Skip to main content

Advertisement

Log in

The DRD2 Taq1A A1 Allele May Magnify the Risk of Alzheimer’s in Aging African-Americans

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease is an irreversible, progressive brain disorder that slowly destroys cognitive skills and the ability to perform the simplest tasks. More than 5 million Americans are afflicted with Alzheimer’s; a disorder which ranks third, just behind heart disease and cancer, as a cause of death for older people. With no real cure and in spite of enormous efforts worldwide, the disease remains a mystery in terms of treatment. Importantly, African-Americans are two times as likely as Whites to develop late-onset Alzheimer’s disease and less likely to receive timely diagnosis and treatment. Dopamine function is linked to normal cognition and memory and carriers of the DRD2 Taq1A A1 allele have significant loss of D2 receptor density in the brain. Recent research has shown that A1 carriers have worse memory performance during long-term memory (LTM) updating, compared to non-carriers or A2-carriers. A1carriers also show less blood oxygen level-dependent (BOLD) activation in the left caudate nucleus which is important for LTM updating. This latter effect was only seen in older adults, suggesting magnification of genetic effects on brain functioning in the elderly. Moreover, the frequency of the A1 allele is 0.40 in African-Americans, with an approximate prevalence of the DRD2 A1 allele in 50% of an African-American subset of individuals. This is higher than what is found in a non-screened American population (≤ 28%) for reward deficiency syndrome (RDS) behaviors. Based on DRD2 known genetic polymorphisms, we hypothesize that the DRD2 Taq1A A1 allele magnifies the risk of Alzheimer’s in aging African-Americans. Research linking this high risk for Alzheimer’s in the African-American population, with DRD2/ANKK1-TaqIA polymorphism and neurocognitive deficits related to LTM, could pave the way for novel, targeted pro-dopamine homeostatic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Noble EP, Blum K, Ritchie T, Montgomery A, Sheridan PJ (1991) Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch Gen Psychiatry 48(7):648–654

    Article  PubMed  CAS  Google Scholar 

  2. Fagundo AB, Fernandez-Aranda F, de la Torre R, Verdejo-Garcia A, Granero R, Penelo E, Gene M, Barrot C et al (2014) Dopamine DRD2/ANKK1 Taq1A and DAT1 VNTR polymorphisms are associated with a cognitive flexibility profile in pathological gamblers. J Psychopharmacol (Oxford, England) 28(12):1170–1177. https://doi.org/10.1177/0269881114551079

    Article  CAS  Google Scholar 

  3. Hillemacher T, Frieling H, Buchholz V, Hussein R, Bleich S, Meyer C, John U, Bischof A et al (2016) Dopamine-receptor 2 gene-methylation and gambling behavior in relation to impulsivity. Psychiatry Res 239:154–155. https://doi.org/10.1016/j.psychres.2016.03.021

    Article  PubMed  CAS  Google Scholar 

  4. Voigt G, Montag C, Markett S, Reuter M (2015) On the genetics of loss aversion: An interaction effect of BDNF Val66Met and DRD2/ANKK1 Taq1a. Behav Neurosci 129(6):801–811. https://doi.org/10.1037/bne0000102

    Article  PubMed  CAS  Google Scholar 

  5. Nisoli E, Brunani A, Borgomainerio E, Tonello C, Dioni L, Briscini L, Redaelli G, Molinari E et al (2007) D2 dopamine receptor (DRD2) gene Taq1A polymorphism and the eating-related psychological traits in eating disorders (anorexia nervosa and bulimia) and obesity. Eat Weight Disord: EWD 12(2):91–96

    Article  PubMed  CAS  Google Scholar 

  6. Thaler L, Groleau P, Badawi G, Sycz L, Zeramdini N, Too A, Israel M, Joober R et al (2012) Epistatic interactions implicating dopaminergic genes in bulimia nervosa (BN): relationships to eating- and personality-related psychopathology. Prog Neuro-Psychopharmacol Biol Psychiatry 39(1):120–128. https://doi.org/10.1016/j.pnpbp.2012.05.019

