Molecular Neurobiology

, Volume 55, Issue 1, pp 70–84 | Cite as

Coping with Phantom Limb Pain

  • Damien P. KufflerEmail author


Phantom limb pain is a chronic neuropathic pain that develops in 45–85% of patients who undergo major amputations of the upper and lower extremities and appears predominantly during two time frames following an amputation: the first month and later about 1 year. Although in most patients the frequency and intensity of pain diminish over time, severe pain persists in about 5–10%. It has been proposed that factors in both the peripheral and central nervous systems play major roles in triggering the development and maintenance of pain associated with extremity amputations. Chronic pain is physically and mentally debilitating, affecting an individual’s capacity for self-care, but also diminishing an individual’s daily capacity for personal and economic independence. In addition, the pain may lead to depression and feelings of hopelessness. A National Center for Biotechnology Information study found that in the USA alone, the annual cost of dealing with neuropathic pain is more than $600 billion, with an estimated 20 million people in the USA suffering from this condition. Although the pain can be reduced by antiepileptic drugs and analgesics, they are frequently ineffective or their side effects preclude their use. The optimal approach for eliminating neuropathic pain and improving individuals’ quality of life is the development of novel techniques that permanently prevent the development and maintenance of neuropathic pain, or that eliminate the pain once it has developed. What is still required is understanding when and where an effective novel technique must be applied, such as onto the nerve stump of the transected peripheral axons, dorsal root ganglion neurons, spinal cord, or cortex to induce the desired influences. This review, the second of two in this journal volume, examines the techniques that may be capable of reducing or eliminating chronic neuropathic pain once it has developed. Such an understanding will improve amputees’ quality of life by blocking the mechanisms that trigger and/or maintain PLP and chronic neuropathic pain.


Spinal cord injury Neuropathic pain Brain stimulation Deep brain stimulation (DBS) Motor cortex stimulation (MCS) Transcranial magnetic stimulation (TMS) Transcranial direct current stimulation (tDCS) Cranial electrotherapy stimulation (CES) 



No support was involved in the production of this paper.

Compliance with Ethical Standards

Conflict of Interest

The author declares that he has no conflicts of interest.


  1. 1.
    Kooijman CM, Dijkstra PU, Geertzen JH et al (2000) Phantom pain and phantom sensations in upper limb amputees: an epidemiological study. Pain 87:33–41PubMedCrossRefGoogle Scholar
  2. 2.
    Probstner D, Thuler LC, Ishikawa NM et al (2010) Phantom limb phenomena in cancer amputees. Pain Pract 10:249–256PubMedCrossRefGoogle Scholar
  3. 3.
    Schley MT, Wilms P, Toepfner S et al (2008) Painful and nonpainful phantom and stump sensations in acute traumatic amputees. J Trauma 65:858–864PubMedCrossRefGoogle Scholar
  4. 4.
    Diers M, Christmann C, Koeppe C et al (2010) Mirrored, imagined and executed movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. Pain 149:296–304PubMedCrossRefGoogle Scholar
  5. 5.
    McCabe CS, Haigh RC, Halligan PW et al (2005) Simulating sensory-motor incongruence in healthy volunteers: implications for a cortical model of pain. Rheumatology (Oxford) 44:509–516CrossRefGoogle Scholar
  6. 6.
    Loeser JD, Treede RD (2008) The Kyoto protocol of IASP basic pain terminology. Pain 137:473–477PubMedCrossRefGoogle Scholar
  7. 7.
    Warner NS, Warner MA, Moeschler SM et al (2015) Pain management in four-limb amputation: a case report. Pain Pract 15:E76–E80PubMedCrossRefGoogle Scholar
  8. 8.
    Vaso A, Adahan HM, Gjika A et al (2014) Peripheral nervous system origin of phantom limb pain. Pain 155:1384–1391PubMedCrossRefGoogle Scholar
  9. 9.
    Haroutounian S, Nikolajsen L, Bendtsen TF et al (2014) Primary afferent input critical for maintaining spontaneous pain in peripheral neuropathy. Pain 155:1272–1279PubMedCrossRefGoogle Scholar
  10. 10.
    Danzi MC, Motti D, Avison DL et al (2016) Treatment with analgesics after mouse sciatic nerve injury does not alter expression of wound healing-associated genes. Neural Regen Res 11:144–149PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Fernandez-Gonzalez F, Seijo F, Valles C et al (2000) Neurophysiological monitoring in the treatment of pain. Rev Neurol 30:567–576PubMedGoogle Scholar
  12. 12.
    Christensen MD, Hulsebosch CE (1997) Chronic central pain after spinal cord injury. J Neurotrauma 14:517–537PubMedCrossRefGoogle Scholar
  13. 13.
    Jarvis MF, Boyce-Rustay JM (2009) Neuropathic pain: models and mechanisms. Curr Pharm Des 15:1711–1716PubMedCrossRefGoogle Scholar
  14. 14.
