Skip to main content

Advertisement

Log in

Clinacanthus nutans Mitigates Neuronal Apoptosis and Ischemic Brain Damage Through Augmenting the C/EBPβ-Driven PPAR-γ Transcription

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Clinacanthus nutans Lindau (C. nutans) is a traditional herbal medicine widely used in Asian countries for treating a number of remedies including snake and insect bites, skin rashes, viral infections, and cancer. However, the underlying molecular mechanisms for its action and whether C. nutans can offer protection on stroke damage in brain remain largely unknown. In the present study, we demonstrated protective effects of C. nutans extract to ameliorate neuronal apoptotic death in the oxygen-glucose deprivation model and to reduce infarction and mitigate functional deficits in the middle cerebral artery occlusion model, either administered before or after hypoxic/ischemic insult. Using pharmacological antagonist and siRNA knockdown approaches, we demonstrated ability for C. nutans extract to protect neurons and ameliorate ischemic injury through promoting the anti-apoptotic activity of peroxisome proliferator-activated receptor-gamma (PPAR-γ), a stress-induced transcription factor. Reporter and chromatin immunoprecipitation promoter analysis further revealed C. nutans extract to selectively increase CCAAT/enhancer binding protein (C/EBP)β binding to specific C/EBP binding site (-332~-325) on the PPAR-γ promoter to augment its transcription. In summary, we report a novel transcriptional activation involving C/EBPβ upregulation of PPAR-γ expression to suppress ischemic neuronal apoptosis and brain infarct. Recognition of C. nutans to enhance the C/EBPβ → PPAR-γ neuroprotective signaling pathway paves a new way for future drug development for prevention and treatment of ischemic stroke and other neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACO:

Acyl-CoA oxidase

C. nutans :

Clinacanthus nutans Lindau

CN:

80% ethanol leaf extract of C. nutans

CNS:

Central nervous system

C/EBP:

CCAAT/enhancer-binding protein

ChIP:

Chromatin immunoprecipitation

DMSO:

Dimethyl sulfoxide

β-Gal:

β-Galactosidase

icv:

Intracerebroventricular

i.p.:

Intraperitoneal

MCA:

Middle cerebral artery

MRI:

Magnetic resonance imaging

OGD:

Oxygen-glucose deprivation

PNs:

Primary cortical neurons

PPAR-γ:

Peroxisome proliferator-activated receptor-gamma

PPRE:

PPAR response element

tPA:

Tissue-type plasminogen activator

References

  1. Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR et al, American Heart Association Statistics Committee; Stroke Statistics Subcommittee (2016) Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation 133(4):e38–360

  2. Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67(2):181–198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333(24):1581–1587

    Article  Google Scholar 

  4. Wang X, Lee SR, Arai K, Lee SR, Tsuji K, Rebeck GW, Lo EH (2003) Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med 9(10):1313–1317

    Article  PubMed  CAS  Google Scholar 

  5. Chen YC, Wu JS, Yang ST, Huang CY, Chang C, Sun GY, Lin TN (2012) Stroke, angiogenesis and phytochemicals. Front Biosci (Schol Ed) 4:599–610

    CAS  Google Scholar 

  6. Goetz ME, Judd SE, Hartman TJ, McClellan W, Anderson A, Vaccarino V (2016) Flavanone intake is inversely associated with risk of incident ischemic stroke in the REasons for Geographic and Racial Differences in Stroke (REGARDS) Study. J Nutr 146(11):2233–2243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kim J, Fann DY, Seet RC, Jo DG, Mattson MP, Arumugam TV (2016) Phytochemicals in ischemic stroke. NeuroMolecular Med 18(3):283–305

    Article  PubMed  CAS  Google Scholar 

  8. Lee J, Jo DG, Park D, Chung HY, Mattson MP (2014) Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system. Pharmacol Rev 66(3):815–868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sun AY, Wang Q, Simonyi A, Sun GY (2008) Botanical phenolics and brain health. NeuroMolecular Med 10(4):259–274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Alam A, Ferdosh S, Ghafoor K, Hakim A, Juraimi AS, Khatib A, Sarker ZI (2016) Clinacanthus nutans: a review of the medicinal uses, pharmacology and phytochemistry. Asian Pac J Trop Med 9(4):402–409

