Skip to main content
Log in

Tibolone Reduces Oxidative Damage and Inflammation in Microglia Stimulated with Palmitic Acid through Mechanisms Involving Estrogen Receptor Beta

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

High concentrations of palmitic acid in plasma increase both the inflammation associated with obesity and the susceptibility to develop a neurodegenerative event. In the brain, the inflammatory response is mediated by activated microglial cells, which undergo morphological and biochemical changes and can directly affect cell viability. Recent evidence shows that the use of estrogenic compounds can control microglia-induced inflammation with promising results. In this study, we explored the actions of the synthetic steroid tibolone on BV-2 microglia cells stimulated with palmitic acid. Our results demonstrated that tibolone increased cell viability and reduced nuclear fragmentation and the production of reactive oxygen species, as well as preserved mitochondrial membrane potential. These effects were accompanied by reduced nuclear translocation of NF-κB p65, upregulation of neuroglobin, and improved antioxidant defense. Furthermore, estrogen receptor beta (ERβ) inhibition partially dampened tibolone’s protective actions in BV-2 cells stimulated with palmitic acid. In conclusion, tibolone protects BV-2 cells by a mechanism involving ERβ and upregulation of neuroglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sampath H, Ntambi JM (2005) Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr 25:317–340. https://doi.org/10.1146/annurev.nutr.25.051804.101917

    Article  PubMed  CAS  Google Scholar 

  2. Jump DB (2004) Fatty acid regulation of gene transcription. Crit Rev Clin Lab Sci 41(1):41–78. https://doi.org/10.1080/10408360490278341

    Article  PubMed  CAS  Google Scholar 

  3. Karelis AD, Faraj M, Bastard JP, St-Pierre DH, Brochu M, Prud'homme D, Rabasa-Lhoret R (2005) The metabolically healthy but obese individual presents a favorable inflammation profile. J Clin Endocrinol Metab 90(7):4145–4150. https://doi.org/10.1210/jc.2005-0482

    Article  PubMed  CAS  Google Scholar 

  4. Mattson MP, Chan SL, Duan W (2002) Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev 82(3):637–672. https://doi.org/10.1152/physrev.00004.2002

    Article  PubMed  CAS  Google Scholar 

  5. Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J NeuroImmune Pharmacol 4(4):399–418. https://doi.org/10.1007/s11481-009-9164-4

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tracy LM, Bergqvist F, Ivanova EV, Jacobsen KT, Iverfeldt K (2013) Exposure to the saturated free fatty acid palmitate alters BV-2 microglia inflammatory response. J Mol Neurosci 51(3):805–812. https://doi.org/10.1007/s12031-013-0068-7

    Article  PubMed  CAS  Google Scholar 

  7. Kappe C, Tracy LM, Patrone C, Iverfeldt K, Sjoholm A (2012) GLP-1 secretion by microglial cells and decreased CNS expression in obesity. J Neuroinflammation 9:276. https://doi.org/10.1186/1742-2094-9-276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Miller AA, Spencer SJ (2014) Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun 42:10–21. https://doi.org/10.1016/j.bbi.2014.04.001

    Article  PubMed  CAS  Google Scholar 

  9. De Zwaan M, Mitchell JE, Howell LM, Monson N, Swan-Kremeier L, Roerig JL, Kolotkin RL, Crosby RD (2002) Two measures of health-related quality of life in morbid obesity. Obes Res 10(11):1143–1151. https://doi.org/10.1038/oby.2002.155

    Article  PubMed  Google Scholar 

  10. Pekny M, Pekna M (2014) Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 94(4):1077–1098. https://doi.org/10.1152/physrev.00041.2013

    Article  PubMed  Google Scholar 

  11. Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P, Baker D, van Noort JM (2014) Inflammation in neurodegenerative diseases--an update. Immunology 142(2):151–166. https://doi.org/10.1111/imm.12233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pedraza-Alva G, Perez-Martinez L, Valdez-Hernandez L, Meza-Sosa KF, Ando-Kuri M (2015) Negative regulation of the inflammasome: keeping inflammation under control. Immunol Rev 265(1):231–257. https://doi.org/10.1111/imr.12294

    Article  PubMed  CAS  Google Scholar 

  13. Sochocka M, Diniz BS, Leszek J (2016) Inflammatory response in the CNS: friend or foe? Mol Neurobiol. https://doi.org/10.1007/s12035-016-0297-1