    Smith PA (2004) Neuropathic pain: drug targets for current and future interventions. Drug News Perspect 17:5–17PubMedCrossRefGoogle Scholar
  15. 15.
    Fernyhough P, Calcutt NA (2010) Abnormal calcium homeostasis in peripheral neuropathies. Cell Calcium 47:130–139PubMedCrossRefGoogle Scholar
  16. 16.
    McCallum JB, Kwok WM, Sapunar D et al (2006) Painful peripheral nerve injury decreases calcium current in axotomized sensory neurons. Anesthesiology 105:160–168PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Beggs S, Salter MW (2013) The known knowns of microglia-neuronal signalling in neuropathic pain. Neurosci Lett 557(Pt A):37–42PubMedCrossRefGoogle Scholar
  18. 18.
    Wen YR, Tan PH, Cheng JK et al (2011) Microglia: a promising target for treating neuropathic and postoperative pain, and morphine tolerance. J Formos Med Assoc 110:487–494PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ainsworth L, Budelier K, Clinesmith M et al (2006) Transcutaneous electrical nerve stimulation (TENS) reduces chronic hyperalgesia induced by muscle inflammation. Pain 120:182–187PubMedCrossRefGoogle Scholar
  20. 20.
    Goroszeniuk T, Kothari S, Hamann W (2006) Subcutaneous neuromodulating implant targeted at the site of pain. Reg Anesth Pain Med 31:168–171PubMedCrossRefGoogle Scholar
  21. 21.
    Mobbs RJ, Nair S, Blum P (2007) Peripheral nerve stimulation for the treatment of chronic pain. J Clin Neurosci 14:216–221 discussion 222-213PubMedCrossRefGoogle Scholar
  22. 22.
    Somers DL, Clemente FR (2009) Contralateral high or a combination of high- and low-frequency transcutaneous electrical nerve stimulation reduces mechanical allodynia and alters dorsal horn neurotransmitter content in neuropathic rats. J Pain 10:221–229PubMedCrossRefGoogle Scholar
  23. 23.
    Stanik-Hutt JA (2005) Management options for angina refractory to maximal medical and surgical interventions. AACN Clin Issues 16:320–332PubMedCrossRefGoogle Scholar
  24. 24.
    Fonoff ET, Dale CS, Pagano RL et al (2009) Antinociception induced by epidural motor cortex stimulation in naive conscious rats is mediated by the opioid system. Behav Brain Res 196:63–70PubMedCrossRefGoogle Scholar
  25. 25.
    Lefaucheur JP (2009) Methods of therapeutic cortical stimulation. Neurophysiol Clin 39:1–14PubMedCrossRefGoogle Scholar
  26. 26.
    Miranda-Cardenas Y, Rojas-Piloni G, Martinez-Lorenzana G et al (2006) Oxytocin and electrical stimulation of the paraventricular hypothalamic nucleus produce antinociceptive effects that are reversed by an oxytocin antagonist. Pain 122:182–189PubMedCrossRefGoogle Scholar
  27. 27.
    Villarrea CF, Kina VA, Prado WA (2004) Antinociception induced by stimulating the anterior pretectal nucleus in two models of pain in rats. Clin Exp Pharmacol Physiol 31:608–613CrossRefGoogle Scholar
  28. 28.
    Bittar RG, Otero S, Carter H et al (2005) Deep brain stimulation for phantom limb pain. J Clin Neurosci 12:399–404PubMedCrossRefGoogle Scholar
  29. 29.
    Hanley MA, Ehde DM, Campbell KM et al (2006) Self-reported treatments used for lower-limb phantom pain: descriptive findings. Arch Phys Med Rehabil 87:270–277PubMedCrossRefGoogle Scholar
  30. 30.
    Verdu B, Decosterd I, Buclin T et al (2008) Antidepressants for the treatment of chronic pain. Drugs 68:2611–2632PubMedCrossRefGoogle Scholar
  31. 31.
    Attal N, Cruccu G, Baron R et al (2010) EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol 17:1113–e1188PubMedCrossRefGoogle Scholar
  32. 32.
    Robinson LR, Czerniecki JM, Ehde DM et al (2004) Trial of amitriptyline for relief of pain in amputees: results of a randomized controlled study. Arch Phys Med Rehabil 85:1–6PubMedCrossRefGoogle Scholar
  33. 33.
    Wilder-Smith CH, Hill LT, Laurent S (2005) Postamputation pain and sensory changes in treatment-naive patients: characteristics and responses to treatment with tramadol, amitriptyline, and placebo. Anesthesiology 103:619–628PubMedCrossRefGoogle Scholar
  34. 34.
    O'Connor AB, Dworkin RH (2009) Treatment of neuropathic pain: an overview of recent guidelines. Am J Med 122:S22–S32PubMedCrossRefGoogle Scholar
  35. 35.
    Nikolajsen L, Finnerup NB, Kramp S et al (2006) A randomized study of the effects of gabapentin on postamputation pain. Anesthesiology 105:1008–1015PubMedCrossRefGoogle Scholar
  36. 36.