    Article  CAS  Google Scholar 

  7. Doehring A, Hentig N, Graff J, Salamat S, Schmidt M, Geisslinger G, Harder S, Lotsch J (2009) Genetic variants altering dopamine D2 receptor expression or function modulate the risk of opiate addiction and the dosage requirements of methadone substitution. Pharmacogenet Genomics 19(6):407–414. https://doi.org/10.1097/FPC.0b013e328320a3fd

    Article  PubMed  CAS  Google Scholar 

  8. Gluskin BS, Mickey BJ (2016) Genetic variation and dopamine D2 receptor availability: a systematic review and meta-analysis of human in vivo molecular imaging studies. Transl Psychiatry 6:e747. https://doi.org/10.1038/tp.2016.22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hassan A, Heckman MG, Ahlskog JE, Wszolek ZK, Serie DJ, Uitti RJ, van Gerpen JA, Okun MS et al (2016) Association of Parkinson disease age of onset with DRD2, DRD3 and GRIN2B polymorphisms. Parkinsonism Relat Disord 22:102–105. https://doi.org/10.1016/j.parkreldis.2015.11.016

    Article  PubMed  Google Scholar 

  10. Jasiewicz A, Samochowiec A, Samochowiec J, Malecka I, Suchanecka A, Grzywacz A (2014) Suicidal behavior and haplotypes of the dopamine receptor gene (DRD2) and ANKK1 gene polymorphisms in patients with alcohol dependence—preliminary report. PLoS One 9(11):e111798. https://doi.org/10.1371/journal.pone.0111798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kazantseva A, Gaysina D, Malykh S, Khusnutdinova E (2011) The role of dopamine transporter (SLC6A3) and dopamine D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) gene polymorphisms in personality traits. Prog Neuro-Psychopharmacol Biol Psychiatry 35(4):1033–1040. https://doi.org/10.1016/j.pnpbp.2011.02.013

    Article  CAS  Google Scholar 

  12. Myrga JM, Juengst SB, Failla MD, Conley YP, Arenth PM, Grace AA, Wagner AK (2016) COMT and ANKK1 genetics interact with depression to influence behavior following severe TBI: an initial assessment. Neurorehabil Neural Repair 30(10):920–930. https://doi.org/10.1177/1545968316648409

    Article  PubMed  PubMed Central  Google Scholar 

  13. Takeuchi H, Tomita H, Taki Y, Kikuchi Y, Ono C, Yu Z, Sekiguchi A, Nouchi R et al (2015) The associations among the dopamine D2 receptor Taq1, emotional intelligence, creative potential measured by divergent thinking, and motivational state and these associations’ sex differences. Front Psychol 6:912. https://doi.org/10.3389/fpsyg.2015.00912

    Article  PubMed  PubMed Central  Google Scholar 

  14. Voisey J, Swagell CD, Hughes IP, Morris CP, van Daal A, Noble EP, Kann B, Heslop KA et al (2009) The DRD2 gene 957C>T polymorphism is associated with posttraumatic stress disorder in war veterans. Depress Anxiety 26(1):28–33. https://doi.org/10.1002/da.20517

    Article  PubMed  CAS  Google Scholar 

  15. Wang F, Simen A, Arias A, QW L, Zhang H (2013) A large-scale meta-analysis of the association between the ANKK1/DRD2 Taq1A polymorphism and alcohol dependence. Hum Genet 132(3):347–358. https://doi.org/10.1007/s00439-012-1251-6

    Article  PubMed  CAS  Google Scholar 

  16. Klein TA, Neumann J, Reuter M, Hennig J, von Cramon DY, Ullsperger M (2007) Genetically determined differences in learning from errors. Science 318(5856):1642–1645. https://doi.org/10.1126/science.1145044

    Article  PubMed  CAS  Google Scholar 

  17. Neville MJ, Johnstone EC, Walton RT (2004) Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum Mutat 23(6):540–545. https://doi.org/10.1002/humu.20039

    Article  PubMed  CAS  Google Scholar 

  18. Huang W, Payne TJ, Ma JZ, Beuten J, Dupont RT, Inohara N, Li MD (2009) Significant association of ANKK1 and detection of a functional polymorphism with nicotine dependence in an African-American sample. Neuropsychopharmacology 34(2):319–330. https://doi.org/10.1038/npp.2008.37