    Article  PubMed  CAS  Google Scholar 

  11. Zulkipli IN, Rajabalaya R, Idris A, Sulaiman NA, David SR (2017) Clinacanthus nutans: a review on ethnomedicinal uses, chemical constituents and pharmacological properties. Pharm Biol 55(1):1093–1113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Ng PY, Chye SM, Ng CH, Koh RY, Tiong YL, Pui LP, Tan YH, Lim CS et al (2017) Clinacanthus nutans hexane extracts induce apoptosis through a caspase-dependent pathway in human cancer cell lines. Asian Pac J Cancer Prev 18(4):917–926

  13. Tan CS, Ho CF, Heng SS, Wu JS, Tan BK, Ng YK, Sun GY, Lin TN et al (2016) Clinacanthus nutans extracts modulate epigenetic link to cytosolic phospholipase A2 expression in SH-SY5Y cells and primary neurons. NeuroMolecular Med 18(3):441–452

  14. Tsai HD, Wu JS, Kao MH, Chen JJ, Sun GY, Ong WY, Lin TN (2016) Clinacanthus nutans protects cortical neurons against hypoxia-induced toxicity by downregulating HDAC1/6. NeuroMolecular Med 18(3):274–282

    Article  PubMed  CAS  Google Scholar 

  15. Lee JE, Ge K (2014) Transcriptional and epigenetic regulation of PPAR-γ expression during adipogenesis. Cell Biosci 4:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Schweizer S, Meisel A, Märschenz S (2013) Epigenetic mechanisms in cerebral ischemia. J Cereb Blood Flow Metab 33(9):1335–1346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Goldberg MP, Choi DW (1993) Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 13(8):3510–3524

    Article  PubMed  CAS  Google Scholar 

  18. Wu JS, Tsai HD, Cheung WM, Hsu CY, Lin TN (2016) PPAR-γ ameliorates neuronal apoptosis and ischemic brain injury via suppressing NF-κB-driven p22phox transcription. Mol Neurobiol 53(6):3626–3645

    Article  PubMed  CAS  Google Scholar 

  19. Huang CY, Chen JJ, Wu JS, Tsai HD, Lin H, Yan YT, Hsu CY, Ho YS et al (2015) Novel link of anti-apoptotic ATF3 with pro-apoptotic CTMP in the ischemic brain. Mol Neurobiol 51(2):543–557

  20. Wu JS, Lin TN, Wu KK (2009) Rosiglitazone and PPAR-γ overexpression protect mitochondrial membrane and prevent mitochondria-mediated apoptosis by upregulating anti-apoptotic Bcl-2 family proteins. J Cell Physiol 220(1):58–71

    Article  PubMed  CAS  Google Scholar 

  21. Lin TN, Wang CK, Cheung WM, Hsu CY (2000) Induction of angiopoietin and tie receptor mRNA expression following cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 20:387–395

    Article  PubMed  CAS  Google Scholar 

  22. Wu JS, Cheung WM, Tsai YS, Chen YT, Fong WH, Tsai HD, Chen YC, Liou JY et al (2009) Ligand-activated PPAR-γ protects against ischemic cerebral infarction and neuronal apoptosis by 14-3-3ε upregulation. Circulation 119(8):1124–1134

  23. Wu JS, Tsai HD, Huang CY, Chen JJ, Lin TN (2014) 15-deoxy-∆12,14-PGJ2 via activating peroxisome proliferator-activated receptor-gamma suppresses p22phox transcription to protect brain endothelial cells against hypoxia-induced apoptosis. Mol Neurobiol 50(1):221–238

    Article  PubMed  CAS  Google Scholar 

  24. Lin TN, He YY, Wu G, Khan M, Hsu CY (1993) Effect of brain edema on infarct volume in a focal cerebral ischemia model in the rat. Stroke 24:117–121

    Article  PubMed  CAS  Google Scholar 

  25. Lin H, Lin TN, Cheung WM, Nian GM, Tseng PH, Chen SF, Chen JJ, Shyue SK et al (2002) Cyclooxygenase-1 (COX-1) and bicistronic COX-1/prostacyclin synthase gene transfer protect against ischemic cerebral infarction. Circulation 105:1962–1969

  26. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17:472–476

    Article  PubMed  CAS  Google Scholar 

  27. Borlongan CV, Cahill DW, Sanberg PR (1995) Locomotor and passive avoidance deficits following occlusion of the middle cerebral artery. Physiol Behav 58(5):909–917

    Article  PubMed  CAS  Google Scholar 

  28. Metz GA, Whishaw IQ (2002) Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J Neurosci Methods 115(2):169–179

    Article  PubMed  Google Scholar 

  29. Lin TN, Sun SW, Cheung WM, Li F, Chang C (2002) Dynamic changes in cerebral blood flow and angiogenesis after transient focal cerebral ischemia in rats: evaluation with serial MRI. Stroke 33:2985–2991

