Skip to main content

Advertisement

Log in

Environmental Enrichment Reverses Tyrosine Kinase Inhibitor-Mediated Impairment Through BDNF-TrkB Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Exposure to an enriched environment (EE) has neuroprotective benefits and improves recovery from brain injury due to, among other, increased neurotrophic factor expression. Through these neurotrophins, important cortical and hippocampal changes occur. Vandetanib acts as a tyrosine kinase inhibitor of cell receptors, among others, the vascular endothelial growth factor receptor (VEGFR). Our aim was to investigate the effectiveness of EE counteracting cognitive and cellular effects after tyrosine kinase receptor blockade. Animals were reared under standard laboratory condition or EE; both groups received vandetanib or vehicle. Visuospatial learning was tested with Morris water maze. Neuronal, interneuronal, and vascular densities were measured by inmunohistochemistry and histochemistry techniques. Quantifications were performed in the hippocampus and in the visual cortex. Brain-derived neurotrophic factor (BDNF), tyrosine kinase B receptor (TrkB), Akt, and Erk were measured by Western blot technique. Vandetanib produces a significant decrease in vascular and neuronal densities and reduction in the expression of molecules involved in survival and proliferation processes such as phospho-Akt/Akt and phospho-Erk/Erk. These results correlated to a cognitive impairment in visuospatial test. On the other hand, animals reared in an EE are able to reverse the negative effects, activating PI3K-AKT and MAP kinase pathways mediated by BDNF-TrkB binding. Present results provide novel and consistent evidences about the usefulness of living in EE as a strategy to improve deleterious effects of blocking neurotrophic pathways by vandetanib and the notable role of the BDNF-TrkB pathway to balance the neurovascular unit and cognitive effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rosenzweig MR, Bennett EL, Hebert M, Morimoto H (1978) Social grouping cannot account for cerebral effects of enriched environments. Brain Res 153:563–576

    Article  CAS  PubMed  Google Scholar 

  2. Bengoetxea H, Ortuzar N, Rico-Barrio I, Lafuente JV, Argandoña EG (2013) Increased physical activity is not enough to recover astrocytic population from dark-rearing. Synergy with multisensory enrichment is required. Front Cell Neurosci 7:170. doi:10.3389/fncel.2013.00170

    Article  PubMed  PubMed Central  Google Scholar 

  3. Du LL, Wang L, Yang XF, Wang P, Li XH, Chai DM, Liu BJ, Cao Y et al (2017) Transient receptor potential-canonical 1 is essential for environmental enrichment-induced cognitive enhancement and neurogenesis. Mol Neurobiol 54:1992–2002. doi:10.1007/s12035-016-9758-9

    Article  CAS  PubMed  Google Scholar 

  4. Argandoña EG, Bengoetxea H, Lafuente JV (2009) Physical exercise is required for environmental enrichment to offset the quantitative effects of dark-rearing on the S-100beta astrocytic density in the rat visual cortex. J Anat 215:132–140

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ekstrand J, Hellsten J, Tingström A (2008) Environmental enrichment, exercise and corticosterone affect endothelial cell proliferation in adult rat hippocampus and prefrontal cortex. Neurosci Lett 442:203–207

    Article  CAS  PubMed  Google Scholar 

  6. Spires TL, Grote HE, Varshney NK, Cordery PM, van Dellen A, Blakemore C, Hannan AJ (2004) Environmental enrichment rescues protein deficits in a mouse model of Huntington’s disease, indicating a possible disease mechanism. J Neurosci 24:2270–2276

    Article  CAS  PubMed  Google Scholar 

  7. Neidl R, Schneider A, Bousiges O, Majchrzak M, Barbelivien A, de Vasconcelos AP, Dorgans K, Doussau F et al (2016) Late-life environmental enrichment induces acetylation events and nuclear factor κB-dependent regulations in the hippocampus of aged rats showing improved plasticity and learning. J Neurosci 36:4351–4361

    Article  CAS  PubMed  Google Scholar 

  8. Nilsson M, Perfilieva E, Johansson U, Orwar O, Eriksson PS (1999) Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J Neurobiol 39:569–578

    Article  CAS  PubMed  Google Scholar 

  9. Ortuzar N, Rico-Barrio I, Bengoetxea H, Argandoña EG, Lafuente JV (2013) VEGF reverts the cognitive impairment induced by a focal traumatic brain injury during the development of rats raised under environmental enrichment. Behav Brain Res 246:36–46

    Article  CAS  PubMed  Google Scholar 

  10. Bengoetxea H, Argandoña EG, Lafuente JV (2008) Effects of visual experience on vascular endothelial growth factor expression during the postnatal development of the rat visual cortex. Cereb Cortex 18:1630–1639