    Article  PubMed  CAS  Google Scholar 

  19. Montag C, Markett S, Basten U, Stelzel C, Fiebach C, Canli T, Reuter M (2010) Epistasis of the DRD2/ANKK1 Taq Ia and the BDNF Val66Met polymorphism impacts novelty seeking and harm avoidance. Neuropsychopharmacology 35(9):1860–1867. https://doi.org/10.1038/npp.2010.55

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jonsson EG, Nothen MM, Grunhage F, Farde L, Nakashima Y, Propping P, Sedvall GC (1999) Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol Psychiatry 4(3):290–296

    Article  PubMed  CAS  Google Scholar 

  21. Pohjalainen T, Rinne JO, Nagren K, Lehikoinen P, Anttila K, Syvalahti EK, Hietala J (1998) The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol Psychiatry 3(3):256–260

    Article  PubMed  CAS  Google Scholar 

  22. Hill SY, Hoffman EK, Zezza N, Thalamuthu A, Weeks DE, Matthews AG, Mukhopadhyay I (2008) Dopaminergic mutations: within-family association and linkage in multiplex alcohol dependence families. Am J Med Genet B Neuropsychiatr Genet 147B(4):517–526. https://doi.org/10.1002/ajmg.b.30630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Dahlgren A, Wargelius HL, Berglund KJ, Fahlke C, Blennow K, Zetterberg H, Oreland L, Berggren U et al (2011) Do alcohol-dependent individuals with DRD2 A1 allele have an increased risk of relapse? A pilot study. Alcohol Alcohol 46(5):509–513. https://doi.org/10.1093/alcalc/agr045

    Article  PubMed  CAS  Google Scholar 

  24. Tejada-Vera B (2013) Mortality from Alzheimer’s disease in the United States: data for 2000 and 2010. NCHS Data Brief, vol 116. National Center for Health Statistics, Hyattsville

  25. Weuve J, Hebert LE, Scherr PA, Evans DA (2014) Deaths in the United States among persons with Alzheimer’s disease (2010-2050). Alzheimers Dement 10(2):e40–e46. https://doi.org/10.1016/j.jalz.2014.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  26. James BD, Leurgans SE, Hebert LE, Scherr PA, Yaffe K, Bennett DA (2014) Contribution of Alzheimer disease to mortality in the United States. Neurology 82(12):1045–1050. https://doi.org/10.1212/WNL.0000000000000240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Alzheimer’s Association (2016) 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 12(4):459–509

  28. Association As (2017) 2017 Alzheimer’s disease facts and figures. Alzheimers Dement 13:325–373

    Article  Google Scholar 

  29. Jett KF (2006) Mind-loss in the African American community: dementia as a normal part of aging. J Aging Stud 20(1):1–10. https://doi.org/10.1016/j.jaging.2005.05.002

    Article  Google Scholar 

  30. Rovner BW, Casten RJ, Harris LF (2013) Cultural diversity and views on Alzheimer disease in older African Americans. Alzheimer Dis Assoc Disord 27(2):133–137. https://doi.org/10.1097/WAD.0b013e3182654794

    Article  PubMed  PubMed Central  Google Scholar 

  31. Reitz C, Jun G, Naj A, Rajbhandary R, Vardarajan BN, Wang LS, Valladares O, Lin CF et al (2013) Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E 4,and the risk of late-onset Alzheimer disease in African Americans. JAMA 309(14):1483–1492. https://doi.org/10.1001/jama.2013.2973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tang MX, Cross P, Andrews H, Jacobs DM, Small S, Bell K, Merchant C, Lantigua R et al (2001) Incidence of AD in African-Americans, Caribbean Hispanics, and Caucasians in northern Manhattan. Neurology 56(1):49–56

    Article  PubMed  CAS  Google Scholar 

  33. Logue MW, Schu M, Vardarajan BN, Buros J, Green RC, Go RCP, Griffith P, Obisesan TO et al (2011) A comprehensive genetic association study of Alzheimer disease in African Americans. Arch Neurol-Chicago 68(12):1569–1579

