Skip to main content

Advertisement

Log in

Conditioned Medium of Human Adipose Mesenchymal Stem Cells Increases Wound Closure and Protects Human Astrocytes Following Scratch Assay In Vitro

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Astrocytes perform essential functions in the preservation of neural tissue. For this reason, these cells can respond with changes in gene expression, hypertrophy, and proliferation upon a traumatic brain injury event (TBI). Different therapeutic strategies may be focused on preserving astrocyte functions and favor a non-generalized and non-sustained protective response over time post-injury. A recent strategy has been the use of the conditioned medium of human adipose mesenchymal stem cells (CM-hMSCA) as a therapeutic strategy for the treatment of various neuropathologies. However, although there is a lot of information about its effect on neuronal protection, studies on astrocytes are scarce and its specific action in glial cells is not well explored. In the present study, the effects of CM-hMSCA on human astrocytes subjected to scratch assay were assessed. Our findings indicated that CM-hMSCA improved cell viability, reduced nuclear fragmentation, and preserved mitochondrial membrane potential. These effects were accompanied by morphological changes and an increased polarity index thus reflecting the ability of astrocytes to migrate to the wound stimulated by CM-hMSCA. In conclusion, CM-hMSCA may be considered as a promising therapeutic strategy for the protection of astrocyte function in brain pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BSS0:

balanced salt solution

bFGF:

basic fibroblast growth factor

CNS:

central nervous system

CMhMSCA:

conditioned medium of human adipose mesenchymal stem cells

DMSO:

dimethyl sulfoxide

DMEM:

Dulbecco’s modified Eagle’s medium

EGF:

epidermal growth factor

FBS:

fetal bovine serum

GFAP:

glial fibrillary acid protein

GPX1:

glutathione peroxidase

HB-EGF:

heparin-binding epidermal growth factor-like growth factor

HSPG:

heparan sulfate proteoglycans

hMSCA:

human mesenchymal stem cells from adipose tissue

MSCs:

mesenchymal stem cells

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

Ngb:

neuroglobin

PBS:

phosphate-buffered saline

ROS:

reactive oxygen species

SOD2:

superoxide dismutase 2

TMRM:

tetramethylrhodamine methyl ester

TGFbeta 1:

transforming growth factor beta 1

TBI:

traumatic brain injury

References

  1. Barreto G, White RE, Ouyang Y, Xu L, Giffard RG (2011) Astrocytes: targets for neuroprotection in stroke. [Research Support, N.I.H., Extramural Review]. Cent Nerv Syst Agents Med Chem 11(2):164–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sun D, Jakobs TC (2012) Structural remodeling of astrocytes in the injured CNS. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov'tReview]. Neuroscientist 18(6):567–588. https://doi.org/10.1177/1073858411423441

    Article  PubMed  CAS  Google Scholar 

  3. Myer DJ, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV (2006) Essential protective roles of reactive astrocytes in traumatic brain injury. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Brain 129(Pt 10):2761–2772. https://doi.org/10.1093/brain/awl165

    Article  CAS  PubMed  Google Scholar 

  4. Panickar KS, Norenberg MD (2005) Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia 50(4):287–298. https://doi.org/10.1002/glia.20181

    Article  PubMed  Google Scholar 

  5. Steele ML, Robinson SR (2012) Reactive astrocytes give neurons less support: implications for Alzheimer's disease. [Research Support, Non-U.S. Gov't]. Neurobiol Aging 33(2):423 e421-413. https://doi.org/10.1016/j.neurobiolaging.2010.09.018

    Article  CAS  Google Scholar 

  6. Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Neurotherapeutics 7(4):494–506. https://doi.org/10.1016/j.nurt.2010.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. [Research Support, Non-U.S. Gov't Review]. Glia 50(4):427–434. https://doi.org/10.1002/glia.20207

    Article  PubMed  Google Scholar 

  8. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Trends Neurosci 32(12):638–647. https://doi.org/10.1016/j.tins.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pekny M, Pekna M, Messing A, Steinhauser C, Lee JM, Parpura V et al (2016) Astrocytes: a central element in neurological diseases. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Acta Neuropathol 131(3):323–345. https://doi.org/10.1007/s00401-015-1513-1

    Article  CAS  PubMed  Google Scholar 

  10. Bardehle S, Kruger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H et al (2013) Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. [Research Support, Non-U.S. Gov't]. Nat Neurosci 16(5):580–586. https://doi.org/10.1038/nn.3371

    Article  CAS  PubMed  Google Scholar 

  11. Pekny M, Pekna M (2016) Reactive gliosis in the pathogenesis of CNS diseases. Biochim Biophys Acta 1862(3):483–491. https://doi.org/10.1016/j.bbadis.2015.11.014

