Skip to main content

Advertisement

Log in

Histamine H3 Inverse Agonist BF 2649 or Antagonist with Partial H4 Agonist Activity Clobenpropit Reduces Amyloid Beta Peptide-Induced Brain Pathology in Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is one of the leading causes for disability and death affecting millions of people worldwide. Thus, novel therapeutic strategies are needed to reduce brain pathology associated with AD. In view of increasing awareness regarding involvement of histaminergic pathways in AD, we explored the role of one H3 receptor inverse agonist BF 2649 and one selective H3 receptor antagonist with partial H4 agonist activity in amyloid beta peptide (AβP) infusion-induced brain pathology in a rat model. AD-like pathology was produced by administering AβP (1–40) intracerebroventricular (i.c.v.) in the left lateral ventricle (250 ng/10 μl, once daily) for 4 weeks. Control rats received saline. In separate group of rats, either BF 2649 (1 mg/kg, i.p.) or clobenpropit (1 mg/kg, i.p.) was administered once daily for 1 week after 3 weeks of AβP administration. After 30 days, blood-brain barrier (BBB) breakdown, edema formation, neuronal, glial injuries, and AβP deposits were examined in the brain. A significant reduction in AβP deposits along with marked reduction in neuronal or glial reactions was seen in the drug-treated group. The BBB breakdown to Evans blue albumin and radioiodine in the cortex, hippocampus, hypothalamus, and cerebellum was also significantly reduced in these drug-treated groups. Clobenpropit showed superior effects than the BF2649 in reducing brain pathology in AD. Taken together, our observations are the first to show that blockade of H3 and stimulation of H4 receptors are beneficial for the treatment of AD pathology, not reported earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Naddafi F, Mirshafiey A (2013) The neglected role of histamine in Alzheimer’s disease. Am J Alzheimers Dis Other Demen 28(4):327–336. doi:10.1177/1533317513488925

    Article  PubMed  Google Scholar 

  2. Sharma HS, Skaper SD, Sharma A (2016) Commentary: histaminergic drugs could be novel targets for neuroprotection in CNS disorders. CNS Neurol Disord Drug Targets 15(6):642–643

    Article  CAS  PubMed  Google Scholar 

  3. Panula P, Rinne J, Kuokkanen K, Eriksson KS, Sallmen T, Kalimo H, Relja M (1998) Neuronal histamine deficit in Alzheimer’s disease. Neuroscience 82(4):993–997

    Article  CAS  PubMed  Google Scholar 

  4. Shan L, Bossers K, Unmehopa U, Bao AM, Swaab DF (2012) Alterations in the histaminergic system in Alzheimer’s disease: a postmortem study. Neurobiol Aging 33(11):2585–2598. doi:10.1016/j.neurobiolaging.2011.12.026

    Article  CAS  PubMed  Google Scholar 

  5. Airaksinen MS, Paetau A, Paljärvi L, Reinikainen K, Riekkinen P, Suomalainen R, Panula P (1991) Histamine neurons in human hypothalamus: anatomy in normal and Alzheimer diseased brains. Neuroscience 44(2):465–481

    Article  CAS  PubMed  Google Scholar 

  6. Nuutinen S, Panula P (2010) Histamine in neurotransmission and brain diseases. Adv Exp Med Biol 709:95–107

    Article  CAS  PubMed  Google Scholar 

  7. Sedeyn JC, Wu H, Hobbs RD, Levin EC, Nagele RG, Venkataraman V (2015) Histamine induces Alzheimer’s disease-like blood brain barrier breach and local cellular responses in mouse brain organotypic cultures. Biomed Res Int 2015:937148. doi:10.1155/2015/937148

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zlomuzica A, Dere D, Binder S, De Souza Silva MA, Huston JP, Dere E (2016) Neuronal histamine and cognitive symptoms in Alzheimer’s disease. Neuropharmacology 106:135–145. doi:10.1016/j.neuropharm.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  9. Kim SH, Cairns N, Fountoulakisc M, Lubec G (2001) Decreased brain histamine-releasing factor protein in patients with Down syndrome and Alzheimer’s disease. Neurosci Lett 300(1):41–44