    Smith DG, Ehde DM, Hanley MA et al (2005) Efficacy of gabapentin in treating chronic phantom limb and residual limb pain. J Rehabil Res Dev 42:645–654PubMedCrossRefGoogle Scholar
  37. 37.
    Casale R, Alaa L, Mallick M et al (2009) Phantom limb related phenomena and their rehabilitation after lower limb amputation. Eur J Phys Rehabil Med 45:559–566PubMedGoogle Scholar
  38. 38.
    Eichenberger U, Neff F, Sveticic G et al (2008) Chronic phantom limb pain: the effects of calcitonin, ketamine, and their combination on pain and sensory thresholds. Anesth Analg 106:1265–1273PubMedCrossRefGoogle Scholar
  39. 39.
    Flor H (2008) Maladaptive plasticity, memory for pain and phantom limb pain: review and suggestions for new therapies. Expert Rev Neurother 8:809–818PubMedCrossRefGoogle Scholar
  40. 40.
    Hackworth RJ, Tokarz KA, Fowler IM et al (2008) Profound pain reduction after induction of memantine treatment in two patients with severe phantom limb pain. Anesth Analg 107:1377–1379PubMedCrossRefGoogle Scholar
  41. 41.
    Schley M, Topfner S, Wiech K et al (2007) Continuous brachial plexus blockade in combination with the NMDA receptor antagonist memantine prevents phantom pain in acute traumatic upper limb amputees. Eur J Pain 11:299–308PubMedCrossRefGoogle Scholar
  42. 42.
    Buvanendran A, Kroin JS (2008) Early use of memantine for neuropathic pain. Anesth Analg 107:1093–1094PubMedCrossRefGoogle Scholar
  43. 43.
    Goodchild CS, Nelson J, Cooke I et al (2008) Combination therapy with flupirtine and opioid: open-label case series in the treatment of neuropathic pain associated with cancer. Pain Med 9:939–949PubMedCrossRefGoogle Scholar
  44. 44.
    Yu H, Fischer G, Ebert AD et al (2015) Analgesia for neuropathic pain by dorsal root ganglion transplantation of genetically engineered mesenchymal stem cells: initial results. Mol Pain 11:5–12PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kim J, Ryu SB, Lee SE et al (2016) Motor cortex stimulation and neuropathic pain: how does motor cortex stimulation affect pain-signaling pathways? J Neurosurg 124:866–876PubMedCrossRefGoogle Scholar
  46. 46.
    Zhang H, Li Y, de Carvalho-Barbosa M et al (2016) Dorsal root ganglion infiltration by macrophages contributes to paclitaxel chemotherapy-induced peripheral neuropathy. J Pain 17:775–786PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kim SK, Hayashi H, Ishikawa T et al (2016) Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. J Clin Invest 126:1983–1997PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Black LM, Persons RK, Jamieson B (2009) Clinical inquiries. What is the best way to manage phantom limb pain? J Fam Pract 58:155–158PubMedGoogle Scholar
  49. 49.
    Cruccu G, Aziz TZ, Garcia-Larrea L et al (2007) EFNS guidelines on neurostimulation therapy for neuropathic pain. Eur J Neurol 14:952–970PubMedCrossRefGoogle Scholar
  50. 50.
    Giuffrida O, Simpson L, Halligan PW (2010) Contralateral stimulation, using TENS, of phantom limb pain: two confirmatory cases. Pain Med 11:133–141PubMedCrossRefGoogle Scholar
  51. 51.
    Sabino GS, Santos CM, Francischi JN et al (2008) Release of endogenous opioids following transcutaneous electric nerve stimulation in an experimental model of acute inflammatory pain. J Pain 9:157–163PubMedCrossRefGoogle Scholar
  52. 52.
    Radhakrishnan R, Sluka KA (2005) Deep tissue afferents, but not cutaneous afferents, mediate transcutaneous electrical nerve stimulation-induced antihyperalgesia. J Pain 6:673–680PubMedCrossRefGoogle Scholar
  53. 53.
    Somers DL, Clemente FR (2006) Transcutaneous electrical nerve stimulation for the management of neuropathic pain: the effects of frequency and electrode position on prevention of allodynia in a rat model of complex regional pain syndrome type II. Phys Ther 86:698–709PubMedGoogle Scholar
  54. 54.
    Rakel BA, Zimmerman MB, Geasland K et al (2014) Transcutaneous electrical nerve stimulation for the control of pain during rehabilitation after total knee arthroplasty: a randomized, blinded, placebo-controlled trial. Pain 155:2599–2611PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Chandran P, Sluka KA (2003) Development of opioid tolerance with repeated transcutaneous electrical nerve stimulation administration. Pain 102:195–201PubMedCrossRefGoogle Scholar
  56. 56.