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ghani M, Reitz C, Cheng R, Vardarajan BN, Jun G, Sato C, Naj A, Rajbhandary R et al (2015) Association of long runs of homozygosity with Alzheimer disease among African American individuals. Jama Neurol 72(11):1313–1323. https://doi.org/10.1001/jamaneurol.2015.1700

    Article  PubMed  PubMed Central  Google Scholar 

  35. Graff-Radford NR, Green RC, Go RC, Hutton ML, Edeki T, Bachman D, Adamson JL, Griffith P et al (2002) Association between apolipoprotein E genotype and Alzheimer disease in African American subjects. Arch Neurol 59(4):594–600

    Article  PubMed  Google Scholar 

  36. Mount DL, Ashley AV, Lah JJ, Levey AI, Goldstein FC (2009) Is ApoE epsilon4 associated with cognitive functioning in African Americans diagnosed with Alzheimer disease? An exploratory study. South Med J 102(9):890–893. https://doi.org/10.1097/SMJ.0b013e3181b21b82

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tang M, Stern Y, Marder K et al (1998) The apoe-∊4 allele and the risk of Alzheimer disease among african americans, whites, and hispanics. JAMA 279(10):751–755. https://doi.org/10.1001/jama.279.10.751

    Article  PubMed  CAS  Google Scholar 

  38. Barnes LL, Wilson RS, Everson-Rose SA, Hayward MD, Evans DA, Mendes de Leon CF (2012) Effects of early-life adversity on cognitive decline in older African Americans and whites. Neurology 79(24):2321–2327. https://doi.org/10.1212/WNL.0b013e318278b607

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jack CR Jr, Petersen RC, YC X, O’Brien PC, Waring SC, Tangalos EG, Smith GE, Ivnik RJ et al (1998) Hippocampal atrophy and apolipoprotein E genotype are independently associated with Alzheimer’s disease. Ann Neurol 43(3):303–310. https://doi.org/10.1002/ana.410430307

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sencakova D, Graff-Radford NR, Willis FB, Lucas JA, Parfitt F, Cha RH, O’Brien PC, Petersen RC et al (2001) Hippocampal atrophy correlates with clinical features of Alzheimer disease in African Americans. Arch Neurol 58(10):1593–1597

    Article  PubMed  CAS  Google Scholar 

  41. Braverman ER, Blum K, Hussman KL, Han D, Dushaj K, Li M, Marin G, Badgaiyan RD et al (2015) Evoked potentials and memory/cognition tests validate brain atrophy as measured by 3T MRI (NeuroQuant) in cognitively impaired patients. PLoS One 10(8):e0133609. https://doi.org/10.1371/journal.pone.0133609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zahodne LB, Manly JJ, Narkhede A, Griffith EY, DeCarli C, Schupf NS, Mayeux R, Brickman AM (2015) Structural MRI predictors of late-life cognition differ across African Americans, Hispanics, and Whites. Curr Alzheimer Res 12(7):632–639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Gibbons FX, Roberts ME, Gerrard M, Li Z, Beach SR, Simons RL, Weng CY, Philibert RA (2012) The impact of stress on the life history strategies of African American adolescents: cognitions, genetic moderation, and the role of discrimination. Dev Psychol 48(3):722–739. https://doi.org/10.1037/a0026599

    Article  PubMed  PubMed Central  Google Scholar 

  44. Girault JA, Greengard P (2004) The neurobiology of dopamine signaling. Arch Neurol 61(5):641–644. https://doi.org/10.1001/archneur.61.5.641

    Article  PubMed  Google Scholar 

  45. Arnsten AF, Wang M, Paspalas CD (2015) Dopamine’s actions in primate prefrontal cortex: challenges for treating cognitive disorders. Pharmacol Rev 67(3):681–696. https://doi.org/10.1124/pr.115.010512

    Article  PubMed  PubMed Central  Google Scholar 

  46. Grace AA (2016) Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 17(8):524–532. https://doi.org/10.1038/nrn.2016.57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Sirigu A, Duhamel JR (2016) Reward and decision processes in the brains of humans and nonhuman primates. Dialogues Clin Neurosci 18(1):45–53