    Article  CAS  PubMed  Google Scholar 

  10. Bañuelos-Cabrera I, Valle-Dorado MG, Aldana BI, Orozco-Suárez SA, Rocha L (2014) Role of histaminergic system in blood-brain barrier dysfunction associated with neurological disorders. Arch Med Res 45(8):677–686. doi:10.1016/j.arcmed.2014.11.010

    Article  PubMed  Google Scholar 

  11. Patnaik R, Mohanty S, Sharma HS (2000) Blockade of histamine H2 receptors attenuate blood-brain barrier permeability, cerebral blood flow disturbances, edema formation and cell reactions following hyperthermic brain injury in the rat. Acta Neurochir Suppl 76:535–539

    CAS  PubMed  Google Scholar 

  12. Sharma HS, Nyberg F, Cervos-Navarro J, Dey PK (1992) Histamine modulates heat stress-induced changes in blood-brain barrier permeability, cerebral blood flow, brain oedema and serotonin levels: an experimental study in conscious young rats. Neuroscience 50(2):445–454

    Article  CAS  PubMed  Google Scholar 

  13. Sharma HS, Vannemreddy P, Patnaik R, Patnaik S, Mohanty S (2006) Histamine receptors influence blood-spinal cord barrier permeability, edema formation, and spinal cord blood flow following trauma to the rat spinal cord. Acta Neurochir Suppl 96:316–321

    Article  CAS  PubMed  Google Scholar 

  14. Jurič DM, Kržan M, Lipnik-Stangelj M (2016) Histamine and astrocyte function. Pharmacol Res 111:774–783. doi:10.1016/j.phrs.2016.07.035

    Article  PubMed  Google Scholar 

  15. Inagaki N, Wada H (1994) Histamine and prostanoid receptors on glial cells. Glia 11(2):102–109

    Article  CAS  PubMed  Google Scholar 

  16. Abbott NJ (2000) Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol 20(2):131–147

    Article  CAS  PubMed  Google Scholar 

  17. Dong H, Zhang W, Zeng X, Hu G, Zhang H, He S, Zhang S (2014) Histamine induces upregulated expression of histamine receptors and increases release of inflammatory mediators from microglia. Mol Neurobiol 49(3):1487–1500. doi:10.1007/s12035-014-8697-6

    Article  CAS  PubMed  Google Scholar 

  18. Zhu J, Qu C, Lu X, Zhang S (2014) Activation of microglia by histamine and substance P. Cell Physiol Biochem 34(3):768–780. doi:10.1159/000363041

    Article  CAS  PubMed  Google Scholar 

  19. Ferreira R, Santos T, Gonçalves J, Baltazar G, Ferreira L, Agasse F, Bernardino L (2012) Histamine modulates microglia function. J Neuroinflammation 9:90. doi:10.1186/1742-2094-9-90

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rocha SM, Saraiva T, Cristóvão AC, Ferreira R, Santos T, Esteves M, Saraiva C, Je G et al (2016) Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation. J Neuroinflammation 13(1):137. doi:10.1186/s12974-016-0600-0

    Article  PubMed  PubMed Central  Google Scholar 

  21. Haaksma EE, Leurs R, Timmerman H (1990) Histamine receptors: subclasses and specific ligands. Pharmacol Ther 47(1):73–104

    Article  CAS  PubMed  Google Scholar 

  22. Haas HL, Panula P (2016) Histamine receptors. Neuropharmacology 106:1–2. doi:10.1016/j.neuropharm.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  23. Hough LB (2001) Genomics meets histamine receptors: new subtypes, new receptors. Mol Pharmacol 59(3):415–419

    Article  CAS  PubMed  Google Scholar 

  24. Ellender TJ, Huerta-Ocampo I, Deisseroth K, Capogna M, Bolam JP (2011) Differential modulation of excitatory and inhibitory striatal synaptic transmission by histamine. J Neurosci 31(43):15340–15351. doi:10.1523/JNEUROSCI.3144-11.2011