    Desantana JM, Santana-Filho VJ, Sluka KA (2008) Modulation between high- and low-frequency transcutaneous electric nerve stimulation delays the development of analgesic tolerance in arthritic rats. Arch Phys Med Rehabil 89:754–760PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Vance CG, Rakel BA, Blodgett NP et al (2012) Effects of transcutaneous electrical nerve stimulation on pain, pain sensitivity, and function in people with knee osteoarthritis: a randomized controlled trial. Phys Ther 92:898–910PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kalra A, Urban MO, Sluka KA (2001) Blockade of opioid receptors in rostral ventral medulla prevents antihyperalgesia produced by transcutaneous electrical nerve stimulation (TENS). J Pharmacol Exp Ther 298:257–263PubMedGoogle Scholar
  59. 59.
    Sluka KA, Deacon M, Stibal A et al (1999) Spinal blockade of opioid receptors prevents the analgesia produced by TENS in arthritic rats. J Pharmacol Exp Ther 289:840–846PubMedGoogle Scholar
  60. 60.
    DeSantana JM, da Silva LF, Sluka KA (2010) Cholecystokinin receptors mediate tolerance to the analgesic effect of TENS in arthritic rats. Pain 148:84–93PubMedCrossRefGoogle Scholar
  61. 61.
    Hingne PM, Sluka KA (2008) Blockade of NMDA receptors prevents analgesic tolerance to repeated transcutaneous electrical nerve stimulation (TENS) in rats. J Pain 9:217–225PubMedCrossRefGoogle Scholar
  62. 62.
    Hingne PM, Sluka KA (2007) Differences in waveform characteristics have no effect on the anti-hyperalgesia produced by transcutaneous electrical nerve stimulation (TENS) in rats with joint inflammation. J Pain 8:251–255PubMedCrossRefGoogle Scholar
  63. 63.
    Maeda Y, Lisi TL, Vance CG et al (2007) Release of GABA and activation of GABA(A) in the spinal cord mediates the effects of TENS in rats. Brain Res 1136:43–50PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    King EW, Audette K, Athman GA et al (2005) Transcutaneous electrical nerve stimulation activates peripherally located alpha-2A adrenergic receptors. Pain 115:364–373PubMedCrossRefGoogle Scholar
  65. 65.
    Sluka KA, Lisi TL, Westlund KN (2006) Increased release of serotonin in the spinal cord during low, but not high, frequency transcutaneous electric nerve stimulation in rats with joint inflammation. Arch Phys Med Rehabil 87:1137–1140PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Vance CG, Radhakrishnan R, Skyba DA et al (2007) Transcutaneous electrical nerve stimulation at both high and low frequencies reduces primary hyperalgesia in rats with joint inflammation in a time-dependent manner. Phys Ther 87:44–51PubMedCrossRefGoogle Scholar
  67. 67.
    Rauck RL, Cohen SP, Gilmore CA et al (2014) Treatment of post-amputation pain with peripheral nerve stimulation. Neuromodulation 17:188–197PubMedCrossRefGoogle Scholar
  68. 68.
    Soin A, Shah NS, Fang ZP (2015) High-frequency electrical nerve block for postamputation pain: a pilot study. Neuromodulation 18:197–205 discussion 205-196PubMedCrossRefGoogle Scholar
  69. 69.
    Forst JC, Blok DC, Slopsema JP et al (2015) Surface electrical stimulation to evoke referred sensation. J Rehabil Res Dev 52:397–406PubMedCrossRefGoogle Scholar
  70. 70.
    Bunch JR, Goldstein HV, Hurley RW (2015) Complete coverage of phantom limb and stump pain with constant current SCS system: a case report and review of the literature. Pain Pract 15:E20–E26PubMedCrossRefGoogle Scholar
  71. 71.
    Buchanan RJ, Darrow D, Monsivais D et al (2014) Motor cortex stimulation for neuropathic pain syndromes: a case series experience. Neuroreport 25:715–717PubMedCrossRefGoogle Scholar
  72. 72.
    Pereira EA, Boccard SG, Linhares P et al (2013) Thalamic deep brain stimulation for neuropathic pain after amputation or brachial plexus avulsion. Neurosurg Focus 35:E7CrossRefGoogle Scholar
  73. 73.
    Honey CM, Tronnier VM, Honey CR (2016) Deep brain stimulation versus motor cortex stimulation for neuropathic pain: a minireview of the literature and proposal for future research. Comput Struct Biotechnol J 14:234–237PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Fagundes-Pereyra WJ, Teixeira MJ, Reyns N et al (2010) Motor cortex electric stimulation for the treatment of neuropathic pain. Arq Neuropsiquiatr 68:923–929PubMedCrossRefGoogle Scholar
  75. 75.
    Lee JH, Byun JH, Choe YR et al (2015) Successful treatment of phantom limb pain by 1 Hz repetitive transcranial magnetic stimulation over affected supplementary motor complex: a case report. Ann Rehabil Med 39:630–633PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Falowski SM (2015) Deep brain stimulation for chronic pain. Curr Pain Headache Rep 19:27–31PubMedCrossRefGoogle Scholar
  77. 77.
