Molecular Neurobiology

, Volume 55, Issue 1, pp 145–155 | Cite as

Intranasal Administration of TAT-Conjugated Lipid Nanocarriers Loading GDNF for Parkinson’s Disease

  • Sara Hernando
  • Enara Herran
  • Joana Figueiro-Silva
  • José Luis Pedraz
  • Manoli Igartua
  • Eva Carro
  • Rosa Maria HernandezEmail author


Parkinson’s disease (PD) is the second most common neurodegenerative disorder (ND), characterized by the loss of dopaminergic neurons, microglial activation, and neuroinflammation. Current available treatments in clinical practice cannot halt the progression of the disease. During the last few years, growth factors (GFs) have been raised as a promising therapeutic approach to address the underlying neurodegenerative process. Among others, glial cell-derived neurotrophic factor (GDNF) is a widely studied GF for PD. However, its clinical use is limited due to its short half life, rapid degradation rate, and difficulties in crossing the blood-brain barrier (BBB). Lately, intranasal administration has appeared as an alternative non-invasive way to bypass the BBB and target drugs directly to the central nervous system (CNS). Thus, the aim of this work was to develop a novel nanoformulation to enhance brain targeting in PD through nasal administration. For that purpose, GDNF was encapsulated into chitosan (CS)-coated nanostructured lipid carriers, with the surface modified with transactivator of transcription (TAT) peptide (CS-nanostructured lipid carrier (NLC)-TAT-GDNF). After the physiochemical characterization of nanoparticles, the in vivo study was performed by intranasal administration to a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The CS-NLC-TAT-GDNF-treated group revealed motor recovery which was confirmed with immunohistochemistry studies, showing the highest number of tyrosine hydroxylase (TH+) fibers in the striatum and TH+ neuron levels in the substantia nigra. Moreover, ionizing calcium-binding adaptor molecule 1 immunohistochemistry was performed, revealing that CS-NLC-TAT-GDNF acts as a modulator on microglia activation, obtaining values similar to control. Therefore, it may be concluded that the intranasal administration of CS-NLC-TAT-GDNF may represent a promising therapy for PD treatment.


Parkinson’s disease Nanostructured lipid carriers Glial derived neurotrophic factor (GDNF) TAT peptide Neuroprotection 



This project was partially supported by the “Ministerio de Economía y Competitividad” (SAF2013-42347-R), the University of the Basque Country (UPV/EHU) (UFI 11/32), and the FEDER funds. The authors thank SGIker of UPV/EHU and European funding (ERDF and ESF) for technical and human support. The authors also wish to thank the intellectual and technical assistance from the ICTS “NANBIOSIS”, more specifically by the Drug Formulation Unit (U10) of the CIBER-BBN at the UPV/EHU.