  14. Arevalo MA, Santos-Galindo M, Acaz-Fonseca E, Azcoitia I, Garcia-Segura LM (2013) Gonadal hormones and the control of reactive gliosis. Horm Behav 63(2):216–221. https://doi.org/10.1016/j.yhbeh.2012.02.021

    Article  PubMed  CAS  Google Scholar 

  15. Karve IP, Taylor JM, Crack PJ (2016) The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol 173(4):692–702. https://doi.org/10.1111/bph.13125

    Article  PubMed  CAS  Google Scholar 

  16. Haversen L, Danielsson KN, Fogelstrand L, Wiklund O (2009) Induction of proinflammatory cytokines by long-chain saturated fatty acids in human macrophages. Atherosclerosis 202(2):382–393. https://doi.org/10.1016/j.atherosclerosis.2008.05.033

    Article  PubMed  CAS  Google Scholar 

  17. Nilsen J, Brinton RD (2004) Mitochondria as therapeutic targets of estrogen action in the central nervous system. Curr Drug Targets CNS Neurol Disord 3(4):297–313

    Article  PubMed  CAS  Google Scholar 

  18. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353(6301):777–783. https://doi.org/10.1126/science.aag2590

    Article  PubMed  CAS  Google Scholar 

  19. Said MM, Bosland MC (2016) The anti-inflammatory effect of montelukast, a cysteinyl leukotriene receptor-1 antagonist, against estradiol-induced nonbacterial inflammation in the rat prostate. Naunyn Schmiedeberg's Arch Pharmacol. https://doi.org/10.1007/s00210-016-1325-4

  20. Sribnick EA, Ray SK, Banik NL (2006) Estrogen prevents glutamate-induced apoptosis in C6 glioma cells by a receptor-mediated mechanism. Neuroscience 137(1):197–209. https://doi.org/10.1016/j.neuroscience.2005.08.074

    Article  PubMed  CAS  Google Scholar 

  21. Toro-Urrego N, Garcia-Segura LM, Echeverria V, Barreto GE (2016) Testosterone protects mitochondrial function and regulates neuroglobin expression in astrocytic cells exposed to glucose deprivation. Front Aging Neurosci 8:152. https://doi.org/10.3389/fnagi.2016.00152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Avila Rodriguez M, Garcia-Segura LM, Cabezas R, Torrente D, Capani F, Gonzalez J, Barreto GE (2014) Tibolone protects T98G cells from glucose deprivation. J Steroid Biochem Mol Biol 144 Pt B:294–303. doi:https://doi.org/10.1016/j.jsbmb.2014.07.009

  23. Guzman CB, Zhao C, Deighton-Collins S, Kleerekoper M, Benjamins JA, Skafar DF (2007) Agonist activity of the 3-hydroxy metabolites of tibolone through the oestrogen receptor in the mouse N20.1 oligodendrocyte cell line and normal human astrocytes. J Neuroendocrinol 19(12):958–965. https://doi.org/10.1111/j.1365-2826.2007.01611.x

    Article  PubMed  CAS  Google Scholar 

  24. Farfan-Garcia ED, Castillo-Hernandez MC, Pinto-Almazan R, Rivas-Arancibia S, Gallardo JM, Guerra-Araiza C (2014) Tibolone prevents oxidation and ameliorates cholinergic deficit induced by ozone exposure in the male rat hippocampus. Neurochem Res 39(9):1776–1786. https://doi.org/10.1007/s11064-014-1385-0

    Article  PubMed  CAS  Google Scholar 

  25. Gompel A, Chaouat M, Jacob D, Perrot JY, Kloosterboer HJ, Rostene W (2002) In vitro studies of tibolone in breast cells. Fertil Steril 78(2):351–359

    Article  PubMed  Google Scholar 

  26. Avila-Rodriguez M, Garcia-Segura LM, Hidalgo-Lanussa O, Baez E, Gonzalez J, Barreto GE (2016) Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol 433:35–46. https://doi.org/10.1016/j.mce.2016.05.024

    Article  PubMed  CAS  Google Scholar 

  27. Baez E, Echeverria V, Cabezas R, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE (2016) Protection by neuroglobin expression in brain pathologies. Front Neurol 7:146. https://doi.org/10.3389/fneur.2016.00146

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fan R, Yu T, Lin JL, Ren GD, Li Y, Liao XX, Huang ZT, Jiang CH (2016) Remote ischemic preconditioning improves post resuscitation cerebral function via overexpressing neuroglobin after cardiac arrest in rats. Brain Res 1648 (Pt A):345–355. doi:https://doi.org/10.1016/j.brainres.2016.08.002