    Article  CAS  PubMed  Google Scholar 

  25. Medhurst AD, Roberts JC, Lee J, Chen CP, Brown SH, Roman S, Lai MK (2009) Characterization of histamine H3 receptors in Alzheimer’s disease brain and amyloid over-expressing TASTPM mice. Br J Pharmacol 157(1):130–138. doi:10.1111/j.1476-5381.2008.00075.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen PY, Tsai CT, Ou CY, Hsu WT, Jhuo MD, Wu CH, Shih TC, Cheng TH et al (2012) Computational analysis of novel drugs designed for use as acetylcholinesterase inhibitors and histamine H3 receptor antagonists for Alzheimer’s disease by docking, scoring and de novo evolution. Mol Med Rep 5(4):1043–1048. doi:10.3892/mmr.2012.757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brioni JD, Esbenshade TA, Garrison TR, Bitner SR, Cowart MD (2011) Discovery of histamine H3 antagonists for the treatment of cognitive disorders and Alzheimer’s disease. J Pharmacol Exp Ther 336(1):38–46. doi:10.1124/jpet.110.166876

    Article  CAS  PubMed  Google Scholar 

  28. Chazot PL (2010) Therapeutic potential of histamine H3 receptor antagonists in dementias. Drug News Perspect 23(2):99–103. doi:10.1358/dnp.2010.23.2.1475899

    Article  CAS  PubMed  Google Scholar 

  29. Feliszek M, Speckmann V, Schacht D, von Lehe M, Stark H, Schlicker E (2015) A search for functional histamine H4 receptors in the human, guinea pig and mouse brain. Naunyn Schmiedeberg’s Arch Pharmacol 388(1):11–17. doi:10.1007/s00210-014-1053-6

    Article  CAS  Google Scholar 

  30. Karlstedt K, Jin C, Panula P (2013) Expression of histamine receptor genes Hrh3 and Hrh4 in rat brain endothelial cells. Br J Pharmacol 170(1):58–66. doi:10.1111/bph.12173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Petri D, Schlicker E (2016) A search for presynaptic inhibitory histamine receptors in guinea-pig tissues: further H3 receptors but no evidence for H4 receptors. Neuropharmacology 106:129–134. doi:10.1016/j.neuropharm.2015.06.020

    Article  CAS  PubMed  Google Scholar 

  32. Connelly WM, Shenton FC, Lethbridge N, Leurs R, Waldvogel HJ, Faull RL, Lees G, Chazot PL (2009) The histamine H4 receptor is functionally expressed on neurons in the mammalian CNS. Br J Pharmacol 157(1):55–63. doi:10.1111/j.1476-5381.2009.00227.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schneider EH, Seifert R (2016) The histamine H4-receptor and the central and peripheral nervous system: a critical analysis of the literature. Neuropharmacology 106:116–128. doi:10.1016/j.neuropharm.2015.05.004

    Article  CAS  PubMed  Google Scholar 

  34. Guide for the Care and Use of Laboratory Animals (2011), 8th edition, National Institute of Health, The National Academies Press, Washington DC, www.nap.edu

  35. Sharma HS, Castellani RJ, Smith MA, Sharma A (2012) The blood-brain barrier in Alzheimer’s disease: novel therapeutic targets and nanodrug delivery. Int Rev Neurobiol 102:47–90. doi:10.1016/B978-0-12-386986-9.00003-X

    Article  CAS  PubMed  Google Scholar 

  36. Sharma HS, Muresanu DF, Sharma A (2016) Alzheimer’s disease: cerebrolysin and nanotechnology as a therapeutic strategy. Neurodegener Dis Manag 6(6):453–456

    Article  PubMed  Google Scholar 

  37. Anand A, Banik A, Thakur K, Masters CL (2012) The animal models of dementia and Alzheimer’s disease for pre-clinical testing and clinical translation. Curr Alzheimer Res 9(9):1010–1029

    Article  CAS  PubMed  Google Scholar 

  38. Alzoubi KH, Alhaider IA, Tran TT, Mosely A, Alkadhi KK (2011) Impaired neural transmission and synaptic plasticity in superior cervical ganglia from β-amyloid rat model of Alzheimer’s disease. Curr Alzheimer Res 8(4):377–384

