Molecular Neurobiology

, Volume 55, Issue 6, pp 4896–4910 | Cite as

Cognitive Impairment and Brain and Peripheral Alterations in a Murine Model of Intraventricular Hemorrhage in the Preterm Newborn

  • Antonio Segado-Arenas
  • Carmen Infante-Garcia
  • Isabel Benavente-Fernandez
  • Daniel Sanchez-Sotano
  • Juan Jose Ramos-Rodriguez
  • Almudena Alonso-Ojembarrena
  • Simon Lubian-LopezEmail author
  • Monica Garcia-AllozaEmail author


Germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH) remains a serious complication in the preterm newborn. The significant increase of survival rates in extremelye preterm newborns has also contributed to increase the absolute number of patients developing GMH-IVH. However, there are relatively few available animal models to understand the underlying mechanisms and peripheral markers or prognostic tools. In order to further characterize central complications and evolution of GMH-IVH, we injected collagenase intraventricularly to P7 CD1 mice and assessed them in the short (P14) and the long term (P70). Early complications at P14 included ventricle enlargement, increased bleeding, and inflammation. These alterations were maintained at P70, when increased tau phosphorylation and decreased neurogenesis were also observed, resulting in impaired learning and memory in these early adult mice. We additionally analyzed peripheral blood biomarkers in both our mouse model and preterm newborns with GMH-IVH. While MMP9 levels were not significantly altered in mice or newborns, reduced gelsolin levels and increased ubiquitin carboxy-terminal hydrolase L1 and tau levels were detected in GMH-IVH patients at birth. A similar profile was observed in our mouse model after hemorrhage. Interestingly, early changes in gelsolin and carboxy-terminal hydrolase L1 levels significantly correlated with the hemorrhage grade in newborns. Altogether, our data support the utility of this animal model to reproduce the central complications and peripheral changes observed in the clinic, and support the consideration of gelsolin, carboxy-terminal hydrolase L1, and tau as feasible biomarkers to predict the development of GMH-IVH.


Germinal matrix hemorrhage-intraventricular hemorrhage Neurogenesis Tau Gelsolin Carboxy-terminal hydrolase L1 