    Article  PubMed  Google Scholar 

  11. During MJ, Cao L (2006) VEGF, a mediator of the effect of experience on hippocampal neurogenesis. Curr Alzheimer Res 3:29–33

    Article  CAS  PubMed  Google Scholar 

  12. Ickes BR, Pham TM, Sanders LA, Albeck DS, Mohammed AH, Granholm AC (2000) Long term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Exp Neurol 164:45–52

    Article  CAS  PubMed  Google Scholar 

  13. Cross MJ, Dixelius J, Matsumoto T, Claesson-Welsh L (2003) VEGF-receptor signal transduction. Trends Biochem Sci 28:488–494

    Article  CAS  PubMed  Google Scholar 

  14. Cunha C, Brambilla R, Thomas KL (2010) A simple role for BDNF in learning and memory? Front Mol Neurosci 3:1. doi:10.3389/neuro.02.001.2010

    PubMed  PubMed Central  Google Scholar 

  15. Berardi N, Pizzorusso T, Maffei L (2000) Critical periods during sensory development. Curr Opin Neurobiol 10:138–145

    Article  CAS  PubMed  Google Scholar 

  16. Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888

    Article  CAS  PubMed  Google Scholar 

  17. Argandoña EG, Bengoetxea H, Bulnes S, Rico-Barrio I, Ortuzar N, Lafuente JV (2012) Effect of intracortical vascular endothelial growth factor infusion and blockade during the critical period in the rat visual cortex. Brain Res 1473:141–154

    Article  PubMed  Google Scholar 

  18. Fagiolini M, Hensch TK (2000) Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404:183–186

    Article  CAS  PubMed  Google Scholar 

  19. Tsanov M, Manahan-Vaughan D (2006) Synaptic plasticity from visual cortex to hippocampus: systems integration in spatial information processing. Neuroscientist 14:584–597

    Article  Google Scholar 

  20. Karmarkar UR, Dan Y (2006) Experience-dependent plasticity in adult visual cortex. Neuron 52:577–585

    Article  CAS  PubMed  Google Scholar 

  21. Roux L, Buzsáki G (2015) Task for inhibitory interneurons in intact brain circuits. Neuropharmacology 88:10–23

    Article  CAS  PubMed  Google Scholar 

  22. Noble ME, Endicott JA, Johnson LN (2004) Protein kinase inhibitors: insights into drug design from structure. Science 303:1800–1805

    Article  CAS  PubMed  Google Scholar 

  23. Durante C, Paciaroni A, Plasmati K, Trulli F, Filetti S (2013) Vandetanib: opening a new treatment practice in advanced medullary thyroid carcinoma. Endocrine 44:334–342

    Article  CAS  PubMed  Google Scholar 

  24. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  CAS  PubMed  Google Scholar 

  25. Lafuente JV, Argandoña EG, Mitre B (2006) VEGFR-2 expression in brain injury: Its distribution related to brain-blood barrier markers. J Neural Transm 113:487–496

    Article  CAS  PubMed  Google Scholar 

  26. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A 99:11946–11950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaya D, Gürsoy-Ozdemir Y, Yemisci M, Tuncer N, Aktan S, Dalkara T (2005) VEGF protects brain against focal ischemia without increasing blood-brain permeability when administered intracerebroventricularly. J Cereb Blood Flow Metab 25:1111–1118

    Article  CAS  PubMed  Google Scholar 

  28. Kipp M, Kiessling MC, Hochstrasser T, Roggenkamp C, Schmitz C (2017) Design-based stereology for evaluation of histological parameters. J Mol Neurosci 61:325–342

    Article  CAS  PubMed  Google Scholar 

  29. Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K et al (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 28:1338–1340

    Article  Google Scholar 

  30. Kirby ED, Kuwahara AA, Messer RL, Wyss-Coray T (2015) Adult hippocampal neural stem and progenitor cells regulate the neurogenic niche by secreting VEGF. Proc Natl Acad Sci U S A 112:4128–4133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gold PE, Newman LA, Scavuzzo CJ, Korol DL (2013) Modulation of multiple memory systems: from neurotransmitters to metabolic substrates. Hippocampus 23:1053–1065

    Article  CAS  PubMed  Google Scholar 

  32. Nieto FA, Moreno M (2011) Neurogénesis en el giro dentado del hipocampo: implicaciones para el aprendizaje y la memoria en el cerebro adulto. Arch Neurocien 4:193–199

    Google Scholar 

  33. Kempermann G, Gage FH (2002) Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task. Eur J Neurosci 16:129–136

    Article  CAS  PubMed  Google Scholar 

  34. Raab S, Plate KH (2007) Different networks, common growth factors: shared growth factors and receptors of the vascular and the nervous system. Acta Neuropathol 113:607–626