    Article  CAS  PubMed  Google Scholar 

  12. Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Neuroscientist (11, 5):400–407. https://doi.org/10.1177/1073858405278321

  13. Su J, Wang L (2012) Research advances in neonatal hypoglycemic brain injury. [Review]. Transl Pediatr 1(2):108–115. https://doi.org/10.3978/j.issn.2224-4336.2012.04.06

    Article  PubMed  PubMed Central  Google Scholar 

  14. Qiu C, Sigurdsson S, Zhang Q, Jonsdottir MK, Kjartansson O, Eiriksdottir G et al (2014) Diabetes, markers of brain pathology and cognitive function: the age, gene/environment susceptibility-Reykjavik study. [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't]. Ann Neurol 75(1):138–146. https://doi.org/10.1002/ana.24063

    Article  PubMed  PubMed Central  Google Scholar 

  15. Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21(5):375–378

    Article  PubMed  Google Scholar 

  16. Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. [Research Support, Non-U.S. Gov't]. PLoS Med 3(11):e442. https://doi.org/10.1371/journal.pmed.0030442

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tagliaferri F, Compagnone C, Korsic M, Servadei F, Kraus J (2006) A systematic review of brain injury epidemiology in Europe. [Research Support, Non-U.S. Gov't Review]. Acta Neurochir (Wien) 148(3):255–268; discussion 268. https://doi.org/10.1007/s00701-005-0651-y

    Article  CAS  Google Scholar 

  18. Prins M, Greco T, Alexander D, Giza CC (2013) The pathophysiology of traumatic brain injury at a glance. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Dis Model Mech 6(6):1307–1315. https://doi.org/10.1242/dmm.011585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seaquist ER (2015) The impact of diabetes on cerebral structure and function. [Research Support, N.I.H., Extramural Review]. Psychosom Med 77(6):616–621. https://doi.org/10.1097/PSY.0000000000000207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stiles MC, Seaquist ER (2010) Cerebral structural and functional changes in type 1 diabetes. [Review]. Minerva Med 101(2):105–114

    CAS  PubMed  Google Scholar 

  21. Dennis EL, Faskowitz J, Rashid F, Babikian T, Mink R, Babbitt C et al (2017) Diverging volumetric trajectories following pediatric traumatic brain injury. Neuroimage Clin 15:125–135. https://doi.org/10.1016/j.nicl.2017.03.014

    Article  PubMed  PubMed Central  Google Scholar 

  22. Meadows EA, Owen Yeates K, Rubin KH, Taylor HG, Bigler ED, Dennis M et al (2017) Rejection sensitivity as a moderator of psychosocial outcomes following pediatric traumatic brain injury. J Int Neuropsychol Soc:1–9. https://doi.org/10.1017/S1355617717000352

  23. Calviello LA, Donnelly J, Zeiler FA, Thelin EP, Smielewski P, Czosnyka M (2017) Cerebral autoregulation monitoring in acute traumatic brain injury: what’s the evidence? Minerva Anestesiol. 10.23736/S0375-9393.17.12043-2

  24. Yasen AL, Howell DR, Chou LS, Pazzaglia AM, Christie AD (2017a) Cortical and physical function after mild traumatic brain injury. Med Sci Sports Exerc 49(6):1066–1071. https://doi.org/10.1249/MSS.0000000000001217

    Article  PubMed  Google Scholar 

  25. Yasen AL, Howell DR, Chou LS, Pazzaglia AM, Christie AD (2017b) Cortical and physical function following mild traumatic brain injury. Med Sci Sports Exerc. https://doi.org/10.1249/MSS.0000000000001217

  26. Janowitz T, Menon DK (2010) Exploring new routes for neuroprotective drug development in traumatic brain injury. [Research Support, Non-U.S. Gov't]. Sci Transl Med 2(27):27rv21. https://doi.org/10.1126/scitranslmed.3000330

    Article  CAS  Google Scholar 

  27. Burda JE, Bernstein AM, Sofroniew MV (2016) Astrocyte roles in traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. gov't Review]. Exp Neurol 275(Pt 3):305–315. https://doi.org/10.1016/j.expneurol.2015.03.020

    Article  CAS  PubMed  Google Scholar 

  28. Karve IP, Taylor JM, Crack PJ (2016) The contribution of astrocytes and microglia to traumatic brain injury. [Review]. Br J Pharmacol 173(4):692–702. https://doi.org/10.1111/bph.13125