    Article  PubMed  Google Scholar 

  30. Farsi E, Esmailli K, Shafaei A, Moradi Khaniabadi P, Al Hindi B, Khadeer Ahamed MB, Sandai D, Abdul Sattar M et al (2016) Mutagenicity and preclinical safety assessment of the aqueous extract of Clinacanthus nutans leaves. Drug Chem Toxicol 39(4):461–473

  31. Emsley HC, Hopkins SJ (2008) Acute ischaemic stroke and infection: recent and emerging concepts. Lancet Neurol 7(4):341–353

    Article  PubMed  Google Scholar 

  32. Ionita CC, Siddiqui AH, Levy EI, Hopkins LN, Snyder KV, Gibbons KJ (2011) Acute ischemic stroke and infections. J Stroke Cerebrovasc Dis 20(1):1–9

    Article  PubMed  Google Scholar 

  33. Westendorp WF, Nederkoorn PJ, Vermeij JD, Dijkgraaf MG, van de Beek D (2011) Post-stroke infection: a systematic review and meta-analysis. BMC Neurol 11:110

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lampl Y, Boaz M, Gilad R, Lorberboym M, Dabby R, Rapoport A, Anca-Hershkowitz M, Sadeh M (2007) Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 69(14):1404–1410

    Article  PubMed  CAS  Google Scholar 

  35. Kongkaew C, Chaiyakunapruk N (2011) Efficacy of Clinacanthus nutans extracts in patients with herpes infection: systematic review and meta-analysis of randomised clinical trials. Complement Ther Med 19(1):47–53

    Article  PubMed  Google Scholar 

  36. Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T et al (2006) International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 58(4):726–741

  37. Chen YC, Wu JS, Tsai HD, Huang CY, Chen JJ, Sun GY, Lin TN (2012) Peroxisome proliferator-activated receptor gamma (PPAR-γ) and neurodegenerative disorders. Mol Neurobiol 46(1):114–124

    Article  PubMed  CAS  Google Scholar 

  38. Collino M, Patel NS, Thiemermann C (2008) PPARs as new therapeutic targets for the treatment of cerebral ischemia/reperfusion injury. Ther Adv Cardiovasc Dis 2(3):179–197

    Article  PubMed  Google Scholar 

  39. Fong WH, Tsai HD, Chen YC, Wu JS, Lin TN (2010) Anti-apoptotic actions of PPAR-γ against ischemic stroke. Mol Neurobiol 41(2–3):180–186

    Article  PubMed  CAS  Google Scholar 

  40. Lin TN, Cheung WM, Wu JS, Chen JJ, Lin H, Chen JJ, Liou JY, Shyue SK et al (2006) 15d-Prostaglandin J2 protects brain from ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol 26:481–487

  41. Villacorta L, Schopfer FJ, Zhang J, Freeman BA, Chen YE (2009) PPARgamma and its ligands: therapeutic implications in cardiovascular disease. Clin Sci (Lond) 116(3):205–218

    Article  CAS  Google Scholar 

  42. Guo L, Li X, Tang QQ (2015) Transcriptional regulation of adipocyte differentiation: a central role for CCAAT/enhancer-binding protein (C/EBP) β. J Biol Chem 290(2):755–761

    Article  PubMed  CAS  Google Scholar 

  43. Tsukada J, Yoshida Y, Kominato Y, Auron PE (2011) The CCAAT/enhancer (C/EBP) family of basic-leucine zipper (bZIP) transcription factors is a multifaceted highly-regulated system for gene regulation. Cytokine 54(1):6–19

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Taiwan Mouse Clinic (TMC; http://tmc.sinica.edu.tw/index.html; MRI: Yu-Ying Tung) for technical support. All authors have read and agreed to the manuscript as written.

Funding Information

This work was supported by grants from the Minister of Science and Technology and Academia Sinica of Taiwan to T.N. Lin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng-Nan Lin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, JS., Kao, MH., Tsai, HD. et al. Clinacanthus nutans Mitigates Neuronal Apoptosis and Ischemic Brain Damage Through Augmenting the C/EBPβ-Driven PPAR-γ Transcription. Mol Neurobiol 55, 5425–5438 (2018). https://doi.org/10.1007/s12035-017-0776-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0776-z

Keywords

Navigation