    Article  CAS  PubMed  Google Scholar 

  35. Argandoña EG, Bengoetxea H, Ortuzar N, Bulnes S, Rico-Barrio I, Lafuente JV (2012) Vascular endothelial growth factor: adaptive changes in the neuroglialvascular unit. Curr Neurovasc Res 9:72–81

    Article  PubMed  Google Scholar 

  36. Rosenstein JM, Krum JM (2004) New roles for VEGF in nervous tissue-beyond blood vessels. Exp Neurol 187:246–253

    Article  CAS  PubMed  Google Scholar 

  37. Storkebaum E, Lambrechts D, Dewerchin M, Moreno-Murciano MP, Appelmans S, Oh H, Van Damme P, Rutten B et al (2005) Treatment of motoneurons degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 8:85–92

    Article  CAS  PubMed  Google Scholar 

  38. Lafuente JV, Ortuzar N, Bengoetxea H, Bulnes S, Argandoña EG (2012) Vascular endothelial growth factor and other angioglioneurins: key molecules in brain development and restoration. Int Rev Neurobiol 102:317–346

    Article  CAS  PubMed  Google Scholar 

  39. Ortuzar N, Argandoña EG, Bengoetxea H, Lafuente JV (2011) Combination of intracortically administered VEGF and environmental enrichment enhances brain protection in developing rats. J Neural Transm 118:135–144

    Article  CAS  PubMed  Google Scholar 

  40. Wegman J, Tyborowska A, Hoogman M, Arias Vásquez A, Janzen G (2016) The brain-derived neurotrophic factor Val66Met polymorphism affects encoding of object locations during active navigation. Eur J Neurosci. doi:10.1111/ejn.13416

  41. Sun H, Zhang J, Zhang L, Liu H, Zhu H, Yang Y (2010) Environmental enrichment influences BDNF and NR1 levels in the hippocampus and restores cognitive impairment in chronic cerebral hypoperfused rats. Curr Neurovasc Res 7:268–280

    Article  CAS  PubMed  Google Scholar 

  42. Zheng WH, Quirion R (2004) Comparative signaling pathways of insulin-like growth factor-1 and brain-derived neurotrophic factor in hippocampal neurons and the role of the PI3 kinase pathway in cell survival. J Neurochem 89:844–852

    Article  CAS  PubMed  Google Scholar 

  43. Liu F, Xuan A, Chen Y, Zhang J, Xu L, Yan Q, Long D (2014) Combined effect of nerve growth factor and brain-derived neurotrophic factor on neuronal differentiation of neural stem cells and the potential molecular mechanisms. Mol Med Rep 10:1739–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Johnson E, Traver K, Hoffman S, Harrison C, Herman J (2013) Environmental enrichment protects against functional deficits caused by traumatic brain injury. Front Behav Neurosci 7:44. doi:10.3389/fnbeh.2013.00044

    Article  PubMed  PubMed Central  Google Scholar 

  45. Simpson J, Kelly JP (2011) The impact of environmental enrichment in laboratory rats-behavioural and neurochemical aspects. Behav Brain Res 222:246–264

    Article  CAS  PubMed  Google Scholar 

  46. Benaroya-Milshtein N, Hollander N, Apter A, Kukulansky T, Raz N, Wilf A (2004) Environmental enrichment in mice decreases anxiety, attenuates stress responses and enhances natural killer cell activity. Eur J Neurosci 20:1341–1347

    Article  CAS  PubMed  Google Scholar 

  47. Lü X, Zhao C, Zhang L, Ma B, Lou Z, Sun Y, Chen J, Wu W et al (2012) The effects of rearing condition on methamphetamine self-administration and cue-induced drug seeking. Drug Alcohol Depend 24:288–298

    Article  Google Scholar 

  48. Megías M, Emri Z, Freund TF, Gulyás AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102:527–540

    Article  PubMed  Google Scholar 

  49. Danglot L, Triller A, Marty S (2006) The development of hippocampal interneurons inrodents. Hippocampus 16:1032–1060

    Article  CAS  PubMed  Google Scholar 

  50. Krishnan K, Wang BS, Lu J, Wang L, Maffei A, Cang J, Huang ZJ (2015) MeCP2 regulates the timing of critical period plasticity that shapes functional connectivity in primary visual cortex. Proc Natl Acad Sci U S A 112:E4782–E4791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lazarus MS, Huang ZJ (2011) Distinct maturation profiles of perisomatic and dendritic targeting GABAergic interneurons in the mouse primary visual cortex during the critical period of ocular dominance plasticity. J Neurophysiol 106:775–787