    Article  CAS  PubMed  Google Scholar 

  29. Salgado, A. J., Sousa, J. C., Costa, B. M., Pires, A. O., Mateus-Pinheiro, A., Teixeira, F., . . . Sousa, N. (2015). Mesenchymal stem cells secretome as a modulator of the neurogenic niche: basic insights and therapeutic opportunities. Front Cell Neurosci, 9

  30. Teixeira FG, Carvalho MM, Sousa N, Salgado AJ (2013) Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? [Research Support, Non-U.S. Gov't Review]. Cell Mol Life Sci 70(20):3871–3882. https://doi.org/10.1007/s00018-013-1290-8

    Article  CAS  PubMed  Google Scholar 

  31. Yamazaki H, Jin Y, Tsuchiya A, Kanno T, Nishizaki T (2015) Adipose-derived stem cell-conditioned medium ameliorates antidepression-related behaviors in the mouse model of Alzheimer's disease. Neurosci Lett 609:53–57. https://doi.org/10.1016/j.neulet.2015.10.023

    Article  CAS  PubMed  Google Scholar 

  32. Cho YJ, Song HS, Bhang S, Lee S, Kang BG, Lee JC et al (2012) Therapeutic effects of human adipose stem cell-conditioned medium on stroke. [Research Support, Non-U.S. Gov't]. J Neurosci Res 90(9):1794–1802. https://doi.org/10.1002/jnr.23063

    Article  CAS  PubMed  Google Scholar 

  33. Egashira Y, Sugitani S, Suzuki Y, Mishiro K, Tsuruma K, Shimazawa M et al (2012) The conditioned medium of murine and human adipose-derived stem cells exerts neuroprotective effects against experimental stroke model. Brain Res 1461:87–95. https://doi.org/10.1016/j.brainres.2012.04.033

    Article  CAS  PubMed  Google Scholar 

  34. Wei X, Zhao L, Zhong J, Gu H, Feng D, Johnstone BH et al (2009) Adipose stromal cells-secreted neuroprotective media against neuronal apoptosis. Neurosci Lett 462(1):76–79. https://doi.org/10.1016/j.neulet.2009.06.054

    Article  CAS  PubMed  Google Scholar 

  35. Zhou Z, Chen Y, Zhang H, Min S, Yu B, He B, Jin A (2013) Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury. Cytotherapy 15(4):434–448. https://doi.org/10.1016/j.jcyt.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  36. Mytych J, Lewinska A, Zebrowski J, Wnuk M (2015) Gold nanoparticles promote oxidant-mediated activation of NF-kappaB and 53BP1 recruitment-based adaptive response in human astrocytes. Biomed Res Int 2015:304575. https://doi.org/10.1155/2015/304575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhang L, Wang H, Ding K, Xu J (2015a) FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett 236(1):43–59. https://doi.org/10.1016/j.toxlet.2015.04.015

    Article  CAS  PubMed  Google Scholar 

  38. Zhang L, Yin JC, Yeh H, Ma NX, Lee G, Chen XA et al (2015b) Small molecules efficiently reprogram human astroglial cells into functional neurons. Cell Stem Cell 17(6):735–747. https://doi.org/10.1016/j.stem.2015.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Baez-Jurado E, Vega GG, Aliev G, Tarasov VV, Esquinas P, Echeverria V, Barreto GE (2017) Blockade of neuroglobin reduces protection of conditioned medium from human mesenchymal stem cells in human astrocyte model (T98G) under a scratch assay. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0481-y

  40. Bourguignon LY, Gilad E, Peyrollier K, Brightman A, Swanson RA (2007) Hyaluronan-CD44 interaction stimulates Rac1 signaling and PKN gamma kinase activation leading to cytoskeleton function and cell migration in astrocytes. J Neurochem 101(4):1002–1017. https://doi.org/10.1111/j.1471-4159.2007.04485.x

    Article  CAS  PubMed  Google Scholar 

  41. Torrente D, Avila MF, Cabezas R, Morales L, Gonzalez J, Samudio I, Barreto GE (2014) Paracrine factors of human mesenchymal stem cells increase wound closure and reduce reactive oxygen species production in a traumatic brain injury in vitro model. Hum Exp Toxicol 33(7):673–684. https://doi.org/10.1177/0960327113509659

    Article  CAS  PubMed  Google Scholar 

  42. Loov C, Shevchenko G, Geeyarpuram Nadadhur A, Clausen F, Hillered L, Wetterhall M, Erlandsson A (2013) Identification of injury specific proteins in a cell culture model of traumatic brain injury. [Research Support, Non-U.S. Gov't]. PLoS One 8(2):e55983. https://doi.org/10.1371/journal.pone.0055983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Avila-Rodriguez M, Garcia-Segura LM, Hidalgo-Lanussa O, Baez E, Gonzalez J, Barreto GE (2016) Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol 433:35–46. https://doi.org/10.1016/j.mce.2016.05.024