    PubMed  PubMed Central  Google Scholar 

  48. Westbrook A, Braver TS (2016) Dopamine does double duty in motivating cognitive effort. Neuron 89(4):695–710. https://doi.org/10.1016/j.neuron.2015.12.029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Flood JF, Smith GE, Jarvik ME (1980) A comparison of the effects of localized brain administration of catecholamine and protein synthesis inhibitors on memory processing. Brain Res 197(1):153–165

    Article  PubMed  CAS  Google Scholar 

  50. van Wimersma Greidanus TB, Jolles J, De Wied D (1985) Hypothalamic neuropeptides and memory. Acta Neurochir 75(1–4):99–105

    Article  PubMed  Google Scholar 

  51. Schroder H, Reymann KG (1990) N-Methyl-D-aspartate stimulates the release of dopamine from rat hippocampal slices. Biomed Biochim Acta 49(4):281–284

    PubMed  CAS  Google Scholar 

  52. Sudha S, Lakshmana MK, Pradhan N (1995) Changes in learning and memory, acetylcholinesterase activity and monoamines in brain after chronic carbamazepine administration in rats. Epilepsia 36(4):416–422

    Article  PubMed  CAS  Google Scholar 

  53. Li S, Cullen WK, Anwyl R, Rowan MJ (2003) Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat Neurosci 6(5):526–531. https://doi.org/10.1038/nn1049

    Article  PubMed  CAS  Google Scholar 

  54. Moreno-Castilla P, Perez-Ortega R, Violante-Soria V, Balderas I, Bermudez-Rattoni F (2017) Hippocampal release of dopamine and norepinephrine encodes novel contextual information. Hippocampus. https://doi.org/10.1002/hipo.22711

  55. Rosen ZB, Cheung S, Siegelbaum SA (2015) Midbrain dopamine neurons bidirectionally regulate CA3-CA1 synaptic drive. Nat Neurosci 18(12):1763–1771. https://doi.org/10.1038/nn.4152

    Article  PubMed  CAS  Google Scholar 

  56. Kemppainen S, Lindholm P, Galli E, Lahtinen HM, Koivisto H, Hamalainen E, Saarma M, Tanila H (2015) Cerebral dopamine neurotrophic factor improves long-term memory in APP/PS1 transgenic mice modeling Alzheimer’s disease as well as in wild-type mice. Behav Brain Res 291:1–11. https://doi.org/10.1016/j.bbr.2015.05.002

    Article  PubMed  CAS  Google Scholar 

  57. Moraga-Amaro R, Gonzalez H, Ugalde V, Donoso-Ramos JP, Quintana-Donoso D, Lara M, Morales B, Rojas P et al (2016) Dopamine receptor D5 deficiency results in a selective reduction of hippocampal NMDA receptor subunit NR2B expression and impaired memory. Neuropharmacology 103:222–235. https://doi.org/10.1016/j.neuropharm.2015.12.018

    Article  PubMed  CAS  Google Scholar 

  58. Karunakaran S, Chowdhury A, Donato F, Quairiaux C, Michel CM, Caroni P (2016) PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation. Nat Neurosci 19(3):454–464. https://doi.org/10.1038/nn.4231

  59. Broussard JI, Yang K, Levine AT, Tsetsenis T, Jenson D, Cao F, Garcia I, Arenkiel BR et al (2016) Dopamine regulates aversive contextual learning and associated in vivo synaptic plasticity in the hippocampus. Cell Rep 14(8):1930–1939. https://doi.org/10.1016/j.celrep.2016.01.070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Xiang PY, Janc O, Grochowska KM, Kreutz MR, Reymann KG (2016) Dopamine agonists rescue Abeta-induced LTP impairment by Src-family tyrosine kinases. Neurobiol Aging 40:98–102. https://doi.org/10.1016/j.neurobiolaging.2016.01.008

    Article  CAS  Google Scholar 

  61. Moreno-Castilla P, Rodriguez-Duran LF, Guzman-Ramos K, Barcenas-Femat A, Escobar ML, Bermudez-Rattoni F (2016) Dopaminergic neurotransmission dysfunction induced by amyloid-beta transforms cortical long-term potentiation into long-term depression and produces memory impairment. Neurobiol Aging 41:187–199. https://doi.org/10.1016/j.neurobiolaging.2016.02.021