    Article  CAS  PubMed  Google Scholar 

  39. Ligneau X, Perrin D, Landais L, Camelin JC, Calmels TP, Berrebi-Bertrand I, Lecomte JM, Parmentier R et al (2007) BF2.649 [1-{3-[3-(4-chlorophenyl)propoxy]propyl}piperidine, hydrochloride], a nonimidazole inverse agonist/antagonist at the human histamine H3 receptor: preclinical pharmacology. J Pharmacol Exp Ther 320(1):365–375

    Article  CAS  PubMed  Google Scholar 

  40. Ligneau X, Landais L, Perrin D, Piriou J, Uguen M, Denis E, Robert P, Parmentier R et al (2007) Brain histamine and schizophrenia: potential therapeutic applications of H3-receptor inverse agonists studied with BF2.649. Biochem Pharmacol 73(8):1215–1224

    Article  CAS  PubMed  Google Scholar 

  41. Meng F, Han Y, Staloch D, Francis T, Stokes A, Francis H (2011) The H4 histamine receptor agonist, clobenpropit, suppresses human cholangiocarcinoma progression by disruption of epithelial mesenchymal transition and tumor metastasis. Hepatology 54(5):1718–1728. doi:10.1002/hep.24573

    Article  CAS  PubMed  Google Scholar 

  42. Breunig E, Michel K, Zeller F, Seidl S, Weyhern CW, Schemann M (2007) Histamine excites neurones in the human submucous plexus through activation of H1, H2, H3 and H4 receptors. J Physiol 583(Pt 2):731–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dai H, Fu Q, Shen Y, Hu W, Zhang Z, Timmerman H, Leurs R, Chen Z (2007) The histamine H3 receptor antagonist clobenpropit enhances GABA release to protect against NMDA-induced excitotoxicity through the cAMP/protein kinase A pathway in cultured cortical neurons. Eur J Pharmacol 563(1–3):117–123

    Article  CAS  PubMed  Google Scholar 

  44. Fu Q, Dai H, He P, Hu W, Fan Y, Zhang W, Chen Z (2010) The H3 receptor antagonist clobenpropit protects against abeta42-induced neurotoxicity in differentiated rat PC12 cells. Pharmazie 65(4):257–260

    CAS  PubMed  Google Scholar 

  45. Sharma HS, Olsson Y, Dey PK (1990) Changes in blood-brain barrier and cerebral blood flow following elevation of circulating serotonin level in anesthetized rats. Brain Res 517(1–2):215–223

    Article  CAS  PubMed  Google Scholar 

  46. Sharma HS, Dey PK (1986) Influence of long-term immobilization stress on regional blood-brain barrier permeability, cerebral blood flow and 5-HT level in conscious normotensive young rats. J Neurol Sci 72(1):61–76

    Article  CAS  PubMed  Google Scholar 

  47. Olsson Y, Sharma HS, Pettersson CA (1990) Effects of p-chlorophenylalanine on microvascular permeability changes in spinal cord trauma. An experimental study in the rat using 131I-sodium and lanthanum tracers. Acta Neuropathol 79(6):595–603

    Article  CAS  PubMed  Google Scholar 

  48. Sharma HS, Cervós-Navarro J (1990) Brain oedema and cellular changes induced by acute heat stress in young rats. Acta Neurochir Suppl (Wien) 51:383–386

    CAS  Google Scholar 

  49. Elliott KA, Jasper H (1949) Measurement of experimentally induced brain swelling and shrinkage. Am J Phys 157(1):122–129

    CAS  Google Scholar 

  50. Sharma HS, Olsson Y, Persson S, Nyberg F (1995) Trauma-induced opening of the blood-spinal cord barrier is reduced by indomethacin, an inhibitor of prostaglandin biosynthesis. Experimental observations in the rat using [131I]-sodium, Evans blue and lanthanum as tracers. Restor Neurol Neurosci 7(4):207–215. doi:10.3233/RNN-1994-7403

    PubMed  Google Scholar 

  51. Verwey NA, Hoozemans JJ, Korth C, van Royen MR, Prikulis I, Wouters D, Twaalfhoven HA, van Haastert ES et al (2013) Immunohistochemical characterization of novel monoclonal antibodies against the N-terminus of amyloid β-peptide. Amyloid 20(3):179–187. doi:10.3109/13506129.2013.797389