    Article  CAS  PubMed  Google Scholar 

  44. Avila Rodriguez M, Garcia-Segura LM, Cabezas R, Torrente D, Capani F, Gonzalez J, Barreto GE (2014) Tibolone protects T98G cells from glucose deprivation. [Research Support, Non-U.S. Gov't]. J Steroid Biochem Mol Biol 144(Pt B):294–303. https://doi.org/10.1016/j.jsbmb.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  45. Ouyang YB, Xu LJ, Emery JF, Lee AS, Giffard RG (2011) Overexpressing GRP78 influences Ca2+ handling and function of mitochondria in astrocytes after ischemia-like stress. Mitochondrion 11(2):279–286. https://doi.org/10.1016/j.mito.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  46. Lamers ML, Almeida ME, Vicente-Manzanares M, Horwitz AF, Santos MF (2011) High glucose-mediated oxidative stress impairs cell migration. PLoS One 6(8):e22865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Paquet M, Kuwajima M, Yun CC, Smith Y, Hall RA (2006) Astrocytic and neuronal localization of the scaffold protein Na+/H+ exchanger regulatory factor 2 (NHERF-2) in mouse brain. J Comp Neurol 494(5):752–762. https://doi.org/10.1002/cne.20854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barreto GE, White RE, Xu L, Palm CJ, Giffard RG (2012) Effects of heat shock protein 72 (Hsp72) on evolution of astrocyte activation following stroke in the mouse. Exp Neurol 238(2):284–296. https://doi.org/10.1016/j.expneurol.2012.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gralinski LE, Bankhead A 3rd, Jeng S, Menachery VD, Proll S, Belisle SE et al (2013) Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury. MBio 4(4). https://doi.org/10.1128/mBio.00271-13

  50. Aye, T., Reiss, A. L., Kesler, S., Hoang, S., Drobny, J., Park, Y.,. . . Buckingham, B. A. (2011). The feasibility of detecting neuropsychologic and neuroanatomic effects of type 1 diabetes in young children. [Research Support, N.I.H., extramural Research Support, Non-U.S. Gov't]. Diabetes Care, 34(7), 1458–1462. doi: https://doi.org/10.2337/dc10-2164

  51. Hershey T, Perantie DC, Warren SL, Zimmerman EC, Sadler M, White NH (2005) Frequency and timing of severe hypoglycemia affects spatial memory in children with type 1 diabetes. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.] Diabetes Care 28(10):2372–2377

    Article  PubMed  Google Scholar 

  52. Pirici D, Mogoanta L, Margaritescu O, Pirici I, Tudorica V, Coconu M (2009) Fractal analysis of astrocytes in stroke and dementia. Romanian J Morphol Embryol 50(3):381–390

    CAS  Google Scholar 

  53. DeRidder MN, Simon MJ, Siman R, Auberson YP, Raghupathi R, Meaney DF (2006) Traumatic mechanical injury to the hippocampus in vitro causes regional caspase-3 and calpain activation that is influenced by NMDA receptor subunit composition. [Research Support, N.I.H., Extramural]. Neurobiol Dis 22(1):165–176. https://doi.org/10.1016/j.nbd.2005.10.011

    Article  CAS  PubMed  Google Scholar 

  54. Marklund N, Hillered L (2011) Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? [Research Support, Non-U.S. Gov't Review]. Br J Pharmacol 164(4):1207–1229. https://doi.org/10.1111/j.1476-5381.2010.01163.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morrison B 3rd, Saatman KE, Meaney DF, McIntosh TK (1998) In vitro central nervous system models of mechanically induced trauma: a review. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S. Review]. J Neurotrauma 15(11):911–928. https://doi.org/10.1089/neu.1998.15.911

    Article  PubMed  Google Scholar 

  56. Johnson KM, Milner R, Crocker SJ (2015) Extracellular matrix composition determines astrocyte responses to mechanical and inflammatory stimuli. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Neurosci Lett 600:104–109. https://doi.org/10.1016/j.neulet.2015.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Loov C, Hillered L, Ebendal T, Erlandsson A (2012) Engulfing astrocytes protect neurons from contact-induced apoptosis following injury. [Research Support, Non-U.S. Gov't]. PLoS One 7(3):e33090. https://doi.org/10.1371/journal.pone.0033090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Brown JI, Moulton RJ, Konasiewicz SJ, Baker AJ (1998) Cerebral oxidative metabolism and evoked potential deterioration after severe brain injury: new evidence of early posttraumatic ischemia. [Research Support, Non-U.S. Gov't]. Neurosurgery 42(5):1057–1063 discussion 1063-1054