  1. 1.
    Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373:2055–2066. doi: 10.1016/S0140-6736(09)60492-X CrossRefPubMedGoogle Scholar
  2. 2.
    Nussbaum RL, Ellis CE (2003) Alzheimer’s disease and Parkinson’s disease. N Engl J Med 348:1356–1364. doi: 10.1056/NEJM2003ra020003 CrossRefPubMedGoogle Scholar
  3. 3.
    Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912. doi: 10.1016/S0140-6736(14)61393-3 CrossRefPubMedGoogle Scholar
  4. 4.
    Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397. doi: 10.1016/S1474-4422(09)70062-6 CrossRefPubMedGoogle Scholar
  5. 5.
    Joers V, Tansey MG, Mulas G, Carta AR (2016) Microglial phenotypes in Parkinson’s disease and animal models of the disease. Prog Neurobiol. doi: 10.1016/j.pneurobio.2016.04.006
  6. 6.
    Long-Smith CM, Sullivan AM, Nolan YM (2009) The influence of microglia on the pathogenesis of Parkinson’s disease. Prog Neurobiol 89:277–287. doi: 10.1016/j.pneurobio.2009.08.001 CrossRefPubMedGoogle Scholar
  7. 7.
    Oertel W, Schulz JB (2016) Current and experimental treatments of Parkinson disease: a guide for neuroscientists. J Neurochem 139(Suppl 1):325–337. doi: 10.1111/jnc.13750 CrossRefPubMedGoogle Scholar
  8. 8.
    Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138:155–175. doi: 10.1016/j.pharmthera.2013.01.004 CrossRefPubMedGoogle Scholar
  9. 9.
    Sullivan AM, Toulouse A (2011) Neurotrophic factors for the treatment of Parkinson’s disease. Cytokine Growth Factor Rev 22:157–165. doi: 10.1016/j.cytogfr.2011.05.001 CrossRefPubMedGoogle Scholar
  10. 10.
    Lapchak PA, Gash DM, Jiao S, Miller PJ, Hilt D (1997) Glial cell line-derived neurotrophic factor: a novel therapeutic approach to treat motor dysfunction in Parkinson’s disease. Exp Neurol 144:29–34. doi: 10.1006/exnr.1996.6384 CrossRefPubMedGoogle Scholar
  11. 11.
    Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN et al (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9:589–595. doi: 10.1038/nm850 CrossRefPubMedGoogle Scholar
  12. 12.
    Lang AE, Gill S, Patel NK et al (2006) Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 59:459–466. doi: 10.1002/ana.20737 CrossRefPubMedGoogle Scholar
  13. 13.
    Nutt JG, Burchiel KJ, Comella CL, Jankovic J, Lang AE, Laws ER Jr, Lozano AM, Penn RD et al, ICV GDNF Study Group. Implanted intracerebroventricular. Glial cell line-derived neurotrophic factor (2003) Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60:69–73CrossRefPubMedGoogle Scholar
  14. 14.
    Salvatore MF, Ai Y, Fischer B, Zhang AM, Grondin RC, Zhang Z, Gerhardt GA, Gash DM (2006) Point source concentration of GDNF may explain failure of phase II clinical trial. Exp Neurol 202:497–505CrossRefPubMedGoogle Scholar
  15. 15.
    Tajes M, Ramos-Fernandez E, Weng-Jiang X, Bosch-Morato M, Guivernau B, Eraso-Pichot A, Salvador B, Fernandez-Busquets X et al (2014) The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol 31:152–167. doi: 10.3109/09687688.2014.937468 CrossRefPubMedGoogle Scholar
  16. 16.
    Djupesland PG, Messina JC, Mahmoud RA (2014) The nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overview. Ther Deliv 5:709–733. doi: 10.4155/tde.14.41 CrossRefPubMedGoogle Scholar
  17. 17.
    Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC (2007) Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm 337:1–24. doi: 10.1016/j.ijpharm.2007.03.025 CrossRefPubMedGoogle Scholar
  18. 18.
    Re F, Gregori M, Masserini M (2012) Nanotechnology for neurodegenerative disorders. Maturitas 73:45–51. doi: 10.1016/j.maturitas.2011.12.015 CrossRefPubMedGoogle Scholar
  19. 19.
    Shah B, Khunt D, Bhatt H, Misra M, Padh H (2015) Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: effect on formulation and characterization parameters. Eur J Pharm Sci 78:54–66. doi: 10.1016/j.ejps.2015.07.002 CrossRefPubMedGoogle Scholar
  20. 20.
    Sharma S, Lohan S, Murthy RSR (2013) Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev Ind Pharm 40:869–878. doi: 10.3109/03639045.2013.789051 CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang C, Chen J, Feng C, Shao X, Liu Q, Zhang Q, Pang Z, Jiang X (2014) Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int J Pharm 461:192–202. doi: 10.1016/j.ijpharm.2013.11.049 CrossRefPubMedGoogle Scholar