    Nardone R, Holler Y, Leis S et al (2014) Invasive and non-invasive brain stimulation for treatment of neuropathic pain in patients with spinal cord injury: a review. J Spinal Cord Med 37:19–31PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Bolognini N, Spandri V, Ferraro F et al (2015) Immediate and sustained effects of 5-day transcranial direct current stimulation of the motor cortex in phantom limb pain. J Pain 16:657–665PubMedCrossRefGoogle Scholar
  79. 79.
    Attal N, Ayache SS, Ciampi De Andrade D et al (2016) Repetitive transcranial magnetic stimulation and transcranial direct-current stimulation in neuropathic pain due to radiculopathy: a randomized sham-controlled comparative study. Pain 157:1224–1231PubMedCrossRefGoogle Scholar
  80. 80.
    Nardone R, Holler Y, Langthaler PB et al (2016) rTMS of the prefrontal cortex has analgesic effects on neuropathic pain in subjects with spinal cord injury. Spinal Cord 118:82–86Google Scholar
  81. 81.
    Cioato SG, Medeiros LF, Marques Filho PR et al (2016) Long-lasting effect of transcranial direct current stimulation in the reversal of hyperalgesia and cytokine alterations induced by the neuropathic pain model. Brain Stimul 9:209–217PubMedCrossRefGoogle Scholar
  82. 82.
    Ayache SS, Ahdab R, Chalah MA et al (2016) Analgesic effects of navigated motor cortex rTMS in patients with chronic neuropathic pain. Eur J Pain 20:1413–1422PubMedCrossRefGoogle Scholar
  83. 83.
    Ackermann DM Jr, Bhadra N, Foldes EL et al (2010) Effect of nerve cuff electrode geometry on onset response firing in high-frequency nerve conduction block. IEEE Trans Neural Syst Rehabil Eng 18:658–665PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kilgore KL, Foldes EA, Ackermann DM et al (2009) Combined direct current and high frequency nerve block for elimination of the onset response. Conf Proc IEEE Eng Med Biol Soc 2009:197–199PubMedGoogle Scholar
  85. 85.
    McCormick Z, Chang-Chien G, Marshall B et al (2014) Phantom limb pain: a systematic neuroanatomical-based review of pharmacologic treatment. Pain Med 15:292–305PubMedCrossRefGoogle Scholar
  86. 86.
    Knotkova H, Cruciani RA, Tronnier VM et al (2012) Current and future options for the management of phantom-limb pain. J Pain Res 5:39–49PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Di Rollo A, Pallanti S (2011) Phantom limb pain: low frequency repetitive transcranial magnetic stimulation in unaffected hemisphere. Case Rep Med 2011:130751PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Khedr EM, Kotb H, Kamel NF et al (2005) Longlasting antalgic effects of daily sessions of repetitive transcranial magnetic stimulation in central and peripheral neuropathic pain. J Neurol Neurosurg Psychiatry 76:833–838PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Topper R, Foltys H, Meister IG et al (2003) Repetitive transcranial magnetic stimulation of the parietal cortex transiently ameliorates phantom limb pain-like syndrome. Clin Neurophysiol 114:1521–1530PubMedCrossRefGoogle Scholar
  90. 90.
    MacIver K, Lloyd DM, Kelly S et al (2008) Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery. Brain 131:2181–2191PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Hashimoto R, Rothwell JC (1999) Dynamic changes in corticospinal excitability during motor imagery. Exp Brain Res 125:75–81PubMedCrossRefGoogle Scholar
  92. 92.
    Johnson MI, Mulvey MR, Bagnall AM (2015) Transcutaneous electrical nerve stimulation (TENS) for phantom pain and stump pain following amputation in adults. Cochrane Database Syst Rev 8:CD007264PubMedGoogle Scholar
  93. 93.
    Tyner TR, Parks N, Faria S et al (2007) Effects of collagen nerve guide on neuroma formation and neuropathic pain in a rat model. Am J Surg 193:e1–e6PubMedCrossRefGoogle Scholar
  94. 94.
    Costantini A (2005) Spinal cord stimulation. Minerva Anestesiol 71:471–474PubMedGoogle Scholar
  95. 95.
    Viswanathan A, Phan PC, Burton AW (2010) Use of spinal cord stimulation in the treatment of phantom limb pain: case series and review of the literature. Pain Pract 10:479–484PubMedCrossRefGoogle Scholar
  96. 96.
    Deer TR, Mekhail N, Provenzano D et al (2014) The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: the Neuromodulation Appropriateness Consensus Committee. Neuromodulation 17:515–550 discussion 550PubMedCrossRefGoogle Scholar
  97. 97.
    Tilak M, Isaac SA, Fletcher J et al (2016) Mirror therapy and transcutaneous electrical nerve stimulation for management of phantom limb pain in amputees—a single blinded randomized controlled trial. Physiother Res Int 21:109–115PubMedCrossRefGoogle Scholar
  98. 98.
    Narita M, Usui A, Narita M et al (2005) Protease-activated receptor-1 and platelet-derived growth factor in spinal cord neurons are implicated in neuropathic pain after nerve injury. J Neurosci 25:10000–10009PubMedCrossRefGoogle Scholar
  99. 99.