    Article  CAS  PubMed  Google Scholar 

  59. Honda M, Ichibayashi R, Yokomuro H, Yoshihara K, Masuda H, Haga D et al (2016) Early cerebral circulation disturbance in patients suffering from severe traumatic brain injury (TBI): a xenon CT and perfusion CT study. Neurol Med Chir (Tokyo) 56(8):501–509. https://doi.org/10.2176/nmc.oa.2015-0341

    Article  Google Scholar 

  60. Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA et al (1997) Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg 86(2):241–251

    Article  CAS  PubMed  Google Scholar 

  61. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3):359–369

    Article  CAS  PubMed  Google Scholar 

  62. Duncan T, Valenzuela M (2017) Alzheimer's disease, dementia, and stem cell therapy. [Review]. Stem Cell Res Ther 8(1):111. https://doi.org/10.1186/s13287-017-0567-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Xu C, Fu F, Li X, Zhang S (2017) Mesenchymal stem cells maintain the microenvironment of central nervous system by regulating the polarization of macrophages/microglia after traumatic brain injury. Int J Neurosci:1–39. https://doi.org/10.1080/00207454.2017.1325884

  64. Hoch AI, Binder BY, Genetos DC, Leach JK (2012) Differentiation-dependent secretion of proangiogenic factors by mesenchymal stem cells. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. PLoS One 7(4):e35579. https://doi.org/10.1371/journal.pone.0035579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jain A, McKeon RJ, Brady-Kalnay SM, Bellamkonda RV (2011) Sustained delivery of activated Rho GTPases and BDNF promotes axon growth in CSPG-rich regions following spinal cord injury. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.] PLoS One 6(1):e16135. https://doi.org/10.1371/journal.pone.0016135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pawitan JA (2014) Prospect of stem cell conditioned medium in regenerative medicine. [Research Support, Non-U.S. Gov't]. Biomed Res Int 2014:965849. https://doi.org/10.1155/2014/965849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359. https://doi.org/10.3389/fphys.2012.00359

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sun H, Benardais K, Stanslowsky N, Thau-Habermann N, Hensel N, Huang D et al (2013) Therapeutic potential of mesenchymal stromal cells and MSC conditioned medium in amyotrophic lateral sclerosis (ALS)—in vitro evidence from primary motor neuron cultures, NSC-34 cells, astrocytes and microglia. [Research Support, Non-U.S. Gov't]. PLoS One 8(9):e72926. https://doi.org/10.1371/journal.pone.0072926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang W, Lv B, Zeng H, Shi D, Liu Y, Chen F et al (2015) Paracrine factors secreted by MSCs promote astrocyte survival associated with GFAP downregulation after ischemic stroke via p38 MAPK and JNK. [Research Support, Non-U.S. Gov't]. J Cell Physiol 230(10):2461–2475. https://doi.org/10.1002/jcp.24981

    Article  CAS  PubMed  Google Scholar 

  70. Song M, Jue SS, Cho YA, Kim EC (2015) Comparison of the effects of human dental pulp stem cells and human bone marrow-derived mesenchymal stem cells on ischemic human astrocytes in vitro. [Research Support, Non-U.S. Gov't]. J Neurosci Res 93(6):973–983. https://doi.org/10.1002/jnr.23569

    Article  CAS  PubMed  Google Scholar 

  71. Holtje M, Hoffmann A, Hofmann F, Mucke C, Grosse G, Van Rooijen N et al (2005) Role of Rho GTPase in astrocyte morphology and migratory response during in vitro wound healing. [Comparative Study Research Support, Non-U.S. Gov't]. J Neurochem 95(5):1237–1248. https://doi.org/10.1111/j.1471-4159.2005.03443.x

    Article  PubMed  CAS  Google Scholar 

  72. Robel S, Bardehle S, Lepier A, Brakebusch C, Gotz M (2011) Genetic deletion of cdc42 reveals a crucial role for astrocyte recruitment to the injury site in vitro and in vivo. [Research Support, Non-U.S. Gov't Video-Audio Media]. J Neurosci 31(35):12471–12482. https://doi.org/10.1523/JNEUROSCI.2696-11.2011

    Article  CAS  PubMed  Google Scholar 

  73. Ding S (2014) Dynamic reactive astrocytes after focal ischemia. Neural Regen Res 9(23):2048–2052. https://doi.org/10.4103/1673-5374.147929

