Pedrós I, Petrov D, Allgaier M, Sureda F, Barroso E, Beas-Zarate C, Auladell C, Pallàs M et al (2014) Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer’s disease. Biochim Biophys Acta (BBA) - Mol Basis Dis 1842(9):1556–1566. doi:10.1016/j.bbadis.2014.05.025
Article
Google Scholar
Yin F, Sancheti H, Patil I, Cadenas E (2016) Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radic Biol Med 100:108–122. doi:10.1016/j.freeradbiomed.2016.04.200
CAS
Article
PubMed
PubMed Central
Google Scholar
Salminen A, Haapasalo A, Kauppinen A, Kaarniranta K, Soininen H, Hiltunen M (2015) Impaired mitochondrial energy metabolism in Alzheimer’s disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape. Prog Neurobiol 131:1–20. doi:10.1016/j.pneurobio.2015.05.001
CAS
Article
PubMed
Google Scholar
Selkoe DJ (1994) Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer’s disease. Annu Rev Cell Biol 10(1):373–403. doi:10.1146/annurev.cb.10.110194.002105
CAS
Article
PubMed
Google Scholar
Arendt T, Stieler JT, Holzer M (2016) Tau and tauopathies. Brain Res Bull 126(Pt 3):238–292. doi:10.1016/j.brainresbull.2016.08.018
CAS
Article
PubMed
Google Scholar
Kim GH, Kim JE, Rhie SJ, Yoon S (2015) The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24(4):325–340. doi:10.5607/en.2015.24.4.325
Article
PubMed
PubMed Central
Google Scholar
Cabezas-Opazo FA, Vergara-Pulgar K, Perez MJ, Jara C, Osorio-Fuentealba C, Quintanilla RA (2015) Mitochondrial dysfunction contributes to the pathogenesis of Alzheimer’s disease. Oxidative Med Cell Longev 2015:509654. doi:10.1155/2015/509654
Article
Google Scholar
Guerriero F, Sgarlata C, Francis M, Maurizi N, Faragli A, Perna S, Rondanelli M, Rollone M et al (2016) Neuroinflammation, immune system and Alzheimer disease: searching for the missing link. Aging Clin Exp Res. doi:10.1007/s40520-016-0637-z
Latek D, Kolinski M, Ghoshdastider U, Debinski A, Bombolewski R, Plazinska A, Jozwiak K, Filipek S (2011) Modeling of ligand binding to G protein coupled receptors: cannabinoid CB1, CB2 and adrenergic β2AR. J Mol Model 17(9):2353–2366. doi:10.1007/s00894-011-0986-7
CAS
Article
PubMed
Google Scholar
Mallipeddi S, Janero DR, Zvonok N, Makriyannis A Functional selectivity at G-protein coupled receptors: Advancing cannabinoid receptors as drug targets. Biochem Pharmacol. doi:10.1016/j.bcp.2016.11.014
Onaivi ES, Chaudhuri G, Abaci AS, Parker M, Manier DH, Martin PR, Hubbard JR (1999) Expression of cannabinoid receptors and their gene transcripts in human blood cells. Prog Neuro-Psychopharmacol Biol Psychiatry 23(6):1063–1077. doi:10.1016/S0278-5846(99)00052-4
CAS
Article
Google Scholar
Cabral GA, Griffin-Thomas L (2009) Emerging role of the cannabinoid receptor CB2 in immune regulation: therapeutic prospects for neuroinflammation. Expert Rev Mol Med 11. doi:10.1017/S1462399409000957
Lanciego JL, Barroso-Chinea P, Rico AJ, Conte-Perales L, Callen L, Roda E, Gomez-Bautista V, Lopez IP et al (2011) Expression of the mRNA coding the cannabinoid receptor 2 in the pallidal complex of Macaca fascicularis. J Psychopharmacol 25(1):97–104. doi:10.1177/0269881110367732
CAS
Article
PubMed
Google Scholar
Li Y, Kim J (2015) Neuronal expression of CB2 cannabinoid receptor mRNAs in the mouse hippocampus. Neuroscience 311:253–267. doi:10.1016/j.neuroscience.2015.10.041
CAS
Article
PubMed