We thank the animal facility (SEPA) of the University of Cadiz for their technical support and Dr. Alberto Serrano-Pozo and Mr. Guillaume Pagnier for their help reviewing this manuscript. MG-A received funding from Ministerio de Educación, Cultura y Deporte en el marco del Programa Estatal de Promoción del Talento y su Empleabilidad en I+D+i, Subprograma Estatal de Movilidad, del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013–2016 (PRX16/00246). This study was supported by the National Programme for Research Aimed at the Challenges of Society (BFU 2016-75038-R), financed by the Agencia Estatal de Investigación (AEI) and the Fondo Europeo de Desarrollo Regional (FEDER), and the Proyectos de Excelencia, Consejería de Economía, Innovación, Ciencia y Empleo Junta de Andalucía (P11-CTS-7847).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Mukerji A, Shah V, Shah PS (2015) Periventricular/intraventricular hemorrhage and neurodevelopmental outcomes: a meta-analysis. Pediatrics 136(6):1132–1143CrossRefPubMedGoogle Scholar
  2. 2.
    Tabata H, Yoshinaga S, Nakajima K (2012) Cytoarchitecture of mouse and human subventricular zone in developing cerebral neocortex. Exp Brain Res 216(2):161–168CrossRefPubMedGoogle Scholar
  3. 3.
    de Vries LS, Benders MJ, Groenendaal F (2015) Progress in neonatal neurology with a focus on neuroimaging in the preterm infant. Neuropediatrics 46(4):234–241CrossRefPubMedGoogle Scholar
  4. 4.
    Adams-Chapman I (2009) Insults to the developing brain and impact on neurodevelopmental outcome. J Commun Disord 42(4):256–262CrossRefPubMedGoogle Scholar
  5. 5.
    Adams-Chapman I, Hansen NI, Stoll BJ, Higgins R (2008) Neurodevelopmental outcome of extremely low birth weight infants with posthemorrhagic hydrocephalus requiring shunt insertion. Pediatrics 121(5):e1167–e1177CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bolisetty S, Dhawan A, Abdel-Latif M et al (2014) Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants. Pediatrics 133(1):55–62CrossRefPubMedGoogle Scholar
  7. 7.
    Patra K, Wilson-Costello D, Taylor HG, Mercuri-Minich N, Hack M (2006) Grades I–II intraventricular hemorrhage in extremely low birth weight infants: effects on neurodevelopment. J Pediatr 149(2):169–173CrossRefPubMedGoogle Scholar
  8. 8.
    Brouwer AJ, Groenendaal F, Benders MJ, de Vries LS (2014) Early and late complications of germinal matrix-intraventricular haemorrhage in the preterm infant: what is new? Neonatology 106(4):296–303CrossRefPubMedGoogle Scholar
  9. 9.
    Alles YC, Greggio S, Alles RM et al (2010) A novel preclinical rodent model of collagenase-induced germinal matrix/intraventricular hemorrhage. Brain Res 1356:130–138CrossRefPubMedGoogle Scholar
  10. 10.
    Balasubramaniam J, Del Bigio MR (2006) Animal models of germinal matrix hemorrhage. J Child Neurol 21(5):365–371CrossRefPubMedGoogle Scholar
  11. 11.
    Lekic T, Manaenko A, Rolland W et al (2012) Rodent neonatal germinal matrix hemorrhage mimics the human brain injury, neurological consequences, and post-hemorrhagic hydrocephalus. Exp Neurol 236(1):69–78CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Abbadie C, Lindia JA, Cumiskey AM et al (2003) Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc Natl Acad Sci U S A 100(13):7947–7952CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ramos-Rodriguez JJ, Ortiz O, Jimenez-Palomares M et al (2013) Differential central pathology and cognitive impairment in pre-diabetic and diabetic mice. Psychoneuroendocrinology 38(11):2462–2475CrossRefPubMedGoogle Scholar
  14. 14.
    Ramos-Rodriguez JJ, Molina-Gil S, Ortiz-Barajas O et al (2014) Central proliferation and neurogenesis is impaired in type 2 diabetes and prediabetes animal models. PLoS One 9(2):e89229CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Infante-Garcia C, Jose Ramos-Rodriguez J, Marin-Zambrana Y et al (2017) Mango leaf extract improves central pathology and cognitive impairment in a type 2 diabetes mouse model. Brain Pathol 27:449–507CrossRefGoogle Scholar
  16. 16.
    Ramos-Rodriguez JJ, Spires-Jones T, Pooler AM et al (2016) Progressive neuronal pathology and synaptic loss induced by prediabetes and type 2 diabetes in a mouse model of Alzheimer’s disease. Mol Neurobiol 54:3428–3438CrossRefPubMedGoogle Scholar
  17. 17.
    Infante-Garcia C, Ramos-Rodriguez JJ, Galindo-Gonzalez L, Garcia-Alloza M (2016) Long-term central pathology and cognitive impairment are exacerbated in a mixed model of Alzheimer’s disease and type 2 diabetes. Psychoneuroendocrinology 65:15–25CrossRefPubMedGoogle Scholar
  18. 18.
    Ramos-Rodriguez JJ, Infante-Garcia C, Galindo-Gonzalez L et al (2015) Increased spontaneous central bleeding and cognition impairment in APP/PS1 mice with poorly controlled diabetes mellitus. Mol Neurobiol 53:2685–2697CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sheldon RA, Sedik C, Ferriero DM (1998) Strain-related brain injury in neonatal mice subjected to hypoxia-ischemia. Brain Res 810(1–2):114–122CrossRefPubMedGoogle Scholar