  29. Amri F, Ghouili I, Amri M, Carrier A, Masmoudi-Kouki O (2016) Neuroglobin protects astroglial cells from hydrogen peroxide-induced oxidative stress and apoptotic cell death. J Neurochem. https://doi.org/10.1111/jnc.13876

  30. Wang Z, Liu D, Wang F, Liu S, Zhao S, Ling EA, Hao A (2012) Saturated fatty acids activate microglia via toll-like receptor 4/NF-kappaB signalling. Br J Nutr 107(2):229–241. https://doi.org/10.1017/S0007114511002868

    Article  PubMed  CAS  Google Scholar 

  31. Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F (1990) Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 27(2–3):229–237

    Article  PubMed  CAS  Google Scholar 

  32. Takuma K, Baba A, Matsuda T (2004) Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 72(2):111–127. https://doi.org/10.1016/j.pneurobio.2004.02.001

    Article  PubMed  CAS  Google Scholar 

  33. Arevalo MA, Azcoitia I, Garcia-Segura LM (2015) The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci 16(1):17–29. https://doi.org/10.1038/nrn3856

    Article  PubMed  CAS  Google Scholar 

  34. Acaz-Fonseca E, Sanchez-Gonzalez R, Azcoitia I, Arevalo MA, Garcia-Segura LM (2014) Role of astrocytes in the neuroprotective actions of 17beta-estradiol and selective estrogen receptor modulators. Mol Cell Endocrinol 389(1–2):48–57. https://doi.org/10.1016/j.mce.2014.01.009

    Article  PubMed  CAS  Google Scholar 

  35. Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE (2016) Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol 144:5–26. https://doi.org/10.1016/j.pneurobio.2016.06.002

    Article  PubMed  CAS  Google Scholar 

  36. Sun HZ, Yang TW, Zang WJ, Wu SF (2010) Dehydroepiandrosterone-induced proliferation of prostatic epithelial cell is mediated by NFKB via PI3K/AKT signaling pathway. J Endocrinol 204(3):311–318. https://doi.org/10.1677/JOE-09-0270

    Article  PubMed  CAS  Google Scholar 

  37. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1(7285):785–789

    Article  PubMed  CAS  Google Scholar 

  38. Gries FA, Oberdisse K (1970) Lipid metabolism disorders and diabetes mellitus. Dtsch Med Wochenschr 95(14):727–734. https://doi.org/10.1055/s-0028-1108532

    Article  PubMed  CAS  Google Scholar 

  39. El Akoum S, Lamontagne V, Cloutier I, Tanguay JF (2011) Nature of fatty acids in high fat diets differentially delineates obesity-linked metabolic syndrome components in male and female C57BL/6J mice. Diabetol Metab Syndr 3:34. https://doi.org/10.1186/1758-5996-3-34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Little JP, Madeira JM, Klegeris A (2012) The saturated fatty acid palmitate induces human monocytic cell toxicity toward neuronal cells: exploring a possible link between obesity-related metabolic impairments and neuroinflammation. J Alzheimers Dis 30(Suppl 2):S179–S183. https://doi.org/10.3233/JAD-2011-111262

    Article  PubMed  CAS  Google Scholar 

  41. Kingsbury KJ, Heyes TD, Morgan DM, Aylot C, Burton PA, Emmerson R, Robinson PJ (1962) The effect of dietary changes on the fatty acid composition of normal human depot fat. Biochem J 84:124–133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Maloney E, Sweet IR, Hockenbery DM, Pham M, Rizzo NO, Tateya S, Handa P, Schwartz MW et al (2009) Activation of NF-kappaB by palmitate in endothelial cells: a key role for NADPH oxidase-derived superoxide in response to TLR4 activation. Arterioscler Thromb Vasc Biol 29(9):1370–1375. https://doi.org/10.1161/ATVBAHA.109.188813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lambertucci RH, Hirabara SM, Silveira Ldos R, Levada-Pires AC, Curi R, Pithon-Curi TC (2008) Palmitate increases superoxide production through mitochondrial electron transport chain and NADPH oxidase activity in skeletal muscle cells. J Cell Physiol 216(3):796–804. https://doi.org/10.1002/jcp.21463

    Article  PubMed  CAS  Google Scholar 

  44. Schonfeld P, Wojtczak L (2008) Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med 45(3):231–241. https://doi.org/10.1016/j.freeradbiomed.2008.04.029