    Article  CAS  PubMed  Google Scholar 

  52. Postupna N, Rose SE, Bird TD, Gonzalez-Cuyar LF, Sonnen JA, Larson EB, Keene CD, Montine TJ (2012) Novel antibody capture assay for paraffin-embedded tissue detects wide-ranging amyloid beta and paired helical filament-tau accumulation in cognitively normal older adults. Brain Pathol 22(4):472–484. doi:10.1111/j.1750-3639.2011.00542.x

    Article  CAS  PubMed  Google Scholar 

  53. Campbell E, Pearson RC, Parkinson D (1999) Methods to uncover an antibody epitope in the KPI domain of Alzheimer’s amyloid precursor protein for immunohistochemistry in human brain. J Neurosci Methods 93(2):133–138

    Article  CAS  PubMed  Google Scholar 

  54. Sharma HS, Miclescu A, Wiklund L (2011) Cardiac arrest-induced regional blood-brain barrier breakdown, edema formation and brain pathology: a light and electron microscopic study on a new model for neurodegeneration and neuroprotection in porcine brain. J Neural Transm (Vienna) 118(1):87–114. doi:10.1007/s00702-010-0486-4

    Article  Google Scholar 

  55. Sharma HS, Kiyatkin EA (2009) Rapid morphological brain abnormalities during acute methamphetamine intoxication in the rat: an experimental study using light and electron microscopy. J Chem Neuroanat 37(1):18–32. doi:10.1016/j.jchemneu.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  56. Kiyatkin EA, Sharma HS (2009) Permeability of the blood-brain barrier depends on brain temperature. Neuroscience 161(3):926–939. doi:10.1016/j.neuroscience.2009.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sharma HS, Olsson Y, Cervós-Navarro J (1993) Early perifocal cell changes and edema in traumatic injury of the spinal cord are reduced by indomethacin, an inhibitor of prostaglandin synthesis. Experimental study in the rat. Acta Neuropathol 85(2):145–153

    Article  CAS  PubMed  Google Scholar 

  58. Sharma HS, Zimmer C, Westman J, Cervós-Navarro J (1992) Acute systemic heat stress increases glial fibrillary acidic protein immunoreactivity in brain: experimental observations in conscious normotensive young rats. Neuroscience 48(4):889–901

    Article  CAS  PubMed  Google Scholar 

  59. Ozdemir PG, Karadag AS, Selvi Y, Boysan M, Bilgili SG, Aydin A, Onder S (2014) Assessment of the effects of antihistamine drugs on mood, sleep quality, sleepiness, and dream anxiety. Int J Psychiatry Clin Pract 18(3):161–168. doi:10.3109/13651501.2014.907919

    Article  CAS  PubMed  Google Scholar 

  60. Flik G, Dremencov E, Cremers TI, Folgering JH, Westerink BH (2011) The role of cortical and hypothalamic histamine-3 receptors in the modulation of central histamine neurotransmission: an in vivo electrophysiology and microdialysis study. Eur J Neurosci 34(11):1747–1755. doi:10.1111/j.1460-9568.2011.07893.x

    Article  PubMed  Google Scholar 

  61. Flik G, Folgering JH, Cremers TI, Westerink BH, Dremencov E (2015) Interaction between brain histamine and serotonin, norepinephrine, and dopamine systems: in vivo microdialysis and electrophysiology study. J Mol Neurosci 56(2):320–328. doi:10.1007/s12031-015-0536-3

    Article  CAS  PubMed  Google Scholar 

  62. Marr RA, Hafez DM (2014) Amyloid-beta and Alzheimer’s disease: the role of neprilysin-2 in amyloid-beta clearance. Front Aging Neurosci 6:187. doi:10.3389/fnagi.2014.00187

    PubMed  PubMed Central  Google Scholar 

  63. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330(6012):1774. doi:10.1126/science.1197623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li H, Zhu H, Wallack M, Mwamburi M, Abdul-Hay SO, Leissring MA, Qiu WQ (2016) Age and its association with low insulin and high amyloid-β peptides in blood. J Alzheimers Dis 49(1):129–137. doi:10.3233/JAD-150428