    Jerath R, Crawford MW, Jensen M (2015) Etiology of phantom limb syndrome: insights from a 3D default space consciousness model. Med Hypotheses 85:153–159PubMedCrossRefGoogle Scholar
  100. 100.
    Borghi B, D'Addabbo M, Borghi R (2014) Can neural blocks prevent phantom limb pain? Pain Manag 4:261–266PubMedCrossRefGoogle Scholar
  101. 101.
    Pet MA, Ko JH, Friedly JL et al (2014) Does targeted nerve implantation reduce neuroma pain in amputees? Clin Orthop Relat Res 472:2991–3001PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Makin TR, Scholz J, Henderson Slater D et al (2015) Reassessing cortical reorganization in the primary sensorimotor cortex following arm amputation. Brain 138:2140–2146PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Li S, Melton DH, Li S (2015) Tactile, thermal, and electrical thresholds in patients with and without phantom limb pain after traumatic lower limb amputation. J Pain Res 8:169–174PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Vaienti L, Gazzola R, Villani F et al (2012) Perineural fat grafting in the treatment of painful neuromas. Tech Hand Up Extrem Surg 16:52–55PubMedCrossRefGoogle Scholar
  105. 105.
    Kingery WS, Fields RD, Kocsis JD (1988) Diminished dorsal root GABA sensitivity following chronic peripheral nerve injury. Exp Neurol 100:478–490PubMedCrossRefGoogle Scholar
  106. 106.
    Lewin-Kowalik J, Marcol W, Kotulska K et al (2006) Prevention and management of painful neuroma. Neurol Med Chir 46:62–67 discussion 67-68CrossRefGoogle Scholar
  107. 107.
    Marcol W, Kotulska K, Larysz-Brysz M et al (2006) Prevention of painful neuromas by oblique transection of peripheral nerves. J Neurosurg 104:285–289PubMedCrossRefGoogle Scholar
  108. 108.
    Balcin H, Erba P, Wettstein R et al (2009) A comparative study of two methods of surgical treatment for painful neuroma. J Bone Joint Surg Br 91:803–808PubMedCrossRefGoogle Scholar
  109. 109.
    Koch H, Hubmer M, Welkerling H et al (2004) The treatment of painful neuroma on the lower extremity by resection and nerve stump transplantation into a vein. Foot Ankle Int 25:476–481PubMedCrossRefGoogle Scholar
  110. 110.
    Millheiser LS, Chen B (2006) Severe vaginal pain caused by a neuroma in the rectovaginal septum after posterior colporrhaphy. Obstet Gynecol 108:809–811PubMedCrossRefGoogle Scholar
  111. 111.
    Nikolajsen L, Black JA, Kroner K et al (2010) Neuroma removal for neuropathic pain: efficacy and predictive value of lidocaine infusion. Clin J Pain 26:788–793PubMedCrossRefGoogle Scholar
  112. 112.
    Dellon AL, Kim J, Ducic I (2004) Painful neuroma of the posterior cutaneous nerve of the forearm after surgery for lateral humeral epicondylitis. J Hand Surg [Am] 29:387–390CrossRefGoogle Scholar
  113. 113.
    Ducic I, Dellon AL (2004) Testicular pain after inguinal hernia repair: an approach to resection of the genital branch of genitofemoral nerve. J Am Coll Surg 198:181–184PubMedCrossRefGoogle Scholar
  114. 114.
    Watson CP, Stinson JN, Dostrovsky JO et al (2007) Nerve resection and re-location may relieve causalgia: a case report. Pain 132:211–217PubMedCrossRefGoogle Scholar
  115. 115.
    Meyerson BA (2001) Neurosurgical approaches to pain treatment. Acta Anaesthesiol Scand 45:1108–1113PubMedCrossRefGoogle Scholar
  116. 116.
    Chiodo CP, Miller SD (2004) Surgical treatment of superficial peroneal neuroma. Foot Ankle Int 25:689–694PubMedCrossRefGoogle Scholar
  117. 117.
    Son BC, Ha SW (2015) Phantom remodeling effect of dorsal root entry zone lesioning in phantom limb pain caused by brachial plexus avulsion. Stereotact Funct Neurosurg 93:240–244PubMedCrossRefGoogle Scholar
  118. 118.
    Marcol W, Larysz-Brysz M, Kucharska M et al (2011) Reduction of post-traumatic neuroma and epineural scar formation in rat sciatic nerve by application of microcrystallic chitosan. Microsurgery 31:642–649PubMedCrossRefGoogle Scholar
  119. 119.
    Jiang G, Yin X, Li C et al (2015) The plasticity of brain gray matter and white matter following lower limb amputation. Neural Plast 2015:823185PubMedPubMedCentralGoogle Scholar
  120. 120.