    Article  PubMed  CAS  Google Scholar 

  62. Shetty MS, Sajikumar S (2017) Differential involvement of Ca2+/calmodulin-dependent protein kinases and mitogen-activated protein kinases in the dopamine D1/D5 receptor-mediated potentiation in hippocampal CA1 pyramidal neurons. Neurobiol Learn Mem 138:111–120. https://doi.org/10.1016/j.nlm.2016.07.020

    Article  PubMed  CAS  Google Scholar 

  63. Shetty MS, Sharma M, Sajikumar S (2017) Chelation of hippocampal zinc enhances long-term potentiation and synaptic tagging/capture in CA1 pyramidal neurons of aged rats: implications to aging and memory. Aging Cell 16(1):136–148. https://doi.org/10.1111/acel.12537

    Article  PubMed  CAS  Google Scholar 

  64. Du H, Deng W, Aimone JB, Ge M, Parylak S, Walch K, Zhang W, Cook J et al (2016) Dopaminergic inputs in the dentate gyrus direct the choice of memory encoding. Proc Natl Acad Sci U S A 113(37):E5501–E5510. https://doi.org/10.1073/pnas.1606951113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Zhou W, Chang L, Fang Y, Du Z, Li Y, Song Y, Hao F, Lv L et al (2016) Cerebral dopamine neurotrophic factor alleviates Abeta25-35-induced endoplasmic reticulum stress and early synaptotoxicity in rat hippocampal cells. Neurosci Lett 633:40–46. https://doi.org/10.1016/j.neulet.2016.09.008

    Article  PubMed  CAS  Google Scholar 

  66. Braren SH, Drapala D, Tulloch IK, Serrano PA (2014) Methamphetamine-induced short-term increase and long-term decrease in spatial working memory affects protein kinase M zeta (PKMzeta), dopamine, and glutamate receptors. Front Behav Neurosci 8:438. https://doi.org/10.3389/fnbeh.2014.00438

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gonzalez MC, Kramar CP, Tomaiuolo M, Katche C, Weisstaub N, Cammarota M, Medina JH (2014) Medial prefrontal cortex dopamine controls the persistent storage of aversive memories. Front Behav Neurosci 8:408. https://doi.org/10.3389/fnbeh.2014.00408

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yamagata N, Ichinose T, Aso Y, Placais PY, Friedrich AB, Sima RJ, Preat T, Rubin GM et al (2015) Distinct dopamine neurons mediate reward signals for short- and long-term memories. Proc Natl Acad Sci U S A 112(2):578–583. https://doi.org/10.1073/pnas.1421930112

    Article  PubMed  CAS  Google Scholar 

  69. Otani S, Bai J, Blot K (2015) Dopaminergic modulation of synaptic plasticity in rat prefrontal neurons. Neurosci Bull 31(2):183–190. https://doi.org/10.1007/s12264-014-1507-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Reichenbach N, Herrmann U, Kahne T, Schicknick H, Pielot R, Naumann M, Dieterich DC, Gundelfinger ED et al (2015) Differential effects of dopamine signalling on long-term memory formation and consolidation in rodent brain. Proteome Sci 13:13. https://doi.org/10.1186/s12953-015-0069-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lee KN, Chirwa S (2015) Blocking dopaminergic signaling soon after learning impairs memory consolidation in guinea pigs. PLoS One 10(8):e0135578. https://doi.org/10.1371/journal.pone.0135578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Ichinose T, Aso Y, Yamagata N, Abe A, Rubin GM, Tanimoto H (2015) Reward signal in a recurrent circuit drives appetitive long-term memory formation. elife 4:e10719. https://doi.org/10.7554/eLife.10719

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kim HF, Ghazizadeh A, Hikosaka O (2015) Dopamine neurons encoding long-term memory of object value for habitual behavior. Cell 163(5):1165–1175. https://doi.org/10.1016/j.cell.2015.10.063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Bartres-Faz D, Junque C, Serra-Grabulosa JM, Lopez-Alomar A, Moya A, Bargallo N, Mercader JM, Moral P et al (2002) Dopamine DRD2 Taq I polymorphism associates with caudate nucleus volume and cognitive performance in memory impaired subjects. Neuroreport 13(9):1121–1125