    Article  PubMed  Google Scholar 

  65. Stanyon HF, Viles JH (2012) Human serum albumin can regulate amyloid-β peptide fiber growth in the brain interstitium: implications for Alzheimer disease. J Biol Chem 287(33):28163–28168. doi:10.1074/jbc.C112.360800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Do TM, Dodacki A, Alata W, Calon F, Nicolic S, Scherrmann JM, Farinotti R, Bourasset F (2016) Age-dependent regulation of the blood-brain barrier influx/efflux equilibrium of amyloid-β peptide in a mouse model of Alzheimer’s disease (3xTg-AD). J Alzheimers Dis 49(2):287–300. doi:10.3233/JAD-150350

    Article  CAS  PubMed  Google Scholar 

  67. Deane R, Bell RD, Sagare A, Zlokovic BV (2009) Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer’s disease. CNS Neurol Disord Drug Targets 8(1):16–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fu Y, Hsiao JH, Paxinos G, Halliday GM, Kim WS (2015) ABCA5 regulates amyloid-β peptide production and is associated with Alzheimer’s disease neuropathology. J Alzheimers Dis 43(3):857–869. doi:10.3233/JAD-141320

    CAS  PubMed  Google Scholar 

  69. Jha NK, Jha SK, Kumar D, Kejriwal N, Sharma R, Ambasta RK, Kumar P (2015) Impact of insulin degrading enzyme and Neprilysin in Alzheimer’s disease biology: characterization of putative cognates for therapeutic applications. J Alzheimers Dis 48(4):891–917. doi:10.3233/JAD-150379

    Article  CAS  PubMed  Google Scholar 

  70. Kumar S, Wirths O, Stüber K, Wunderlich P, Koch P, Theil S, Rezaei-Ghaleh N, Zweckstetter M et al (2016) Phosphorylation of the amyloid β-peptide at Ser26 stabilizes oligomeric assembly and increases neurotoxicity. Acta Neuropathol 131(4):525–537. doi:10.1007/s00401-016-1546-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Oliveira JM, Henriques AG, Martins F, Rebelo S, da Cruz e Silva OA (2015) Amyloid-β modulates both AβPP and tau phosphorylation. J Alzheimers Dis 45(2):495–507

    CAS  PubMed  Google Scholar 

  72. Finder VH, Vodopivec I, Nitsch RM, Glockshuber R (2010) The recombinant amyloid-beta peptide Abeta1-42 aggregates faster and is more neurotoxic than synthetic Abeta1-42. J Mol Biol 396(1):9–18. doi:10.1016/j.jmb.2009.12.016

    Article  CAS  PubMed  Google Scholar 

  73. Baker-Nigh A, Vahedi S, Davis EG, Weintraub S, Bigio EH, Klein WL, Geula C (2015) Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer’s disease. Brain 138(Pt 6):1722–1737. doi:10.1093/brain/awv024

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hartwig C, Munder A, Glage S, Wedekind D, Schenk H, Seifert R, Neumann D (2015) The histamine H4 -receptor (H4 R) regulates eosinophilic inflammation in ovalbumin-induced experimental allergic asthma in mice. Eur J Immunol 45(4):1129–1140. doi:10.1002/eji.201445179

    Article  CAS  PubMed  Google Scholar 

  75. Adderley SP, Lawrence C, Madonia E, Olubadewo JO, Breslin JW (2015) Histamine activates p38 MAP kinase and alters local lamellipodia dynamics, reducing endothelial barrier integrity and eliciting central movement of actin fibers. Am J Physiol Cell Physiol 309(1):C51–C59. doi:10.1152/ajpcell.00096.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen XF, Zhang Z, Dou X, Li JJ, Zhang W, Yu YY, Yu B, Yu B (2016) Histamine H4 receptor mediates interleukin-8 and TNF-α release in human mast cells via multiple signaling pathways. Cell Mol Biol (Noisy-le-grand) 62(1):84–89

    Google Scholar 

  77. Khalsa DS (2015) Stress, meditation, and Alzheimer’s disease prevention: where the evidence stands. J Alzheimers Dis 48(1):1–12. doi:10.3233/JAD-142766