    Article  PubMed  CAS  Google Scholar 

  45. Kloosterboer HJ (2004) Tissue-selective effects of tibolone on the breast. Maturitas 49(1):S5–S15. https://doi.org/10.1016/j.maturitas.2004.06.022

    Article  PubMed  CAS  Google Scholar 

  46. Reed MJ, Kloosterboer HJ (2004) Tibolone: a selective tissue estrogenic activity regulator (STEAR). Maturitas 48(Suppl 1):S4–S6. https://doi.org/10.1016/j.maturitas.2004.02.013

    Article  PubMed  CAS  Google Scholar 

  47. Wu SY, Chen YW, Tsai SF, Wu SN, Shih YH, Jiang-Shieh YF, Yang TT, Kuo YM (2016) Estrogen ameliorates microglial activation by inhibiting the Kir2.1 inward-rectifier K(+) channel. Sci Rep 6:22864. doi:https://doi.org/10.1038/srep22864

  48. Ishihara Y, Itoh K, Ishida A, Yamazaki T (2015) Selective estrogen-receptor modulators suppress microglial activation and neuronal cell death via an estrogen receptor-dependent pathway. J Steroid Biochem Mol Biol 145:85–93. https://doi.org/10.1016/j.jsbmb.2014.10.002

    Article  PubMed  CAS  Google Scholar 

  49. Yang L, Huang F, Mei J, Wang X, Zhang Q, Wang H, Xi M, You Z (2017) Posttranscriptional control of PD-L1 expression by 17beta-estradiol via PI3K/Akt signaling pathway in ER alpha-positive cancer cell lines. Int J Gynecol Cancer 27(2):196–205. https://doi.org/10.1097/IGC.0000000000000875

    Article  PubMed  PubMed Central  Google Scholar 

  50. Skiljic D, Nilsson S, Petersen A, Karlsson JO, Behndig A, Kalaboukhova L, Zetterberg M (2016) Oestradiol levels and superoxide dismutase activity in age-related cataract: a case-control study. BMC Ophthalmol 16(1):210. https://doi.org/10.1186/s12886-016-0392-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Priyanka HP, Singh RV, Pratap UP, Thyaga Rajan S (2014) Estrogen modulates beta2-adrenoceptor-induced cell-mediated and inflammatory immune responses through ER-alpha involving distinct intracellular signaling pathways, antioxidant enzymes, and nitric oxide. Cell Immunol 292(1–2):1–8. https://doi.org/10.1016/j.cellimm.2014.08.001

    Article  PubMed  CAS  Google Scholar 

  52. Feng L, Li W, Liu Y, Jiang WD, Kuang SY, Jiang J, Tang L, Zhang YA et al (2016) Protective role of phenylalanine on the ROS-induced oxidative damage, apoptosis and tight junction damage via Nrf2, TOR and NF-kappaB signalling molecules in the gill of fish. Fish Shellfish Immunol. https://doi.org/10.1016/j.fsi.2016.11.048

  53. Giatti S, Romano S, Pesaresi M, Cermenati G, Mitro N, Caruso D, Tetel MJ, Garcia-Segura LM et al (2015) Neuroactive steroids and the peripheral nervous system: an update. Steroids 103:23–30. https://doi.org/10.1016/j.steroids.2015.03.014

    Article  PubMed  CAS  Google Scholar 

  54. Madan K, Bhardwaj P, Thareja S, Gupta SD, Saraya A (2006) Oxidant stress and antioxidant status among patients with nonalcoholic fatty liver disease (NAFLD). J Clin Gastroenterol 40(10):930–935. https://doi.org/10.1097/01.mcg.0000212608.59090.08

    Article  PubMed  CAS  Google Scholar 

  55. Yuan L, Wu Y, Ren X, Liu Q, Wang J, Liu X (2014) Isoorientin attenuates lipopolysaccharide-induced pro-inflammatory responses through down-regulation of ROS-related MAPK/NF-kappaB signaling pathway in BV-2 microglia. Mol Cell Biochem 386(1–2):153–165. https://doi.org/10.1007/s11010-013-1854-9

    Article  PubMed  CAS  Google Scholar 

  56. Baulieu EE, Robel P, Schumacher M (2001) Neurosteroids: beginning of the story. Int Rev Neurobiol 46:1–32

    Article  PubMed  CAS  Google Scholar 

  57. Deshpande R, Khalili H, Pergolizzi RG, Michael SD, Chang MD (1997) Estradiol down-regulates LPS-induced cytokine production and NFkB activation in murine macrophages. Am J Reprod Immunol 38(1):46–54