    Article  PubMed  CAS  Google Scholar 

  75. Koh PO, Undie AS, Kabbani N, Levenson R, Goldman-Rakic PS, Lidow MS (2003) Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proc Natl Acad Sci U S A 100(1):313–317. https://doi.org/10.1073/pnas.232693499

    Article  PubMed  CAS  Google Scholar 

  76. Nakamura TY, Nakao S, Nakajo Y, Takahashi JC, Wakabayashi S, Yanamoto H (2017) Possible signaling pathways mediating neuronal calcium sensor-1-dependent spatial learning and memory in mice. PLoS One 12(1):e0170829. https://doi.org/10.1371/journal.pone.0170829

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ng E, Varaschin RK, Su P, Browne CJ, Hermainski J, Le Foll B, Pongs O, Liu F et al (2016) Neuronal calcium sensor-1 deletion in the mouse decreases motivation and dopamine release in the nucleus accumbens. Behav Brain Res 301:213–225. https://doi.org/10.1016/j.bbr.2015.12.037

    Article  PubMed  CAS  Google Scholar 

  78. Papenberg G, Becker N, Ferencz B, Naveh-Benjamin M, Laukka EJ, Backman L, Brehmer Y (2017) Dopamine receptor genes modulate associative memory in old age. J Cogn Neurosci 29(2):245–253. https://doi.org/10.1162/jocn_a_01048

    Article  PubMed  Google Scholar 

  79. Persson J, Rieckmann A, Kalpouzos G, Fischer H, Backman L (2015) Influences of a DRD2 polymorphism on updating of long-term memory representations and caudate BOLD activity: magnification in aging. Hum Brain Mapp 36(4):1325–1334. https://doi.org/10.1002/hbm.22704

    Article  PubMed  Google Scholar 

  80. Papenberg G, Backman L, Nagel IE, Nietfeld W, Schroder J, Bertram L, Heekeren HR, Lindenberger U et al (2013) Dopaminergic gene polymorphisms affect long-term forgetting in old age: further support for the magnification hypothesis. J Cogn Neurosci 25(4):571–579. https://doi.org/10.1162/jocn_a_00359

    Article  PubMed  Google Scholar 

  81. Makman MH, Ahn HS, Thal LJ, Sharpless NS, Dvorkin B, Horowitz SG, Rosenfeld M (1979) Aging and monoamine receptors in brain. Fed Proc 38(5):1922–1926

    PubMed  CAS  Google Scholar 

  82. Roussotte FF, Gutman BA, Hibar DP, Madsen SK, Narr KL, Thompson PM, Alzheimer’s Disease Neuroimaging I (2015) Carriers of a common variant in the dopamine transporter gene have greater dementia risk, cognitive decline, and faster ventricular expansion. Alzheimers Dement 11(10):1153–1162. https://doi.org/10.1016/j.jalz.2014.10.011

    Article  PubMed  Google Scholar 

  83. Roussotte FF, Jahanshad N, Hibar DP, Thompson PM, Alzheimer’s Disease Neuroimaging I (2015) Altered regional brain volumes in elderly carriers of a risk variant for drug abuse in the dopamine D2 receptor gene (DRD2). Brain Imaging Behav 9(2):213–222. https://doi.org/10.1007/s11682-014-9298-8

    Article  PubMed  PubMed Central  Google Scholar 

  84. Matuskey D, Worhunksy P, Correa E, Pittman B, Gallezot JD, Nabulsi N, Ropchan J, Sreeram V et al (2016) Age-related changes in binding of the D2/3 receptor radioligand [(11)C](+)PHNO in healthy volunteers. NeuroImage 130:241–247. https://doi.org/10.1016/j.neuroimage.2016.02.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Gondre-Lewis MC, Warnock KT, Wang H, June HL Jr, Bell KA, Rabe H, Tiruveedhula VV, Cook J et al (2016) Early life stress is a risk factor for excessive alcohol drinking and impulsivity in adults and is mediated via a CRF/GABA(A) mechanism. Stress 19(2):235–247. https://doi.org/10.3109/10253890.2016.1160280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Wang H, Gondre-Lewis MC (2013) Prenatal nicotine and maternal deprivation stress de-regulate the development of CA1, CA3, and dentate gyrus neurons in hippocampus of infant rats. PLoS One 8(6):e65517. https://doi.org/10.1371/journal.pone.0065517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Gondre-Lewis MC, Darius PJ, Wang H, Allard JS (2016) Stereological analyses of reward system nuclei in maternally deprived/separated alcohol drinking rats. J Chem Neuroanat 76(Pt B):122–132. https://doi.org/10.1016/j.jchemneu.2016.02.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Barr CL, Kidd KK (1993) Population frequencies of the A1 allele at the dopamine D2 receptor locus. Biol Psychiatry 34(4):204–209