  22. 22.
    Md S, Khan RA, Mustafa G, Chuttani K, Baboota S, Sahni JK, Ali J (2013) Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur J Pharm Sci 48:393–405. doi: 10.1016/j.ejps.2012.12.007 CrossRefPubMedGoogle Scholar
  23. 23.
    Mistry A, Glud SZ, Kjems J, Randel J, Howard KA, Stolnik S, Illum L (2009) Effect of physicochemical properties on intranasal nanoparticle transit into murine olfactory epithelium. J Drug Target 17:543–552. doi: 10.1080/10611860903055470 CrossRefPubMedGoogle Scholar
  24. 24.
    Fazil M, Md S, Haque S, Kumar M, Baboota S, Jk S, Ali J (2012) Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci 47:6–15. doi: 10.1016/j.ejps.2012.04.013 CrossRefPubMedGoogle Scholar
  25. 25.
    Zhao Y, Li X, Lu C, Lin M, Chen L, Xiang Q, Zhang M, Jin R et al (2014) Gelatin nanostructured lipid carriers-mediated intranasal delivery of basic fibroblast growth factor enhances functional recovery in hemiparkinsonian rats. Nanomedicine 10:755–764. doi: 10.1016/j.nano.2013.10.009 CrossRefPubMedGoogle Scholar
  26. 26.
    Jafarieh O, Md S, Ali M, Baboota S, Sahni JK, Kumari B, Bhatnagar A, Ali J (2015) Design, characterization, and evaluation of intranasal delivery of ropinirole-loaded mucoadhesive nanoparticles for brain targeting. Drug Dev Ind Pharm 41:1674–1681. doi: 10.3109/03639045.2014.991400 CrossRefPubMedGoogle Scholar
  27. 27.
    Gartziandia O, Herran E, Pedraz JL, Carro E, Igartua M, Hernandez RM (2015) Chitosan coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration. Colloids Surf B Biointerfaces 134:304–313. doi: 10.1016/j.colsurfb.2015.06.054 CrossRefPubMedGoogle Scholar
  28. 28.
    Qin Y, Chen H, Zhang Q, Wang X, Yuan W, Kuai R, Tang J, Zhang L et al (2011) Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals. Int J Pharm 420:304–312. doi: 10.1016/j.ijpharm.2011.09.008 CrossRefPubMedGoogle Scholar
  29. 29.
    Kanazawa T, Akiyama F, Kakizaki S, Takashima Y, Seta Y (2013) Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles. Biomaterials 34:9220–9226. doi: 10.1016/j.biomaterials.2013.08.036 CrossRefPubMedGoogle Scholar
  30. 30.
    Gartziandia O, Egusquiaguirre SP, Bianco J, Pedraz JL, Igartua M, Hernandez RM, Préat V, Beloqui A (2016) Nanoparticle transport across in vitro olfactory cell monolayers. Int J Pharm 499:81–89. doi: 10.1016/j.ijpharm.2015.12.046 CrossRefPubMedGoogle Scholar
  31. 31.
    Egusquiaguirre SP, Manguán-García C, Pintado-Berninches L et al (2015) Development of surface modified biodegradable polymeric nanoparticles to deliver GSE24.2 peptide to cells: a promising approach for the treatment of defective telomerase disorders. Eur J Pharm Biopharm 91:91–102. doi: 10.1016/j.ejpb.2015.01.028 CrossRefPubMedGoogle Scholar
  32. 32.
    Anitua E, Pascual C, Pérez-Gonzalez R, Orive G, Carro E (2015) Intranasal PRGF-Endoret enhances neuronal survival and attenuates NF-κB-dependent inflammation process in a mouse model of Parkinson’s disease. J Control Release 203:170–180. doi: 10.1016/j.jconrel.2015.02.030 CrossRefPubMedGoogle Scholar
  33. 33.
    Blandini F, Armentero MT (2012) Animal models of Parkinson’s disease. FEBS J 279:1156–1166. doi: 10.1111/j.1742-4658.2012.08491.x CrossRefPubMedGoogle Scholar
  34. 34.
    Kalia LV, Kalia SK, Lang AE (2015) Disease-modifying strategies for Parkinson’s disease. Mov Disord 30:1442–1450. doi: 10.1002/mds.26354 CrossRefPubMedGoogle Scholar
  35. 35.
    Herran E, Requejo C, Ruiz-Ortega JA et al (2014) Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson’s disease. Int J Nanomedicine 9:2677–2687PubMedPubMedCentralGoogle Scholar
  36. 36.
    Herrán E, Ruiz-Ortega JÁ, Aristieta A, Igartua M, Requejo C, Lafuente JV, Ugedo L, Pedraz JL et al (2013) In vivo administration of VEGF- and GDNF-releasing biodegradable polymeric microspheres in a severe lesion model of Parkinson’s disease. Eur J Pharm Biopharm 85:1183–1190. doi: 10.1016/j.ejpb.2013.03.034 CrossRefPubMedGoogle Scholar
  37. 37.