PubMed Central
Google Scholar
Skaper SD, Buriani A, Dal Toso R, Petrelli L, Romanello S, Facci L, Leon A (1996) The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons. Proc Natl Acad Sci U S A 93(9):3984–3989. doi:10.1073/pnas.93.9.3984
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang HY, Gao M, Liu QR, Bi GH, Li X, Yang HJ, Gardner EL, Wu J et al (2014) Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci U S A 111(46):E5007–E5015. doi:10.1073/pnas.1413210111
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang HY, Bi GH, Li X, Li J, Qu H, Zhang SJ, Li CY, Onaivi ES et al (2015) Species differences in cannabinoid receptor 2 and receptor responses to cocaine self-administration in mice and rats. Neuropsychopharmacology 40(4):1037–1051. doi:10.1038/npp.2014.297
CAS
Article
PubMed
Google Scholar
Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C, Resel E, Sagredo O, Benito C et al (2009) Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain 132(Pt 11):3152–3164. doi:10.1093/brain/awp239
Article
PubMed
Google Scholar
Xi ZX, Peng XQ, Li X, Song R, Zhang HY, Liu QR, Yang HJ, Bi GH et al (2011) Brain cannabinoid CB(2) receptors modulate cocaine’s actions in mice. Nat Neurosci 14(9):1160–1166. doi:10.1038/nn.2874
CAS
Article
PubMed
PubMed Central
Google Scholar
Garcia-Gutierrez MS, Garcia-Bueno B, Zoppi S, Leza JC, Manzanares J (2012) Chronic blockade of cannabinoid CB2 receptors induces anxiolytic-like actions associated with alterations in GABA(A) receptors. Br J Pharmacol 165(4):951–964. doi:10.1111/j.1476-5381.2011.01625.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Ortega-Alvaro A, Aracil-Fernandez A, Garcia-Gutierrez MS, Navarrete F, Manzanares J (2011) Deletion of CB2 cannabinoid receptor induces schizophrenia-related behaviors in mice. Neuropsychopharmacology 36(7):1489–1504. doi:10.1038/npp.2011.34
CAS
Article
PubMed
PubMed Central
Google Scholar
Aso E, Ferrer I (2016) CB2 cannabinoid receptor as potential target against Alzheimer’s disease. Front Neurosci 10:243. doi:10.3389/fnins.2016.00243
Article
PubMed
PubMed Central
Google Scholar
Aso E, Juves S, Maldonado R, Ferrer I (2013) CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in AbetaPP/PS1 mice. J Alzheimer’s Dis: JAD 35(4):847–858. doi:10.3233/JAD-130137
Google Scholar
Koppel J, Vingtdeux V, Marambaud P, d’Abramo C, Jimenez H, Stauber M, Friedman R, Davies P (2014) CB2 receptor deficiency increases amyloid pathology and alters tau processing in a transgenic mouse model of Alzheimer’s disease. Mol Med 20:29–36. doi:10.2119/molmed.2013.00140.revised
PubMed
PubMed Central
Google Scholar
Wu J, Bie B, Yang H, Xu JJ, Brown DL, Naguib M (2013) Activation of the CB2 receptor system reverses amyloid-induced memory deficiency. Neurobiol Aging 34(3):791–804. doi:10.1016/j.neurobiolaging.2012.06.011
CAS
Article
PubMed
Google Scholar
Aso E, Andres-Benito P, Carmona M, Maldonado R, Ferrer I (2016) Cannabinoid receptor 2 participates in amyloid-beta processing in a mouse model of Alzheimer’s disease but plays a minor role in the therapeutic properties of a cannabis-based medicine. J Alzheimer’s Dis: JAD 51(2):489–500. doi:10.3233/JAD-150913
CAS
Article
Google Scholar
Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262. doi:10.1038/nrm3311
CAS
Article
PubMed
PubMed Central
Google Scholar