    Article  PubMed  PubMed Central  Google Scholar 

  74. Oberheim NA, Tian GF, Han X, Peng W, Takano T, Ransom B, Nedergaard M (2008) Loss of astrocytic domain organization in the epileptic brain. J Neurosci 28(13):3264–3276. https://doi.org/10.1523/JNEUROSCI.4980-07.2008

    Article  CAS  PubMed  Google Scholar 

  75. Sun D, Lye-Barthel M, Masland RH, Jakobs TC (2010) Structural remodeling of fibrous astrocytes after axonal injury. J Neurosci 30(42):14008–14019. https://doi.org/10.1523/JNEUROSCI.3605-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wilhelmsson U, Li L, Pekna M, Berthold CH, Blom S, Eliasson C et al (2004) Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J Neurosci 24(21):5016–5021. https://doi.org/10.1523/JNEUROSCI.0820-04.2004

    Article  CAS  PubMed  Google Scholar 

  77. Xiong, J., Dai, W., Chen, L., Liu, G., Liu, M., Zhang, Z., & Xiao, H. (2006). New method for studying the relationship between morphological parameters and cell viability.

  78. Baez E, Guio-Vega GP, Echeverria V, Sandoval-Rueda DA, Barreto GE (2017) 4′-Chlorodiazepam protects mitochondria in T98G astrocyte cell line from glucose deprivation. Neurotox Res. https://doi.org/10.1007/s12640-017-9733-x

  79. Cano V, Valladolid-Acebes I, Hernandez-Nuno F, Merino B, Del Olmo N, Chowen JA, Ruiz-Gayo M (2014) Morphological changes in glial fibrillary acidic protein immunopositive astrocytes in the hippocampus of dietary-induced obese mice. Neuroreport. https://doi.org/10.1097/WNR.0000000000000180

  80. Gzielo K, Kielbinski M, Ploszaj J, Janeczko K, Gazdzinski SP, Setkowicz Z (2017) Long-term consumption of high-fat diet in rats: effects on microglial and astrocytic morphology and neuronal nitric oxide synthase expression. Cell Mol Neurobiol 37(5):783–789. https://doi.org/10.1007/s10571-016-0417-5

    Article  CAS  PubMed  Google Scholar 

  81. Kane CJ, Phelan KD, Douglas JC, Wagoner G, Johnson JW, Xu J et al (2014) Effects of ethanol on immune response in the brain: region-specific changes in adolescent versus adult mice. [Research Support, N.I.H., Extramural]. Alcohol Clin Exp Res 38(2):384–391. https://doi.org/10.1111/acer.12244

    Article  CAS  PubMed  Google Scholar 

  82. Saur L, Baptista PP, de Senna PN, Paim MF, do Nascimento P, Ilha J et al (2014) Physical exercise increases GFAP expression and induces morphological changes in hippocampal astrocytes. [Research Support, Non-U.S. Gov't]. Brain Struct Funct 219(1):293–302. https://doi.org/10.1007/s00429-012-0500-8

    Article  CAS  PubMed  Google Scholar 

  83. Vardjan N, Kreft M, Zorec R (2014) Dynamics of beta-adrenergic/cAMP signaling and morphological changes in cultured astrocytes. [Research Support, Non-U.S. Gov't]. Glia 62(4):566–579. https://doi.org/10.1002/glia.22626

    Article  PubMed  Google Scholar 

  84. Fedoroff S, McAuley WA, Houle JD, Devon RM (1984) Astrocyte cell lineage. V. Similarity of astrocytes that form in the presence of dBcAMP in cultures to reactive astrocytes in vivo. [Comparative Study Research Support, Non-U.S. Gov't]. J Neurosci Res 12(1):14–27. https://doi.org/10.1002/jnr.490120103

    Article  CAS  PubMed  Google Scholar 

  85. Paco S, Hummel M, Pla V, Sumoy L, Aguado F (2016) Cyclic AMP signaling restricts activation and promotes maturation and antioxidant defenses in astrocytes. [Research Support, Non-U.S. Gov't]. BMC Genomics 17:304. https://doi.org/10.1186/s12864-016-2623-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Tiryaki VM, Ayres VM, Ahmed I, Shreiber DI (2015) Differentiation of reactive-like astrocytes cultured on nanofibrillar and comparative culture surfaces. [Research Support, American Recovery and Reinvestment Act Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.] Nanomedicine (Lond) 10(4):529–545. https://doi.org/10.2217/nnm.14.33

    Article  CAS  Google Scholar 

  87. Kang W, Hebert JM (2011) Signaling pathways in reactive astrocytes, a genetic perspective. [Review]. Mol Neurobiol 43(3):147–154. https://doi.org/10.1007/s12035-011-8163-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). [Historical Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S. Review]. Neurochem Res 25(9–10):1439–1451