    Garbayo E, Montero-Menei CN, Ansorena E, Lanciego JL, Aymerich MS, Blanco-Prieto MJ (2009) Effective GDNF brain delivery using microspheres—a promising strategy for Parkinson’s disease. J Control Release 135:119–126. doi: 10.1016/j.jconrel.2008.12.010 CrossRefPubMedGoogle Scholar
  38. 38.
    Garbayo E, Ansorena E, Lanciego JL, Blanco-Prieto MJ, Aymerich MS (2011) Long-term neuroprotection and neurorestoration by glial cell-derived neurotrophic factor microspheres for the treatment of Parkinson’s disease. Mov Disord 26:1943–1947. doi: 10.1002/mds.23793 CrossRefPubMedGoogle Scholar
  39. 39.
    Jollivet C, Aubert-Pouessel A, Clavreul A, Venier-Julienne M, Remy S, Montero-Menei CN, Benoit J, Menei P (2004) Striatal implantation of GDNF releasing biodegradable microspheres promotes recovery of motor function in a partial model of Parkinson’s disease. Biomaterials 25:933–942. doi: 10.1016/S0142-9612(03)00601-X CrossRefPubMedGoogle Scholar
  40. 40.
    Gartziandia O, Herrán E, Ruiz-Ortega JA, Miguelez C, Igartua M, Lafuente JV, Pedraz JL, Ugedo L et al (2016) Intranasal administration of chitosan-coated nanostructured lipid carriers loaded with GDNF improves behavioral and histological recovery in a partial lesion model of Parkinson’s disease. J Biomed Nanotechnol 12:1–11. doi: 10.1166/jbn.2016.2313 CrossRefGoogle Scholar
  41. 41.
    Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318:215–224. doi: 10.1007/s00441-004-0938-y CrossRefPubMedGoogle Scholar
  42. 42.
    Blesa J, Przedborski S (2014) Parkinso’s disease: animal models and dopaminergic cell vulnerability. Front Neuroanat 8:155. doi: 10.3389/fnana.2014.00155 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Barker RA (2009) Parkinson’s disease and growth factors—are they the answer? Parkinsonism Relat Disord 15(Supplement 3):S181–S184. doi: 10.1016/S1353-8020(09)70810-7 CrossRefPubMedGoogle Scholar
  44. 44.
    Chang YP, Fang KM, Lee TI, Tzeng SF (2006) Regulation of microglial activities by glial cell line derived neurotrophic factor. J Cell Biochem 97:501–511. doi: 10.1002/jcb.20646 CrossRefPubMedGoogle Scholar
  45. 45.
    Rocha SM, Cristovão AC, Campos FL, Fonseca CP, Baltazar G (2012) Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiol Dis 47:407–415. doi: 10.1016/j.nbd.2012.04.014 CrossRefPubMedGoogle Scholar
  46. 46.
    Rickert U, Grampp S, Wilms H, Spreu J, Knerlich-Lukoschus F, Held-Feindt J, Lucius R (2014) Glial cell line-derived neurotrophic factor family members reduce microglial activation via inhibiting p38MAPKs-mediated inflammatory responses. J Neurodegener Dis 2014:369468. doi: 10.1155/2014/369468 PubMedPubMedCentralGoogle Scholar
  47. 47.
    Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM et al (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5:1403–1409. doi: 10.1038/70978 CrossRefPubMedGoogle Scholar
  48. 48.
    Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46:598–605CrossRefPubMedGoogle Scholar
  49. 49.
    McGeer PL, Schwab C, Parent A, Doudet D (2003) Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol 54:599–604. doi: 10.1002/ana.10728 CrossRefPubMedGoogle Scholar
  50. 50.
    Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170. doi: 10.1016/0306-4522(90)90229-W CrossRefPubMedGoogle Scholar
  51. 51.
    Mogi M, Kondo T, Mizuno Y, Nagatsu T (2007) p53 protein, interferon-γ, and NF-κB levels are elevated in the parkinsonian brain. Neurosci Lett 414:94–97. doi: 10.1016/j.neulet.2006.12.003 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Sara Hernando
    • 1
  • Enara Herran
    • 1
    • 2
  • Joana Figueiro-Silva
    • 3
    • 4
  • José Luis Pedraz
    • 1
    • 2
  • Manoli Igartua
    • 1
    • 2
  • Eva Carro
    • 3
    • 4
  • Rosa Maria Hernandez
    • 1
    • 2
    Email author
  1. 1.NanoBioCel Group, Laboratory of Pharmaceutics, School of PharmacyUniversity of the Basque Country (UPV/EHU)Vitoria-GasteizSpain
  2. 2.Biomedical Research Networking Centre in BioengineeringBiomaterials and Nanomedicine (CIBER-BBN)Vitoria-GasteizSpain
  3. 3.Neuroscience Laboratory, Research InstituteHospital 12 de OctubreMadridSpain
  4. 4.Neurodegenerative Diseases Biomedical Research Centre (CIBERNED)MadridSpain

Personalised recommendations