Domise M, Vingtdeux V (2016) AMPK in neurodegenerative diseases. EXS 107:153–177. doi:10.1007/978-3-319-43589-3_7
CAS
PubMed
Google Scholar
Frasch MG (2014) Putative role of AMPK in fetal adaptive brain shut-down: linking metabolism and inflammation in the brain. Front Neurol 5:150. doi:10.3389/fneur.2014.00150
Article
PubMed
PubMed Central
Google Scholar
Choi IY, Ju C, Anthony Jalin AM, Lee DI, Prather PL, Kim WK (2013) Activation of cannabinoid CB2 receptor-mediated AMPK/CREB pathway reduces cerebral ischemic injury. Am J Pathol 182(3):928–939. doi:10.1016/j.ajpath.2012.11.024
CAS
Article
PubMed
Google Scholar
Clark JK, Furgerson M, Crystal JD, Fechheimer M, Furukawa R, Wagner JJ (2015) Alterations in synaptic plasticity coincide with deficits in spatial working memory in presymptomatic 3xTg-AD mice. Neurobiol Learn Mem 125:152–162. doi:10.1016/j.nlm.2015.09.003
Article
PubMed
PubMed Central
Google Scholar
Mei Y, Jiang C, Wan Y, Lv J, Jia J, Wang X, Yang X, Tong Z (2015) Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline. Aging Cell 14(4):659–668. doi:10.1111/acel.12345
CAS
Article
PubMed
PubMed Central
Google Scholar
Li Y, Kim J (2016) CB2 cannabinoid receptor knockout in mice impairs contextual long-term memory and enhances spatial working memory. Neural Plast 2016:9817089. doi:10.1155/2016/9817089
PubMed
Google Scholar
Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60. doi:10.1016/0165-0270(84)90007-4
CAS
Article
PubMed
Google Scholar
Thornton C, Bright Nicola J, Sastre M, Muckett Phillip J, Carling D (2011) AMP-activated protein kinase (AMPK) is a tau kinase, activated in response to amyloid β-peptide exposure. Biochem J 434(3):503
CAS
Article
PubMed
Google Scholar
Shah SA, Yoon GH, Chung SS, Abid MN, Kim TH, Lee HY, Kim MO (2016) Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer’s disease neuropathological deficits. Mol Psychiatry. doi:10.1038/mp.2016.23
Vingtdeux V, Davies P, Dickson DW, Marambaud P (2011) AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathol 121(3):337–349. doi:10.1007/s00401-010-0759-x
CAS
Article
PubMed
Google Scholar
Ramirez BG, Blazquez C, Gomez del Pulgar T, Guzman M, de Ceballos ML (2005) Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 25(8):1904–1913. doi:10.1523/JNEUROSCI.4540-04.2005
CAS
Article
PubMed
Google Scholar
Solas M, Francis PT, Franco R, Ramirez MJ (2013) CB2 receptor and amyloid pathology in frontal cortex of Alzheimer’s disease patients. Neurobiol Aging 34(3):805–808. doi:10.1016/j.neurobiolaging.2012.06.005
CAS
Article
PubMed
Google Scholar
Ahmad R, Postnov A, Bormans G, Versijpt J, Vandenbulcke M, Van Laere K (2016) Decreased in vivo availability of the cannabinoid type 2 receptor in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 43(12):2219–2227. doi:10.1007/s00259-016-3457-7
CAS
Article
PubMed
Google Scholar
Garcia-Gutierrez MS, Ortega-Alvaro A, Busquets-Garcia A, Perez-Ortiz JM, Caltana L, Ricatti MJ, Brusco A, Maldonado R et al (2013) Synaptic plasticity alterations associated with memory impairment induced by deletion of CB2 cannabinoid receptors. Neuropharmacology 73:388–396. doi:10.1016/j.neuropharm.2013.05.034
CAS
Article
PubMed
Google Scholar
Schmole AC, Lundt R, Ternes S, Albayram O, Ulas T, Schultze JL, Bano D, Nicotera P et al (2015) Cannabinoid receptor 2 deficiency results in reduced neuroinflammation in an Alzheimer’s disease mouse model. Neurobiol Aging 36(2):710–719. doi:10.1016/j.neurobiolaging.2014.09.019