    Article  CAS  PubMed  Google Scholar 

  89. Placone AL, McGuiggan PM, Bergles DE, Guerrero-Cazares H, Quinones-Hinojosa A, Searson PC (2015) Human astrocytes develop physiological morphology and remain quiescent in a novel 3D matrix. [Research Support, N.I.H., Extramural]. Biomaterials 42:134–143. https://doi.org/10.1016/j.biomaterials.2014.11.046

    Article  CAS  PubMed  Google Scholar 

  90. Bozoyan L, Khlghatyan J, Saghatelyan A (2012) Astrocytes control the development of the migration-promoting vasculature scaffold in the postnatal brain via VEGF signaling. J Neurosci 32(5):1687–1704. https://doi.org/10.1523/JNEUROSCI.5531-11.2012

    Article  CAS  PubMed  Google Scholar 

  91. Faber-Elman A, Lavie V, Schvartz I, Shaltiel S, Schwartz M (1995) Vitronectin overrides a negative effect of TNF-alpha on astrocyte migration. FASEB J 9(15):1605–1613

    Article  CAS  PubMed  Google Scholar 

  92. Jacobsen CT, Miller RH (2003) Control of astrocyte migration in the developing cerebral cortex. Dev Neurosci 25(2-4):207–216

    Article  CAS  PubMed  Google Scholar 

  93. Rolls A, Shechter R, Schwartz M (2009) The bright side of the glial scar in CNS repair. Nat Rev Neurosci 10(3):235–241. https://doi.org/10.1038/nrn2591

    Article  CAS  PubMed  Google Scholar 

  94. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. J Neurosci 32(18):6391–6410. https://doi.org/10.1523/JNEUROSCI.6221-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yoon BS, Moon JH, Jun EK, Kim J, Maeng I, Kim JS et al (2010) Secretory profiles and wound healing effects of human amniotic fluid-derived mesenchymal stem cells. [Research Support, Non-U.S. Gov't]. Stem Cells Dev 19(6):887–902. https://doi.org/10.1089/scd.2009.0138

    Article  CAS  PubMed  Google Scholar 

  96. Chen J, Li Y, Hao H, Li C, Du Y, Hu Y et al (2015) Mesenchymal stem cell conditioned medium promotes proliferation and migration of alveolar epithelial cells under septic conditions in vitro via the JNK-P38 signaling pathway. Cell Physiol Biochem 37(5):1830–1846. https://doi.org/10.1159/000438545

    Article  CAS  PubMed  Google Scholar 

  97. Frese L, Dijkman PE, Hoerstrup SP (2016) Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother 43(4):268–274. https://doi.org/10.1159/000448180

    Article  PubMed  PubMed Central  Google Scholar 

  98. Shen C, Lie P, Miao T, Yu M, Lu Q, Feng T et al (2015) Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis. Mol Med Rep 12(1):20–30. https://doi.org/10.3892/mmr.2015.3409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kilroy GE, Foster SJ, Wu X, Ruiz J, Sherwood S, Heifetz A et al (2007) Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. J Cell Physiol 212(3):702–709. https://doi.org/10.1002/jcp.21068

    Article  CAS  PubMed  Google Scholar 

  100. Linero I, Chaparro O (2014) Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. [Research Support, Non-U.S. Gov't]. PLoS One 9(9):e107001. https://doi.org/10.1371/journal.pone.0107001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Fok-Seang J, Smith-Thomas LC, Meiners S, Muir E, Du JS, Housden E et al (1995) An analysis of astrocytic cell lines with different abilities to promote axon growth. [Comparative Study Research Support, Non-U.S. Gov't]. Brain Res 689(2):207–223

    Article  CAS  PubMed  Google Scholar 

  102. Beller JA, Snow DM (2014) Proteoglycans: road signs for neurite outgrowth. Neural Regen Res 9(4):343–355. https://doi.org/10.4103/1673-5374.128235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bovolenta P, Fernaud-Espinosa I (2000) Nervous system proteoglycans as modulators of neurite outgrowth. Prog Neurobiol 61(2):113–132

    Article  CAS  PubMed  Google Scholar 

  104. Walter MN, Kohli N, Khan N, Major T, Fuller H, Wright KT et al (2015) Human mesenchymal stem cells stimulate EaHy926 endothelial cell migration: combined proteomic and in vitro analysis of the influence of donor-donor variability. J Stem Cells Regen Med 11(1):18–24