  20. 20.
    Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106–107:1–16CrossRefPubMedGoogle Scholar
  21. 21.
    Dutta S, Sengupta P (2016) Men and mice: relating their ages. Life Sci 152:244–248CrossRefPubMedGoogle Scholar
  22. 22.
    Ramani M, van Groen T, Kadish I, Bulger A, Ambalavanan N (2013) Neurodevelopmental impairment following neonatal hyperoxia in the mouse. Neurobiol Dis 50:69–75CrossRefPubMedGoogle Scholar
  23. 23.
    Leroux P, Omouendze PL, Roy V et al (2014) Age-dependent neonatal intracerebral hemorrhage in plasminogen activator inhibitor 1 knockout mice. J Neuropathol Exp Neurol 73(5):387–402CrossRefPubMedGoogle Scholar
  24. 24.
    Georgiadis P, Xu H, Chua C et al (2008) Characterization of acute brain injuries and neurobehavioral profiles in a rabbit model of germinal matrix hemorrhage. Stroke 39(12):3378–3388CrossRefPubMedGoogle Scholar
  25. 25.
    Brouwer MJ, de Vries LS, Kersbergen KJ et al (2016) Effects of posthemorrhagic ventricular dilatation in the preterm infant on brain volumes and white matter diffusion variables at term-equivalent age. J Pediatr 168:41–49e1CrossRefPubMedGoogle Scholar
  26. 26.
    Mino M, Kamii H, Fujimura M et al (2003) Temporal changes of neurogenesis in the mouse hippocampus after experimental subarachnoid hemorrhage. Neurol Res 25(8):839–845CrossRefPubMedGoogle Scholar
  27. 27.
    Otero L, Zurita M, Bonilla C et al (2012) Endogenous neurogenesis after intracerebral hemorrhage. Histol Histopathol 27(3):303–315PubMedGoogle Scholar
  28. 28.
    Tang J, Miao H, Jiang B et al (2017) A selective CB2R agonist (JWH133) restores neuronal circuit after germinal matrix hemorrhage in the preterm via CX3CR1+ microglia. Neuropharmacology 119:157–169CrossRefPubMedGoogle Scholar
  29. 29.
    Kim H, Gano D, Ho ML et al (2016) Hindbrain regional growth in preterm newborns and its impairment in relation to brain injury. Hum Brain Mapp 37(2):678–688CrossRefPubMedGoogle Scholar
  30. 30.
    Miller SP, Ferriero DM (2009) From selective vulnerability to connectivity: insights from newborn brain imaging. Trends Neurosci 32(9):496–505CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Porte B, Hardouin J, Zerdoumi Y et al (2017) Major remodeling of brain microvessels during neonatal period in the mouse: a proteomic and transcriptomic study. J Cereb Blood Flow Metab 37(2):495–513CrossRefPubMedGoogle Scholar
  32. 32.
    Supramaniam V, Vontell R, Srinivasan L et al (2013) Microglia activation in the extremely preterm human brain. Pediatr Res 73(3):301–309CrossRefPubMedGoogle Scholar
  33. 33.
    Wen Y, Yang S, Liu R et al (2004) Transient cerebral ischemia induces aberrant neuronal cell cycle re-entry and Alzheimer’s disease-like tauopathy in female rats. J Biol Chem 279(21):22684–22692CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang Q, Gao T, Luo Y et al (2012) Transient focal cerebral ischemia/reperfusion induces early and chronic axonal changes in rats: its importance for the risk of Alzheimer’s disease. PLoS One 7(3):e33722CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ranasinghe HS, Williams CE, Christophidis LJ et al (2009) Proteolytic activity during cortical development is distinct from that involved in hypoxic ischemic injury. Neuroscience 158(2):732–744CrossRefPubMedGoogle Scholar
  36. 36.
    Schulz CG, Sawicki G, Lemke RP et al (2004) MMP-2 and MMP-9 and their tissue inhibitors in the plasma of preterm and term neonates. Pediatr Res 55(5):794–801CrossRefPubMedGoogle Scholar
  37. 37.
    Okamoto T, Takahashi S, Nakamura E et al (2010) Increased expression of matrix metalloproteinase-9 and hepatocyte growth factor in the cerebrospinal fluid of infants with posthemorrhagic hydrocephalus. Early Hum Dev 86(4):251–254CrossRefPubMedGoogle Scholar
  38. 38.
    Douglas-Escobar M, Yang C, Bennett J et al (2010) A pilot study of novel biomarkers in neonates with hypoxic-ischemic encephalopathy. Pediatr Res 68(6):531–536CrossRefPubMedGoogle Scholar
  39. 39.
    Kose M, Elmas T, Gokahmetoglu S et al (2014) Predictive value of gelsolin for the outcomes of preterm neonates: a pilot study. Pediatr Int 56(6):856–859CrossRefPubMedGoogle Scholar
  40. 40.
    Chou SH1, Lee PS, Konigsberg RG et al (2011) Plasma-type gelsolin is decreased in human blood and cerebrospinal fluid after subarachnoid hemorrhage. Stroke 42(12):3624–3627Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Division of NeonatologyHospital Universitario Puerta del MarCadizSpain
  2. 2.Division of Physiology, School of Medicine, Instituto de Investigación Biomédica e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA)Universidad de CadizCadizSpain
  3. 3.Salus InfirmorumUniversidad de CadizCadizSpain
  4. 4.Division of PediatricsHospital Universitario Puerta del MarCadizSpain

Personalised recommendations