    Article  PubMed  CAS  Google Scholar 

  89. Adamson MD, Kennedy J, Petronis A, Dean M, Virkkunen M, Linnoila M, Goldman D (1995) DRD4 dopamine receptor genotype and CSF monoamine metabolites in Finnish alcoholics and controls. Am J Med Genet 60(3):199–205. https://doi.org/10.1002/ajmg.1320600306

    Article  PubMed  CAS  Google Scholar 

  90. Goldman D, Brown GL, Albaugh B, Robin R, Goodson S, Trunzo M, Akhtar L, Lucas-Derse S et al (1993) DRD2 dopamine receptor genotype, linkage disequilibrium, and alcoholism in American Indians and other populations. Alcohol Clin Exp Res 17(2):199–204

    Article  PubMed  CAS  Google Scholar 

  91. Kraschewski A, Reese J, Anghelescu I, Winterer G, Schmidt LG, Gallinat J, Finckh U, Rommelspacher H et al (2009) Association of the dopamine D2 receptor gene with alcohol dependence: haplotypes and subgroups of alcoholics as key factors for understanding receptor function. Pharmacogenet Genomics 19(7):513–527

    Article  PubMed  CAS  Google Scholar 

  92. Levy JE, Kunitz SJ (1974) Indian drinking: Navajo practices and Anglo-American theories. Wiley, New York

    Google Scholar 

  93. Arinami T, Komiyama T, Mitsushio H, Mori H, Mifune H, Hamaguchi H, Toru M (1993) Association between severity of alcoholism and the A1 allele of the dopamine D2 receptor gene TaqI A RFLP in Japanese. Biol Psychiatry 33(2):104–114. https://doi.org/10.1016/0006-3223(93)90309-2

  94. Blum K, Sheridan PJ, Chen TCH, Wood RC, Braverman ER, Cull JG, Comings DE (1997) The dopamine D2 receptor gene locus in reward deficiency syndrome: meta-analyses. In: Blum K, Noble E (eds) Handbook of psychiatric genetics. CRC Press, Boca Raton, pp 407–432

  95. Connell CM, Scott Roberts J, McLaughlin SJ, Akinleye D (2009) Racial differences in knowledge and beliefs about Alzheimer disease. Alzheimer Dis Assoc Disord 23(2):110–116. https://doi.org/10.1097/WAD.0b013e318192e94d

    Article  PubMed  Google Scholar 

  96. Bagherzadeh Y, Khorrami A, Zarrindast MR, Shariat SV, Pantazis D (2016) Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex enhances working memory. Exp Brain Res 234(7):1807–1818. https://doi.org/10.1007/s00221-016-4580-1

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Kenneth Blum is the owner of US and foreign patents related to genetic testing. Dr. Rajendra D. Badgaiyan is supported by the National Institutes of Health (NIH) grants R01NS073884 and 1R21MH073624, and Dr. Marjorie C. Gondré-Lewis is supported by NIH/NIAAA grants R01AA021262, NIH/NIMHD grant R41MD12318 (to MGL and KB) and G12MD007597.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjorie C. Gondré-Lewis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blum, K., Badgaiyan, R.D., Dunston, G.M. et al. The DRD2 Taq1A A1 Allele May Magnify the Risk of Alzheimer’s in Aging African-Americans. Mol Neurobiol 55, 5526–5536 (2018). https://doi.org/10.1007/s12035-017-0758-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0758-1

Keywords

Navigation