    Article  PubMed  PubMed Central  Google Scholar 

  52. Donato F, Rompani SB, Caroni P (2013) Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 504:272–276

    Article  CAS  PubMed  Google Scholar 

  53. Marty S, Carroll P, Cellerino A, Castren E, Staiger V, Thoenen H, Lindholm D (1996) Brain-derived neurotrophic factor promotes the differentiation of various hippocampal nonpyramidal neurons, including Cajal-Retzius cells, in organotypic slice cultures. J Neurosci 16:675–687

    CAS  PubMed  Google Scholar 

  54. Yamada MK, Nakanishi K, Ohba S, Nakamura T, Ikegaya Y, Nishiyama N, Matsuki N (2002) Brain-derived neurotrophic factor promotes the maturation of GABAergic mechanisms in cultured hippocampal neurons. J Neurosci 22:7580–7585

    CAS  PubMed  Google Scholar 

  55. Kohara K, Kitamura A, Adachi N, Nishida M, Itami C, Nakamura S, Tsumoto T (2003) Inhibitory but not excitatory cortical neurons require presynaptic brain-derived neurotrophic factor for dendritic development, as revealed by chimera cell culture. J Neurosci 23:6123–6131

    CAS  PubMed  Google Scholar 

  56. Berghuis P, Dobszay MB, Sousa KM, Schulte G, Mager PP, Hartig W, Gorcs TJ, Zilberter Y et al (2004) Brain-derived neurotrophic factor controls functional differentiation and microcircuit formation of selectively isolated fast-spiking GABAergic interneurons. Eur J Neurosci 20:1290–1306

    Article  PubMed  Google Scholar 

  57. Rutherford LC, Nelson SB, Turrigiano GG (1998) BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron 21:521–530

    Article  CAS  PubMed  Google Scholar 

  58. Nagano T, Yanagawa Y, Obata K, Narisawa-Saito M, Namba H, Otsu Y, Takei N, Nawa H (2003) Brain-derived neurotrophic factor upregulates and maintains AMPA receptor currents in neocortical GABAergic neurons. Mol Cell Neurosci 24:340–356

    Article  CAS  PubMed  Google Scholar 

  59. McLean Bolton M, Pittman AJ, Lo DC (2000) Brain-derived neurotrophic factor differentially regulates excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci 20:3221–3232

    Google Scholar 

  60. Ohba S, Ikeda T, Ikegaya Y, Nishiyama N, Matsuki N, Yamada MK (2005) BDNF locally potentiates GABAergic presynaptic machineries: target-selective circuit inhibition. Cereb Cortex 15:291–298

    Article  PubMed  Google Scholar 

  61. Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, Maffei L, Tonegawa S (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98:739–755

    Article  CAS  PubMed  Google Scholar 

  62. Hirase H, Shinihara Y (2014) Transformation of cortical and hippocampal neural circuit by environmental enrichment. Neuroscience 280:282–298

    Article  CAS  PubMed  Google Scholar 

  63. Livingston-Thomas J, Nelson P, Karthikeyan S, Antonescu S, Jeffers MS, Marzolini S, Corbett D (2016) Exercise and environmental enrichment as enablers of task-specific neuroplasticity and stroke recovery. Neurotherapeutics 13:395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7:697–709

    Article  CAS  PubMed  Google Scholar 

  65. Hüttenrauch M, Salinas G, Wirths O (2016) Effects of long-term environmental enrichment on anxiety, memory, hippocampal plasticity and overall brain gene expression in C57BL6 mice. Front Mol Neurosci 9:62. doi:10.3389/fnmol.2016.00062

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Devote to Enrike Gutierrez Argandoña, a collaborator for ones, a mentor for others, and a friend for all. Wherever you are, wait for us looking for an exciting challenge.

The authors thank Prof. Carmen Martínez-Cue (Department of Physiology and Pharmacology of the University of Cantabria) for his assistance with the statistical analysis.

Funding

This work was supported by Government of the Basque Country (GIC IT 794/13) and University of the Basque Country UPV/EHU (UFI 11/32), (EHU 14/33). A. Murueta-Goyena is supported by a predoctoral fellowship of the University of the Basque Country (UPV/EHU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harkaitz Bengoetxea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bengoetxea, H., Rico-Barrio, I., Ortuzar, N. et al. Environmental Enrichment Reverses Tyrosine Kinase Inhibitor-Mediated Impairment Through BDNF-TrkB Pathway. Mol Neurobiol 55, 43–59 (2018). https://doi.org/10.1007/s12035-017-0716-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0716-y

Keywords

Navigation