    Article  PubMed  CAS  Google Scholar 

  58. Simpkins JW, Yi KD, Yang SH, Dykens JA (2010) Mitochondrial mechanisms of estrogen neuroprotection. Biochim Biophys Acta 1800(10):1113–1120. https://doi.org/10.1016/j.bbagen.2009.11.013

    Article  PubMed  CAS  Google Scholar 

  59. Cordeau P Jr, Lalancette-Hebert M, Weng YC, Kriz J (2016) Estrogen receptors alpha mediates postischemic inflammation in chronically estrogen-deprived mice. Neurobiol Aging 40:50–60. https://doi.org/10.1016/j.neurobiolaging.2016.01.002

    Article  PubMed  CAS  Google Scholar 

  60. Sukocheva OA, Yang Y, Gierthy JF (2009) Estrogen and progesterone interactive effects in postconfluent MCF-7 cell culture. Steroids 74(4–5):410–418. https://doi.org/10.1016/j.steroids.2008.12.010

    Article  PubMed  CAS  Google Scholar 

  61. Barreto GE, Santos-Galindo M, Garcia-Segura LM (2014) Selective estrogen receptor modulators regulate reactive microglia after penetrating brain injury. Front Aging Neurosci 6:132. https://doi.org/10.3389/fnagi.2014.00132

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wu WF, Tan XJ, Dai YB, Krishnan V, Warner M, Gustafsson JA (2013) Targeting estrogen receptor beta in microglia and T cells to treat experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 110(9):3543–3548. https://doi.org/10.1073/pnas.1300313110

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wood H (2011) Neuroimmunology: estrogen receptor ligands suppress inflammatory responses in astrocytes and microglia. Nat Rev Neurol 7(7):355. https://doi.org/10.1038/nrneurol.2011.87

    Article  PubMed  Google Scholar 

  64. Zhou Z, Zhou J, Du Y (2012) Estrogen receptor beta interacts and colocalizes with HADHB in mitochondria. Biochem Biophys Res Commun 427(2):305–308. https://doi.org/10.1016/j.bbrc.2012.09.047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Richardson TE, Yu AE, Wen Y, Yang SH, Simpkins JW (2012) Estrogen prevents oxidative damage to the mitochondria in Friedreich’s ataxia skin fibroblasts. PLoS One 7(4):e34600. https://doi.org/10.1371/journal.pone.0034600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Simpkins JW, Yang SH, Sarkar SN, Pearce V (2008) Estrogen actions on mitochondria--physiological and pathological implications. Mol Cell Endocrinol 290(1–2):51–59. https://doi.org/10.1016/j.mce.2008.04.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Simpkins JW, Wang J, Wang X, Perez E, Prokai L, Dykens JA (2005) Mitochondria play a central role in estrogen-induced neuroprotection. Curr Drug Targets CNS Neurol Disord 4(1):69–83

    Article  PubMed  CAS  Google Scholar 

  68. De Marinis E, Acaz-Fonseca E, Arevalo MA, Ascenzi P, Fiocchetti M, Marino M, Garcia-Segura LM (2013) 17beta-Oestradiol anti-inflammatory effects in primary astrocytes require oestrogen receptor beta-mediated neuroglobin up-regulation. J Neuroendocrinol 25(3):260–270. https://doi.org/10.1111/jne.12007

    Article  PubMed  CAS  Google Scholar 

  69. Acaz-Fonseca E, Duran JC, Carrero P, Garcia-Segura LM, Arevalo MA (2015) Sex differences in glia reactivity after cortical brain injury. Glia. https://doi.org/10.1002/glia.22867

  70. Sandhir R (2014) Neuroglobin increases brain fitness: commentary to: “Neuroglobin overexpression improves sensorimotor outcomes in a mouse model of traumatic brain injury”. Neurosci Lett 577:123–124. https://doi.org/10.1016/j.neulet.2014.06.005

    Article  PubMed  CAS  Google Scholar 

  71. Jin K, Mao Y, Mao X, Xie L, Greenberg DA (2010) Neuroglobin expression in ischemic stroke. Stroke 41(3):557–559. https://doi.org/10.1161/STROKEAHA.109.567149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. De Marinis E, Ascenzi P, Pellegrini M, Galluzzo P, Bulzomi P, Arevalo MA, Garcia-Segura LM, Marino M (2010) 17beta-estradiol--a new modulator of neuroglobin levels in neurons: role in neuroprotection against H(2)O(2)-induced toxicity. Neurosignals 18(4):223–235. https://doi.org/10.1159/000323906

