomes. Physiol Rep.  10.14814/phy2.12708
  81. 81.
    Kälin S, Heppner FL, Bechmann I et al (2015) Hypothalamic innate immune reaction in obesity. Nat Rev Endocrinol 11:339–351.  https://doi.org/10.1038/nrendo.2015.48 CrossRefPubMedGoogle Scholar
  82. 82.
    Gorina R, Font-Nieves M, Márquez-Kisinousky L et al (2011) Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. Glia 59:242–255.  https://doi.org/10.1002/glia.21094 CrossRefPubMedGoogle Scholar
  83. 83.
    Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN (2006) Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 38:1654–1661.  https://doi.org/10.1016/j.biocel.2006.03.021 CrossRefPubMedGoogle Scholar
  84. 84.
    Park J, Min J-S, Kim B et al (2015) Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways. Neurosci Lett 584:191–196.  https://doi.org/10.1016/j.neulet.2014.10.016 CrossRefPubMedGoogle Scholar
  85. 85.
    Wakabayashi N, Slocum SL, Skoko JJ et al (2010) When NRF2 talks, who’s listening? Antioxid Redox Signal 13:1649–1663.  https://doi.org/10.1089/ars.2010.3216 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Kim JG, Suyama S, Koch M et al (2014) Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat Neurosci 17:908–910.  https://doi.org/10.1038/nn.3725 CrossRefPubMedGoogle Scholar
  87. 87.
    Gabriely I, Ma XH, Yang XM et al (2002) Leptin resistance during aging is independent of fat mass. Diabetes 51:1016–1021CrossRefPubMedGoogle Scholar
  88. 88.
    Wauman J, Tavernier J (2011) Leptin receptor signaling: pathways to leptin resistance. Front Biosci Landmark Ed 16:2771–2793CrossRefPubMedGoogle Scholar
  89. 89.
    Allison MB, Myers MG (2014) Connecting leptin signaling to biological function. J Endocrinol 223:T25–T35.  https://doi.org/10.1530/JOE-14-0404 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657.  https://doi.org/10.1126/science.296.5573.1655 CrossRefPubMedGoogle Scholar
  91. 91.
    Wymann MP, Zvelebil M, Laffargue M (2003) Phosphoinositide 3-kinase signalling--which way to target? Trends Pharmacol Sci 24:366–376.  https://doi.org/10.1016/S0165-6147(03)00163-9 CrossRefPubMedGoogle Scholar
  92. 92.
    Lu Y, Lei S, Wang N et al (2016) Protective effect of minocycline against ketamine-induced injury in neural stem cell: involvement of PI3K/Akt and Gsk-3 beta pathway. Front Mol Neurosci 9:135.  https://doi.org/10.3389/fnmol.2016.00135 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Camila Leite Santos
    • 1
  • Paola Haack Amaral Roppa
    • 1
  • Pedro Truccolo
    • 1
  • Fernanda Urruth Fontella
    • 1
  • Diogo Onofre Souza
    • 1
  • Larissa Daniele Bobermin
    • 1
  • André Quincozes-Santos
    • 1
  1. 1.Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations