Skip to main content

Ethanol Alters APP Processing and Aggravates Alzheimer-Associated Phenotypes

Abstract

The majority of Alzheimer’s disease (AD) cases are sporadic with unknown causes. Many dietary factors including excessive alcohol intake have been reported to increase the risk to develop AD. The effect of alcohol on cognitive functions and AD pathogenesis remains elusive. In this study, we investigated the relationship between ethanol exposure and Alzheimer’s disease. Cell cultures were treated with ethanol at different dosages for different durations up to 48 h and an AD model mouse was fed with ethanol for 4 weeks. We found that ethanol treatment altered amyloid β precursor protein (APP) processing in cells and transgenic AD model mice. High ethanol exposure increased the levels of APP and beta-site APP cleaving enzyme 1 (BACE1) and significantly promoted amyloid β protein (Aβ) production both in vitro and in vivo. The upregulated APP and BACE1 expressions upon ethanol treatment were at least partially due to the activation of APP and BACE1 transcriptions. Furthermore, ethanol treatment increased the deposition of Aβ and neuritic plaque formation in the brains and exuberated learning and memory impairments in transgenic AD model mice. Taken together, our results demonstrate that excessive ethanol intake facilitates AD pathogenesis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

AD:

Alzheimer’s disease

APP:

Amyloid β precursor protein

BACE1:

Beta-site APP cleaving enzyme 1

Aβ:

Amyloid β protein

DID:

Drinking in the dark

CHX:

Cycloheximide

References

  1. Glenner GG, Wong CW (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122(3):1131–1135

    Article  CAS  PubMed  Google Scholar 

  2. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890

    Article  CAS  PubMed  Google Scholar 

  3. Zhang X, Song W (2013) The role of APP and BACE1 trafficking in APP processing and amyloid-beta generation. Alzheimers Res Ther 5(5):46

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sun XB-BK, Song W (2012) Regulation of β-site APP-cleaving enzyme 1 gene expression and its role in Alzheimer’s disease. J Neurochem 120(Suppl 1):62–70

    Article  CAS  PubMed  Google Scholar 

  5. Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF et al (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402(6761):537–540

    Article  CAS  PubMed  Google Scholar 

  6. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735–741

    Article  CAS  PubMed  Google Scholar 

  7. Yan R, Bienkowski MJ, Shuck ME, Miao H, Tory MC, Pauley AM, Brashier JR, Stratman NC et al (1999) Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature 402(6761):533–537

    Article  CAS  PubMed  Google Scholar 

  8. Hussain I, Powell D, Howlett DR, Tew DG, Meek TD, Chapman C, Gloger IS, Murphy KE et al (1999) Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol Cell Neurosci 14(6):419–427

    Article  CAS  PubMed  Google Scholar 

  9. Deng Y, Wang Z, Wang R, Zhang X, Zhang S, Wu Y, Staufenbiel M, Cai F et al (2013) Amyloid-beta protein (Abeta) Glu11 is the major beta-secretase site of beta-site amyloid-beta precursor protein-cleaving enzyme 1 (BACE1), and shifting the cleavage site to Abeta Asp1 contributes to Alzheimer pathogenesis. Eur J Neurosci 37(12):1962–1969

    Article  PubMed  Google Scholar 

  10. Sun X, He G, Song W (2006) BACE2, as a novel APP theta-secretase, is not responsible for the pathogenesis of Alzheimer’s disease in Down syndrome. FASEB J 20(9):1369–1376

    Article  CAS  PubMed  Google Scholar 

  11. Sun X, Wang Y, Qing H, Christensen MA, Liu Y, Zhou W, Tong Y, Xiao C et al (2005) Distinct transcriptional regulation and function of the human BACE2 and BACE1 genes. FASEB J 19(7):739–749

    Article  CAS  PubMed  Google Scholar 

  12. Yang Y, Wu Y, Zhang S, Song W (2013) High glucose promotes Abeta production by inhibiting APP degradation. PLoS One 8(7):e69824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ly PT, Wu Y, Zou H, Wang R, Zhou W, Kinoshita A, Zhang M, Yang Y et al (2013) Inhibition of GSK3beta-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest 123(1):224–235

    Article  CAS  PubMed  Google Scholar 

  14. Qing H, He G, Ly PT, Fox CJ, Staufenbiel M, Cai F, Zhang Z, Wei S et al (2008) Valproic acid inhibits Abeta production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J Exp Med 205(12):2781–2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zeng J, Chen L, Wang Z, Chen Q, Fan Z, Jiang H, Wu Y, Ren L et al (2017) Marginal vitamin A deficiency facilitates Alzheimer’s pathogenesis. Acta Neuropathol 133(6):967–982

    Article  CAS  PubMed  Google Scholar 

  16. Zhang S, Wang Z, Cai F, Zhang M, Wu Y, Zhang J, Song W (2017) BACE1 cleavage site selection critical for amyloidogenesis and Alzheimer’s pathogenesis. J Neurosci 37(29):6915–6925

    Article  CAS  PubMed  Google Scholar 

  17. Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88(4):640–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramesh BN, Rao TS, Prakasam A, Sambamurti K, Rao KS (2010) Neuronutrition and Alzheimer’s disease. J Alzheimers Dis 19(4):1123–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Piazza-Gardner AK, Gaffud TJ, Barry AE (2013) The impact of alcohol on Alzheimer’s disease: a systematic review. Aging Ment Health 17(2):133–146

    Article  PubMed  Google Scholar 

  20. Harwood DG, Kalechstein A, Barker WW, Strauman S, St George-Hyslop P, Iglesias C, Loewenstein D, Duara R (2010) The effect of alcohol and tobacco consumption, and apolipoprotein E genotype, on the age of onset in Alzheimer’s disease. Int J Geriatr Psychiatry 25(5):511–518

    Article  PubMed  Google Scholar 

  21. Wang J, Ho L, Zhao Z, Seror I, Humala N, Dickstein DL, Thiyagarajan M, Percival SS et al (2006) Moderate consumption of Cabernet Sauvignon attenuates Abeta neuropathology in a mouse model of Alzheimer’s disease. FASEB J 20(13):2313–2320

    Article  CAS  PubMed  Google Scholar 

  22. Deng J, Zhou DH, Li J, Wang YJ, Gao C, Chen M (2006) A 2-year follow-up study of alcohol consumption and risk of dementia. Clin Neurol Neurosurg 108(4):378–383

    Article  PubMed  Google Scholar 

  23. Weyerer S, Schaufele M, Wiese B, Maier W, Tebarth F, van den Bussche H, Pentzek M, Bickel H et al (2011) Current alcohol consumption and its relationship to incident dementia: results from a 3-year follow-up study among primary care attenders aged 75 years and older. Age Ageing 40(4):456–463

    Article  PubMed  Google Scholar 

  24. Guizzetti M, Costa LG (2007) Cholesterol homeostasis in the developing brain: a possible new target for ethanol. Hum Exp Toxicol 26(4):355–360

    Article  CAS  PubMed  Google Scholar 

  25. Arendt T (1994) Impairment in memory function and neurodegenerative changes in the cholinergic basal forebrain system induced by chronic intake of ethanol. J Neural Transm Suppl 44:173–187

    CAS  PubMed  Google Scholar 

  26. Ehrlich D, Pirchl M, Humpel C (2012) Effects of long-term moderate ethanol and cholesterol on cognition, cholinergic neurons, inflammation, and vascular impairment in rats. Neuroscience 205:154–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim SR, Jeong HY, Yang S, Choi SP, Seo MY, Yun YK, Choi Y, Baik SH et al (2011) Effects of chronic alcohol consumption on expression levels of APP and Abeta-producing enzymes. BMB Rep 44(2):135–139

    Article  CAS  PubMed  Google Scholar 

  28. Gil-Mohapel J, Boehme F, Kainer L, Christie BR (2010) Hippocampal cell loss and neurogenesis after fetal alcohol exposure: insights from different rodent models. Brain Res Rev 64(2):283–303

    Article  CAS  PubMed  Google Scholar 

  29. Lahiri DK, Nall C, Chen D, Zaphiriou M, Morgan C, Nurnberger JI Sr (2002) Developmental expression of the beta-amyloid precursor protein and heat-shock protein 70 in the cerebral hemisphere region of the rat brain. Ann N Y Acad Sci 965:324–333

    Article  CAS  PubMed  Google Scholar 

  30. Aho L, Karkola K, Juusela J, Alafuzoff I (2009) Heavy alcohol consumption and neuropathological lesions: a post-mortem human study. J Neurosci Res 87(12):2786–2792

    Article  CAS  PubMed  Google Scholar 

  31. Dong Z, Han H, Li H, Bai Y, Wang W, Tu M, Peng Y, Zhou L et al (2015) Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. J Clin Invest 125(1):234–247

    Article  PubMed  Google Scholar 

  32. Thiele TE, Navarro M (2014) “Drinking in the dark” (DID) procedures: a model of binge-like ethanol drinking in non-dependent mice. Alcohol 48(3):235–241

    Article  CAS  PubMed  Google Scholar 

  33. Rhodes JS, Best K, Belknap JK, Finn DA, Crabbe JC (2005) Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice. Physiol Behav 84(1):53–63

    Article  CAS  PubMed  Google Scholar 

  34. Sun X, He G, Qing H, Zhou W, Dobie F, Cai F, Staufenbiel M, Huang LE et al (2006) Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc Natl Acad Sci U S A 103(49):18727–18732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bromley-Brits K, Deng Y, Song W (2011) Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. J Vis Exp 53:e2920

    Google Scholar 

  36. Zhang Z, Nadeau P, Song W, Donoviel D, Yuan M, Bernstein A, Yankner BA (2000) Presenilins are required for gamma-secretase cleavage of beta-APP and transmembrane cleavage of Notch-1. Nat Cell Biol 2(7):463–465

    Article  CAS  PubMed  Google Scholar 

  37. Christensen MA, Zhou W, Qing H, Lehman A, Philipsen S, Song W (2004) Transcriptional regulation of BACE1, the beta-amyloid precursor protein beta-secretase, by Sp1. Mol Cell Biol 24(2):865–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Santhakumar V, Wallner M, Otis TS (2007) Ethanol acts directly on extrasynaptic subtypes of GABAA receptors to increase tonic inhibition. Alcohol 41(3):211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moykkynen T, Korpi ER (2012) Acute effects of ethanol on glutamate receptors. Basic Clin Pharmacol Toxicol 111(1):4–13

    CAS  PubMed  Google Scholar 

  40. Harwood DG, Barker WW, Loewenstein DA, Ownby RL, St George-Hyslop P, Mullan M, Duara R (1999) A cross-ethnic analysis of risk factors for AD in white Hispanics and white non-Hispanics. Neurology 52(3):551–556

    Article  CAS  PubMed  Google Scholar 

  41. Wheeler MD, Kono H, Rusyn I, Arteel GE, McCarty D, Samulski RJ, Thurman RG (2000) Chronic ethanol increases adeno-associated viral transgene expression in rat liver via oxidant and NFkappaB-dependent mechanisms. Hepatology 32(5):1050–1059

    Article  CAS  PubMed  Google Scholar 

  42. Yao Z, Zhang J, Dai J, Keller ET (2001) Ethanol activates NFkappaB DNA binding and p56lck protein tyrosine kinase in human osteoblast-like cells. Bone 28(2):167–173

    Article  CAS  PubMed  Google Scholar 

  43. Ward RJ, Zhang Y, Crichton RR, Piret B, Piette J, de Witte P (1996) Identification of the nuclear transcription factor NFkappaB in rat after in vivo ethanol administration. FEBS Lett 389(2):119–122

    Article  CAS  PubMed  Google Scholar 

  44. Magne L, Blanc E, Legrand B, Lucas D, Barouki R, Rouach H, Garlatti M (2011) ATF4 and the integrated stress response are induced by ethanol and cytochrome P450 2E1 in human hepatocytes. J Hepatol 54(4):729–737

    Article  CAS  PubMed  Google Scholar 

  45. Buggia-Prevot V, Sevalle J, Rossner S, Checler F (2008) NFkappaB-dependent control of BACE1 promoter transactivation by Abeta42. J Biol Chem 283(15):10037–10047

    Article  CAS  PubMed  Google Scholar 

  46. Chen CH, Zhou W, Liu S, Deng Y, Cai F, Tone M, Tone Y, Tong Y et al (2012) Increased NF-kappaB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer's disease. Int J Neuropsychopharmacol 15(1):77–90

    Article  CAS  PubMed  Google Scholar 

  47. Walton JR, Wang MX (2009) APP expression, distribution and accumulation are altered by aluminum in a rodent model for Alzheimer’s disease. J Inorg Biochem 103(11):1548–1554

    Article  CAS  PubMed  Google Scholar 

  48. Barkley-Levenson AM, Crabbe JC (2012) Ethanol drinking microstructure of a high drinking in the dark selected mouse line. Alcohol Clin Exp Res 36(8):1330–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Criado JR, Liu T, Ehlers CL, Mathe AA (2011) Prolonged chronic ethanol exposure alters neuropeptide Y and corticotropin-releasing factor levels in the brain of adult Wistar rats. Pharmacol Biochem Behav 99(1):104–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pandey SC, Ugale R, Zhang H, Tang L, Prakash A (2008) Brain chromatin remodeling: a novel mechanism of alcoholism. J Neurosci 28(14):3729–3737