    Article  PubMed  CAS  Google Scholar 

  73. Frasor J, Weaver A, Pradhan M, Dai Y, Miller LD, Lin CY, Stanculescu A (2009) Positive cross-talk between estrogen receptor and NF-kappaB in breast cancer. Cancer Res 69(23):8918–8925. https://doi.org/10.1158/0008-5472.CAN-09-2608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Heese K, Fiebich BL, Bauer J, Otten U (1997) Nerve growth factor (NGF) expression in rat microglia is induced by adenosine A2a-receptors. Neurosci Lett 231(2):83–86

    Article  PubMed  CAS  Google Scholar 

  75. Leszek J, Barreto GE, Gasiorowski K, Koutsouraki E, Avila-Rodrigues M, Aliev G (2016) Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: role of brain innate immune system. CNS Neurol Disord Drug Targets 15(3):329–336

    Article  PubMed  CAS  Google Scholar 

  76. Strle K, McCusker RH, Tran L, King A, Johnson RW, Freund GG, Dantzer R, Kelley KW (2007) Novel activity of an anti-inflammatory cytokine: IL-10 prevents TNFalpha-induced resistance to IGF-I in myoblasts. J Neuroimmunol 188(1–2):48–55. https://doi.org/10.1016/j.jneuroim.2007.05.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2′ -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27(2):120–139. https://doi.org/10.1080/10590500902885684

    Article  PubMed  CAS  Google Scholar 

  78. Bruce-Keller AJ, Keeling JL, Keller JN, Huang FF, Camondola S, Mattson MP (2000) Antiinflammatory effects of estrogen on microglial activation. Endocrinology 141(10):3646–3656. https://doi.org/10.1210/endo.141.10.7693

    Article  PubMed  CAS  Google Scholar 

  79. Fumagalli S, Perego C, Pischiutta F, Zanier ER, De Simoni MG (2015) The ischemic environment drives microglia and macrophage function. Front Neurol 6:81. https://doi.org/10.3389/fneur.2015.00081

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ganter S, Northoff H, Mannel D, Gebicke-Harter PJ (1992) Growth control of cultured microglia. J Neurosci Res 33(2):218–230. https://doi.org/10.1002/jnr.490330205

    Article  PubMed  CAS  Google Scholar 

  81. Mizoguchi S, Mori K, Wang Z, Liu T, Funahashi Y, Sato F, DeFranco DB, Yoshimura N et al (2017) Effects of estrogen receptor beta stimulation in a rat model of non-bacterial prostatic inflammation. Prostate 77(7):803–811. https://doi.org/10.1002/pros.23320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Pozzi S, Benedusi V, Maggi A, Vegeto E (2006) Estrogen action in neuroprotection and brain inflammation. Ann N Y Acad Sci 1089:302–323. https://doi.org/10.1196/annals.1386.035

    Article  PubMed  CAS  Google Scholar 

  83. Galea E, Santizo R, Feinstein DL, Adamsom P, Greenwood J, Koenig HM, Pelligrino DA (2002) Estrogen inhibits NF kappa B-dependent inflammation in brain endothelium without interfering with I kappa B degradation. Neuroreport 13(11):1469–1472

    Article  PubMed  CAS  Google Scholar 

  84. Acton QA (2012) Brain ischemia: new insights for the healthcare professional: 2012 edition: ScholarlyBrief. ScholarlyEditions, Atlanta

  85. Biswas DK, Singh S, Shi Q, Pardee AB, Iglehart JD (2005) Crossroads of estrogen receptor and NF-kappaB signaling. Sci STKE 2005(288):pe27. https://doi.org/10.1126/stke.2882005pe27

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge support from Ministerio de Economía y Competitividad (MINECO; grant number BFU2014-51836-C2-1-R), from CIBERFES, and Fondos FEDER.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis Miguel Garcia-Segura or George E. Barreto.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 152819 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidalgo-Lanussa, O., Ávila-Rodriguez, M., Baez-Jurado, E. et al. Tibolone Reduces Oxidative Damage and Inflammation in Microglia Stimulated with Palmitic Acid through Mechanisms Involving Estrogen Receptor Beta. Mol Neurobiol 55, 5462–5477 (2018). https://doi.org/10.1007/s12035-017-0777-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0777-y

Keywords

Navigation