Article
PubMed
Google Scholar
Cheng Y, Dong Z, Liu S (2014) β-Caryophyllene Ameliorates the Alzheimer-Like Phenotype in APP/PS1 Mice through CB2 Receptor Activation and the PPARγ Pathway. Pharmacology 94(1–2):1–12
CAS
Article
PubMed
Google Scholar
Davies SP, Hawley SA, Woods A, Carling D, Haystead TAJ, Hardie DG (1994) Purification of the AMP-activated protein kinase on ATP-γ-Sepharose and analysis of its subunit structure. Eur J Biochem 223(2):351–357. doi:10.1111/j.1432-1033.1994.tb19001.x
CAS
Article
PubMed
Google Scholar
Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG (1996) Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271(44):27879–27887. doi:10.1074/jbc.271.44.27879
CAS
Article
PubMed
Google Scholar
Park Y-J, Ko JW, Jang Y, Kwon YH (2013) Activation of AMP-activated protein kinase alleviates homocysteine-mediated neurotoxicity in SH-SY5Y cells. Neurochem Res 38(8):1561–1571. doi:10.1007/s11064-013-1057-5
CAS
Article
PubMed
Google Scholar
Greco SJ, Hamzelou A, Johnston JM, Smith MA, Ashford JW, Tezapsidis N (2011) Leptin boosts cellular metabolism by activating AMPK and the sirtuins to reduce tau phosphorylation and β-amyloid in neurons. Biochem Biophys Res Commun 414(1):170–174. doi:10.1016/j.bbrc.2011.09.050
CAS
Article
PubMed
PubMed Central
Google Scholar
Du LL, Chai DM, Zhao LN, Li XH, Zhang FC, Zhang HB, Liu LB, Wu K et al (2015) AMPK activation ameliorates Alzheimer’s disease-like pathology and spatial memory impairment in a streptozotocin-induced Alzheimer’s disease model in rats. J Alzheimer’s Dis: JAD 43(3):775–784. doi:10.3233/JAD-140564
CAS
Google Scholar
Liu F, Liang Z, Shi J, Yin D, El-Akkad E, Grundke-Iqbal I, Iqbal K, Gong C-X (2006) PKA modulates GSK-3β- and cdk5-catalyzed phosphorylation of tau in site- and kinase-specific manners. FEBS Lett 580(26):6269–6274. doi:10.1016/j.febslet.2006.10.033
CAS
Article
PubMed
PubMed Central
Google Scholar
Köhler C, Dinekov M, Götz J (2013) Active glycogen synthase kinase-3 and tau pathology-related tyrosine phosphorylation in pR5 human tau transgenic mice. Neurobiol Aging 34(5):1369–1379. doi:10.1016/j.neurobiolaging.2012.11.010
Article
PubMed
Google Scholar
Sontag JM, Nunbhakdi-Craig V, White CL 3rd, Halpain S, Sontag E (2012) The protein phosphatase PP2A/Balpha binds to the microtubule-associated proteins tau and MAP2 at a motif also recognized by the kinase Fyn: implications for tauopathies. J Biol Chem 287(18):14984–14993. doi:10.1074/jbc.M111.338681
CAS
Article
PubMed
PubMed Central
Google Scholar
Plattner F, Angelo M, Giese KP (2006) The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J Biol Chem 281(35):25457–25465. doi:10.1074/jbc.M603469200
CAS
Article
PubMed
Google Scholar
Horike N, Sakoda H, Kushiyama A, Ono H, Fujishiro M, Kamata H, Nishiyama K, Uchijima Y et al (2008) AMP-activated protein kinase activation increases phosphorylation of glycogen synthase kinase 3beta and thereby reduces cAMP-responsive element transcriptional activity and phosphoenolpyruvate carboxykinase C gene expression in the liver. J Biol Chem 283(49):33902–33910. doi:10.1074/jbc.M802537200
CAS
Article
PubMed
PubMed Central
Google Scholar