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ellenbroek BA, Ghiabi B (2014) The other side of the histamine H3 receptor. Trends Neurosci 37(4):191–199. doi:10.1016/j.tins.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  79. Strakhova MI, Nikkel AL, Manelli AM, Hsieh GC, Esbenshade TA, Brioni JD, Bitner RS (2009) Localization of histamine H4 receptors in the central nervous system of human and rat. Brain Res 1250:41–48. doi:10.1016/j.brainres.2008.11.018

    Article  CAS  PubMed  Google Scholar 

  80. Bhowmik M, Khanam R, Vohora D (2012) Histamine H3 receptor antagonists in relation to epilepsy and neurodegeneration: a systemic consideration of recent progress and perspectives. Br J Pharmacol 167(7):1398–1414. doi:10.1111/j.1476-5381.2012.02093.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rosethorne EM, Charlton SJ (2011) Agonist-biased signaling at the histamine H4 receptor: JNJ7777120 recruits β-arrestin without activating G proteins. Mol Pharmacol 79(4):749–757. doi:10.1124/mol.110.068395

    Article  CAS  PubMed  Google Scholar 

  82. Arrang JM, Garbarg M, Schwartz JC (1985) Autoregulation of histamine release in brain by presynaptic H3-receptors. Neuroscience 15(2):553–562

    Article  CAS  PubMed  Google Scholar 

  83. Moreno-Delgado D, Gómez-Ramírez J, Torrent-Moreno A, González-Sepúlveda M, Blanco I, Ortiz J (2009) Different role of cAMP dependent protein kinase and CaMKII in H3 receptor regulation of histamine synthesis and release. Neuroscience 164(3):1244–1251. doi:10.1016/j.neuroscience.2009.08.068

    Article  CAS  PubMed  Google Scholar 

  84. Zhang XY, Yu L, Zhuang QX, Peng SY, Zhu JN, Wang JJ (2013) Postsynaptic mechanisms underlying the excitatory action of histamine on medial vestibular nucleus neurons in rats. Br J Pharmacol 170(1):156–169. doi:10.1111/bph.12256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lieberman P (2009) Histamine, antihistamines, and the central nervous system. Allergy Asthma Proc 30(5):482–486. doi:10.2500/aap.2009.30.3264

    Article  CAS  PubMed  Google Scholar 

  86. Bohm C, Chen F, Sevalle J, Qamar S, Dodd R, Li Y, Schmitt-Ulms G, Fraser PE et al (2015) Current and future implications of basic and translational research on amyloid-β peptide production and removal pathways. Mol Cell Neurosci 66(Pt a):3–11. doi:10.1016/j.mcn.2015.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Air Force Office of Scientific Research (EOARD, London, UK) and Air Force Material Command, USAF, under grant number FA8655-05-1-3065; Alzheimer’s Association (IIRG-09-132087), the National Institutes of Health (R01 AG028679), and the Dr. Robert M. Kohrman Memorial Fund (MAS, RJC); Swedish Medical Research Council (Nr 2710-HSS); Göran Gustafsson Foundation, Stockholm, Sweden (HSS); Astra Zeneca, Mölndal, Sweden (HSS/AS); The University Grants Commission, New Delhi, India (HSS/AS); Ministry of Science and Technology, Government of India (HSS/AS); Indian Medical Research Council, New Delhi, India (HSS/AS); and India-EU Co-operation Program (RP/AS/HSS) and IT 901/16 (JVL); Government of Basque Country and UFI 11/32 and PPG 17/51 (JVL) University of Basque Country, Spain; and Society for Neuroprotection and Neuroplasticity (SSNN), Romania. We thank Suraj Sharma, Uppsala, Sweden, for the computer and graphic support. The US government is authorized to reproduce and distribute reprints for government purpose notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research or the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari S. Sharma.

Ethics declarations

Compliance with Ethical Standards

All experiments were carried out according to National Institute of Health (NIH) Guide for the Care and Use of Laboratory Animals and approved by the local institutional ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patnaik, R., Sharma, A., Skaper, S.D. et al. Histamine H3 Inverse Agonist BF 2649 or Antagonist with Partial H4 Agonist Activity Clobenpropit Reduces Amyloid Beta Peptide-Induced Brain Pathology in Alzheimer’s Disease. Mol Neurobiol 55, 312–321 (2018). https://doi.org/10.1007/s12035-017-0743-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0743-8

Keywords

Navigation