    Davidson JH, Khor KE, Jones LE (2010) A cross-sectional study of post-amputation pain in upper and lower limb amputees, experience of a tertiary referral amputee clinic. Disabil Rehabil 32:1855–1862PubMedCrossRefGoogle Scholar
  121. 121.
    Hirsh AT, Dillworth TM, Ehde DM et al (2010) Sex differences in pain and psychological functioning in persons with limb loss. J Pain 11:79–86PubMedCrossRefGoogle Scholar
  122. 122.
    Borghi B, D’Addabbo M, White PF et al (2010) The use of prolonged peripheral neural blockade after lower extremity amputation: the effect on symptoms associated with phantom limb syndrome. Anesth Analg 111:1308–1315PubMedCrossRefGoogle Scholar
  123. 123.
    Flor H, Nikolajsen L, Staehelin Jensen T (2006) Phantom limb pain: a case of maladaptive CNS plasticity? Nat Rev Neurosci 7:873–881PubMedCrossRefGoogle Scholar
  124. 124.
    Karanikolas M, Aretha D, Tsolakis I et al (2011) Optimized perioperative analgesia reduces chronic phantom limb pain intensity, prevalence, and frequency: a prospective, randomized, clinical trial. Anesthesiology 114:1144–1154PubMedCrossRefGoogle Scholar
  125. 125.
    Uhl C, Betz T, Rupp A et al (2015) The influence of continuous local wound infusion on postoperative pain in patients undergoing transfemoral amputation. Vasa 44:381–386PubMedCrossRefGoogle Scholar
  126. 126.
    Alviar MJ, Hale T, Dungca M (2011) Pharmacologic interventions for treating phantom limb pain. Cochrane Database Syst Rev CD006380Google Scholar
  127. 127.
    Ai J, Baker A (2002) Presynaptic hyperexcitability at cerebellar synapses in traumatic injury rat. Neurosci Lett 332:155–158PubMedCrossRefGoogle Scholar
  128. 128.
    Brown EA, Schutz SG, Simpson DM (2014) Botulinum toxin for neuropathic pain and spasticity: an overview. Pain Manag 4:129–151PubMedCrossRefGoogle Scholar
  129. 129.
    Mittal SO, Safarpour D, Jabbari B (2016) Botulinum toxin treatment of neuropathic pain. Semin Neurol 36:73–83PubMedCrossRefGoogle Scholar
  130. 130.
    Abbass K (2012) Efficacy of gabapentin for treatment of adults with phantom limb pain. Ann Pharmacother 46:1707–1711PubMedCrossRefGoogle Scholar
  131. 131.
    Fang J, Lian YH, Xie KJ et al (2013) Pharmacological interventions for phantom limb pain. Chin Med J 126:542–549PubMedGoogle Scholar
  132. 132.
    Spiegel DR, Lappinen E, Gottlieb M (2010) A presumed case of phantom limb pain treated successfully with duloxetine and pregabalin. Gen Hosp Psychiatry 32(228):e225–e227Google Scholar
  133. 133.
    Wala EP, Sloan PA, Holtman JR Jr (2011) Effect of prior treatment with ultra-low-dose morphine on opioid- and nerve injury-induced hyperalgesia in rats. J Opioid Manag 7:377–389PubMedCrossRefGoogle Scholar
  134. 134.
    Wen YR, Tan PH, Cheng JK et al (2011) Microglia: a promising target for treating neuropathic and postoperative pain, and morphine tolerance. J Formos Med Assoc Taiwan Yi Zhi 110:487–494PubMedCrossRefGoogle Scholar
  135. 135.
    Argoff CE (2011) Review of current guidelines on the care of postherpetic neuralgia. Postgrad Med 123:134–142PubMedCrossRefGoogle Scholar
  136. 136.
    Cruciani RA, Strada EA, Knotkova H (2010) Neuropathic pain. Cancer Pain - Assess Manag 26:478–505Google Scholar
  137. 137.
    Wang X, Zhou C, Liang P et al (2015) Characterization of specific roles of sodium channel subtypes in regional anesthesia. Reg Anesth Pain Med 40:599–604PubMedCrossRefGoogle Scholar
  138. 138.
    Navarro X (2009) Chapter 27 neural plasticity after nerve injury and regeneration. Int Rev Neurobiol 87:483–505PubMedCrossRefGoogle Scholar
  139. 139.
    Widenfalk J, Lundstromer K, Jubran M et al (2001) Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. J Neurosci 21:3457–3475PubMedGoogle Scholar
  140. 140.
    Belkas JS, Munro CA, Shoichet MS et al (2005) Peripheral nerve regeneration through a synthetic hydrogel nerve tube. Restor Neurol Neurosci 23:19–29PubMedGoogle Scholar
  141. 141.
    Hoke A, Redett R, Hameed H et al (2006) Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci 26:9646–9655PubMedCrossRefGoogle Scholar
  142. 142.
    Matejcik V (2002) Reconstructive surgery of the peripheral nerves in the upper extremities with autografts. Acta Chir Orthop Traumatol Cechoslov 69:85–87Google Scholar
  143. 143.