Kim HS, Moon S, Paik JH, Shin DW, Kim LS, Park CS, Ha J, Kang JH (2015) Activation of the 5′-AMP-activated protein kinase in the cerebral cortex of young senescence-accelerated P8 mice and association with GSK3beta- and PP2A-dependent inhibition of p-tau(3)(9)(6) expression. J Alzheimer’s Dis: JAD 46(1):249–259. doi:10.3233/JAD-150035
CAS
Article
Google Scholar
Han Y, Wang Q, Song P, Zhu Y, Zou M-H (2010) Redox regulation of the AMP-activated protein kinase. PLoS One 5(11):e15420. doi:10.1371/journal.pone.0015420
Article
PubMed
PubMed Central
Google Scholar
Karuppagounder SS, Pinto JT, Xu H, Chen H-L, Beal MF, Gibson GE (2009) Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Int 54(2):111–118. doi:10.1016/j.neuint.2008.10.008
CAS
Article
PubMed
Google Scholar
Sin TK, Yu AP, Yung BY, Yip SP, Chan LW, Wong CS, Rudd JA, Siu PM (2015) Effects of long-term resveratrol-induced SIRT1 activation on insulin and apoptotic signalling in aged skeletal muscle. Acta Diabetol 52(6):1063–1075. doi:10.1007/s00592-015-0767-3
CAS
Article
PubMed
Google Scholar
Chen S, Xiao X, Feng X, Li W, Zhou N, Zheng L, Sun Y, Zhang Z et al (2012) Resveratrol induces Sirt1-dependent apoptosis in 3T3-L1 preadipocytes by activating AMPK and suppressing AKT activity and survivin expression. J Nutr Biochem 23(9):1100–1112. doi:10.1016/j.jnutbio.2011.06.003
CAS
Article
PubMed
Google Scholar
Yang Y-j HL, Y-p X, C-y J, Miao C, Yang C-q, Yuan M, Wang L (2016) Resveratrol suppresses glial activation and alleviates trigeminal neuralgia via activation of AMPK. J Neuroinflammation 13(1):84. doi:10.1186/s12974-016-0550-6
Article
PubMed
PubMed Central
Google Scholar
Um J-H, Park S-J, Kang H, Yang S, Foretz M, McBurney MW, Kim MK, Viollet B et al (2010) AMP-activated protein kinase–deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 59(3):554
CAS
Article
PubMed
Google Scholar
Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39(3):409–421. doi:10.1016/S0896-6273(03)00434-3
CAS
Article
PubMed
Google Scholar
Li HL, Wang HH, Liu SJ, Deng YQ, Zhang YJ, Tian Q, Wang XC, Chen XQ et al (2007) Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci U S A 104(9):3591–3596. doi:10.1073/pnas.0609303104
CAS
Article
PubMed
PubMed Central
Google Scholar
Li XH, Lv BL, Xie JZ, Liu J, Zhou XW, Wang JZ (2012) AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation. Neurobiol Aging 33(7):1400–1410. doi:10.1016/j.neurobiolaging.2011.02.003
Article
PubMed
Google Scholar
ABB FV, Malhotra R, De* A (2014) IHC profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One. doi:10.1371/journal.pone.0096801.t001
Peng CX, Hu J, Liu D, Hong XP, Wu YY, Zhu LQ, Wang JZ (2013) Disease-modified glycogen synthase kinase-3beta intervention by melatonin arrests the pathology and memory deficits in an Alzheimer’s animal model. Neurobiol Aging 34(6):1555–1563. doi:10.1016/j.neurobiolaging.2012.12.010
CAS
Article
PubMed
Google Scholar
Kass MD, Rosenthal MC, Pottackal J, McGann JP (2013) Fear learning enhances neural responses to threat-predictive sensory stimuli. Science 342(6164):1389–1392. doi:10.1126/science.1244916
CAS
Article
PubMed
PubMed Central
Google Scholar
Li XH, Xie JZ, Jiang X, Lv BL, Cheng XS, Du LL, Zhang JY, Wang JZ et al (2012) Methylglyoxal induces tau hyperphosphorylation via promoting AGEs formation. NeuroMolecular Med 14(4):338–348. doi:10.1007/s12017-012-8191-0
CAS
Article
PubMed
Google Scholar