    PubMed  PubMed Central  Google Scholar 

  105. Lee DE, Ayoub N, Agrawal DK (2016) Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy. [Research Support, N.I.H., Extramural Review]. Stem Cell Res Ther 7:37. https://doi.org/10.1186/s13287-016-0303-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Li Z, Fang ZY, Xiong L, Huang XL (2010) Spinal cord injury-induced astrocyte migration and glial scar formation: effects of magnetic stimulation frequency. [Research Support, Non-U.S. Gov't]. Indian J Biochem Biophys 47(6):359–363

    CAS  PubMed  Google Scholar 

  107. Ishii T, Ueyama T, Shigyo M, Kohta M, Kondoh T, Kuboyama T et al (2017) A novel Rac1-GSPT1 signaling pathway controls astrogliosis following central nervous system injury. J Biol Chem 292(4):1240–1250. https://doi.org/10.1074/jbc.M116.748871

    Article  CAS  PubMed  Google Scholar 

  108. Zeng Z, Leng T, Feng X, Sun H, Inoue K, Zhu L, Xiong ZG (2015) Silencing TRPM7 in mouse cortical astrocytes impairs cell proliferation and migration via ERK and JNK signaling pathways. [Research support, N.I.H., extramural Research Support, Non-U.S. Gov't]. PLoS One 10(3):e0119912. https://doi.org/10.1371/journal.pone.0119912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Raftopoulou M, Hall A (2004) Cell migration: Rho GTPases lead the way. Dev Biol 265(1):23–32

    Article  CAS  PubMed  Google Scholar 

  110. Huang XQ, Zhang XY, Wang XR, Yu SY, Fang SH, Lu YB et al (2012) Transforming growth factor beta1-induced astrocyte migration is mediated in part by activating 5-lipoxygenase and cysteinyl leukotriene receptor 1. J Neuroinflammation 9:145. https://doi.org/10.1186/1742-2094-9-145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Farhan H, Hsu VW (2016) Cdc42 and cellular polarity: emerging roles at the golgi. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Trends Cell Biol 26(4):241–248. https://doi.org/10.1016/j.tcb.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  112. Rutkowska A, Preuss I, Gessier F, Sailer AW, Dev KK (2015) EBI2 regulates intracellular signaling and migration in human astrocyte. [Research Support, Non-U.S. Gov't]. Glia 63(2):341–351. https://doi.org/10.1002/glia.22757

    Article  PubMed  Google Scholar 

  113. Dixon KJ (2017) Pathophysiology of traumatic brain injury. [Review]. Phys Med Rehabil Clin N Am 28(2):215–225. https://doi.org/10.1016/j.pmr.2016.12.001

    Article  PubMed  Google Scholar 

  114. Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. [Review]. Br J Anaesth 99(1):4–9. https://doi.org/10.1093/bja/aem131

    Article  CAS  PubMed  Google Scholar 

  115. Fernandez-Fernandez S, Almeida A, Bolanos JP (2012) Antioxidant and bioenergetic coupling between neurons and astrocytes. [Research Support, Non-U.S. Gov't Review]. Biochem J 443(1):3–11. https://doi.org/10.1042/BJ20111943

    Article  CAS  PubMed  Google Scholar 

  116. Kim WS, Park BS, Kim HK, Park JS, Kim KJ, Choi JS et al (2008) Evidence supporting antioxidant action of adipose-derived stem cells: protection of human dermal fibroblasts from oxidative stress. [Research Support, Non-U.S. Gov't]. J Dermatol Sci 49(2):133–142. https://doi.org/10.1016/j.jdermsci.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  117. Yalvac ME, Yarat A, Mercan D, Rizvanov AA, Palotas A, Sahin F (2013) Characterization of the secretome of human tooth germ stem cells (hTGSCs) reveals neuro-protection by fine-tuning micro-environment. [Research Support, Non-U.S. Gov't]. Brain Behav Immun 32:122–130. https://doi.org/10.1016/j.bbi.2013.03.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Camilo Prieto and the staff of the cosmetic surgery in Bogota, Colombia, for the adipose tissue samples. This work was supported by PUJ ID 6260 to GEB and scholarship for doctoral studies awarded by the Vicerrectoría Académica of PUJ to Baez-Jurado E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Barreto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baez-Jurado, E., Hidalgo-Lanussa, O., Guio-Vega, G. et al. Conditioned Medium of Human Adipose Mesenchymal Stem Cells Increases Wound Closure and Protects Human Astrocytes Following Scratch Assay In Vitro. Mol Neurobiol 55, 5377–5392 (2018). https://doi.org/10.1007/s12035-017-0771-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0771-4

Keywords

Navigation