    Nichols CM, Brenner MJ, Fox IK et al (2004) Effects of motor versus sensory nerve grafts on peripheral nerve regeneration. Exp Neurol 190:347–355PubMedCrossRefGoogle Scholar
  144. 144.
    Wang D, Liu XL, Zhu JK et al (2010) Repairing large radial nerve defects by acellular nerve allografts seeded with autologous bone marrow stromal cells in a monkey model. J Neurotrauma 27:1935–1943PubMedCrossRefGoogle Scholar
  145. 145.
    Birch R, Misra P, Stewart MP et al (2012) Nerve injuries sustained during warfare: part I—epidemiology. J Bone Joint Surg Br 94:523–528PubMedCrossRefGoogle Scholar
  146. 146.
    Tung TH, Mackinnon SE Nerve transfers: indications, techniques, and outcomes. J Hand Surg Am 35:332–341Google Scholar
  147. 147.
    Ramachandran VS, Rogers-Ramachandran D (2008) Sensations referred to a patient’s phantom arm from another subjects intact arm: perceptual correlates of mirror neurons. Med Hypotheses 70:1233–1234PubMedCrossRefGoogle Scholar
  148. 148.
    Ramachandran VS, Rogers-Ramachandran D (1996) Synaesthesia in phantom limbs induced with mirrors. Proc Biol Sci 263:377–386PubMedCrossRefGoogle Scholar
  149. 149.
    Rossi S, Tecchio F, Pasqualetti P et al (2002) Somatosensory processing during movement observation in humans. Clin Neurophysiol 113:16–24PubMedCrossRefGoogle Scholar
  150. 150.
    Rizzolatti G, Fogassi L, Gallese V (2006) Mirrors of the mind. Sci Am 295:54–61PubMedCrossRefGoogle Scholar
  151. 151.
    Brodie EE, Whyte A, Niven CA (2007) Analgesia through the looking-glass? A randomized controlled trial investigating the effect of viewing a ‘virtual’ limb upon phantom limb pain, sensation and movement. Eur J Pain 11:428–436PubMedCrossRefGoogle Scholar
  152. 152.
    Deconinck FJ, Smorenburg AR, Benham A et al (2015) Reflections on mirror therapy: a systematic review of the effect of mirror visual feedback on the brain. Neurorehabil Neural Repair 29:349–361PubMedCrossRefGoogle Scholar
  153. 153.
    Sano Y, Ichinose A, Wake N et al (2015) Reliability of phantom pain relief in neurorehabilitation using a multimodal virtual reality system. Conf Proc IEEE Eng Med Biol Soc 2015:2482–2485PubMedGoogle Scholar
  154. 154.
    Foell J, Bekrater-Bodmann R, Diers M et al (2014) Mirror therapy for phantom limb pain: brain changes and the role of body representation. Eur J Pain 18:729–739PubMedCrossRefGoogle Scholar
  155. 155.
    Thieme H, Morkisch N, Rietz C et al (2016) The efficacy of movement representation techniques for treatment of limb pain—a systematic review and meta-analysis. J Pain 17:167–180PubMedCrossRefGoogle Scholar
  156. 156.
    Diers M, Kamping S, Kirsch P et al (2015) Illusion-related brain activations: a new virtual reality mirror box system for use during functional magnetic resonance imaging. Brain Res 1594:173–182PubMedCrossRefGoogle Scholar
  157. 157.
    Tung ML, Murphy IC, Griffin SC et al (2014) Observation of limb movements reduces phantom limb pain in bilateral amputees. Ann Clin Transl Neurol 1:633–638PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Chan BL, Witt R, Charrow AP et al (2007) Mirror therapy for phantom limb pain. N Engl J Med 357:2206–2207PubMedCrossRefGoogle Scholar
  159. 159.
    Oouchida Y, Izumi S (2014) The mirror neuron system in motor and sensory rehabilitation. Brain Nerve 66:655–663PubMedGoogle Scholar
  160. 160.
    Houston H, Dickerson AE (2016) Improving functional outcomes for vascular amputees through use of mirror therapy and elimination of the effects of electromagnetic fields. Occup Ther Health Care 30:1–15PubMedCrossRefGoogle Scholar
  161. 161.
    Kuffler DP, Reyes O, Sosa IJ et al (2011) Neurological recovery across a 12-cm-long ulnar nerve gap repaired 3.25 years post trauma: case report. Neurosurgery 69:E1321–E1326PubMedCrossRefGoogle Scholar
  162. 162.
    Santiago-Figueroa J, Sosa IJ, Reyes O, Guzman H, Hernandez R, Kuffler DP (2011) A novel technique for reducing and eliminating peripheral neuropathic pain: a clinical study. J Pain Manag 4:387–394Google Scholar
  163. 163.
    Santiago-Figueroa J, Kuffler DP (2009) Reducing and eliminating neuropathic pain. P R Health Sci J 28:289–300PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Institute of NeurobiologyUniversity of Puerto RicoSan JuanPuerto Rico

Personalised recommendations