    Article  CAS  PubMed  Google Scholar 

  51. Piano MR, Carrigan TM, Schwertz DW (2005) Sex differences in ethanol liquid diet consumption in Sprague-Dawley rats. Alcohol 35(2):113–118

    Article  CAS  PubMed  Google Scholar 

  52. Hanson GR, Li TK (2003) Public health implications of excessive alcohol consumption. JAMA 289(8):1031–1032

    Article  PubMed  Google Scholar 

  53. Fernandez GM, Lew BJ, Vedder LC, Savage LM (2017) Chronic intermittent ethanol exposure leads to alterations in brain-derived neurotrophic factor within the frontal cortex and impaired behavioral flexibility in both adolescent and adult rats. Neuroscience 348:324–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cash C, Peacock A, Barrington H, Sinnett N, Bruno R (2015) Detecting impairment: sensitive cognitive measures of dose-related acute alcohol intoxication. J Psychopharmacol 29(4):436–446

    Article  CAS  PubMed  Google Scholar 

  55. Brust JC (2010) Ethanol and cognition: indirect effects, neurotoxicity and neuroprotection: a review. Int J Environ Res Public Health 7(4):1540–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Crabbe JC, Harris RA, Koob GF (2011) Preclinical studies of alcohol binge drinking. Ann N Y Acad Sci 1216:24–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Crews FT, Nixon K (2009) Mechanisms of neurodegeneration and regeneration in alcoholism. Alcohol Alcohol 44(2):115–127

    Article  CAS  PubMed  Google Scholar 

  58. Allen-Gipson DS, Jarrell JC, Bailey KL, Robinson JE, Kharbanda KK, Sisson JH, Wyatt TA (2009) Ethanol blocks adenosine uptake via inhibiting the nucleoside transport system in bronchial epithelial cells. Alcohol Clin Exp Res 33(5):791–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Deng XS, Deitrich RA (2007) Ethanol metabolism and effects: nitric oxide and its interaction. Curr Clin Pharmacol 2(2):145–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jamal M, Ameno K, Miki T, Wang W, Kumihashi M, Isse T, Kawamoto T, Kitagawa K et al (2009) Cholinergic alterations following alcohol exposure in the frontal cortex of Aldh2-deficient mice models. Brain Res 1295:37–43

    Article  CAS  PubMed  Google Scholar 

  61. McKinney M, Jacksonville MC (2005) Brain cholinergic vulnerability: relevance to behavior and disease. Biochem Pharmacol 70(8):1115–1124

    Article  CAS  PubMed  Google Scholar 

  62. Abreu-Villaca Y, de Carvalho Graca AC, Ribeiro-Carvalho A, Naiff Vde F, Manhaes AC, Filgueiras CC (2013) Combined exposure to tobacco smoke and ethanol in adolescent mice elicits memory and learning deficits both during exposure and withdrawal. Nicotine Tob Res 15(7):1211–1221

    Article  CAS  PubMed  Google Scholar 

  63. Vaglenova J, Pandiella N, Wijayawardhane N, Vaithianathan T, Birru S, Breese C, Suppiramaniam V, Randal C (2008) Aniracetam reversed learning and memory deficits following prenatal ethanol exposure by modulating functions of synaptic AMPA receptors. Neuropsychopharmacology 33(5):1071–1083

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Philip T.T. Ly, Zhifang Dong, and Mingjing Liu for their helpful comments. This work was supported by grants from the National Natural Science Foundation of China (NSFC) Grant 30972461, 81161120498 (T.L.) and the Canadian Institutes of Health Research (CIHR) Grant TAD-117948 (W.S). W.S. is the holder of the Tier 1 Canada Research Chair in Alzheimer’s Disease.

Author information

Authors and Affiliations

Authors

Contributions

DH and WS conceived and designed the experiments; DH, MY, SY, DL, WZ, LZ, and FC performed the experiments; DH, MY, SY, DL, WZ, LZ, ZW, WZ, TL, and WS analyzed and contributed reagents/materials/analysis tools; and DH, ZW, and WS wrote the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Weihong Song.

Ethics declarations

All animal studies were performed in accordance with the Guide for the Care and Use of Laboratory Animals of the Ethics Committee of Chongqing Medical University. The experimental protocols were approved by the Animal Study Committee of the Children’s Hospital of Chongqing Medical University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Yu, M., Yang, S. et al. Ethanol Alters APP Processing and Aggravates Alzheimer-Associated Phenotypes. Mol Neurobiol 55, 5006–5018 (2018). https://doi.org/10.1007/s12035-017-0703-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0703-3

Keywords