Molecular Neurobiology

, Volume 55, Issue 5, pp 4463–4472 | Cite as

Development of In Vivo Imaging Tools for Investigating Astrocyte Activation in Epileptogenesis

  • Chrysavgi Kostoula
  • Rosaria Pascente
  • Teresa Ravizza
  • Thomas McCown
  • Susanne Schoch
  • Annamaria Vezzani
  • Albert J. Becker
  • Karen M. J van Loo


Insights into the dynamic changes in molecular processes occurring in the brain during epileptogenesis can substantially improve our understanding of their pathogenetic relevance. In this context, neuroinflammation is a potential mechanism of epileptogenesis which has recently been investigated in animal models by MRI or PET molecular imaging. Here, we developed an alternative and complementary molecular imaging strategy by designing a serotype 8 recombinant adeno-associated virus (AAV8) harboring promoter fragments of the GFAP or IL-1β promoter and a luciferase reporter gene. Mice were injected intrahippocampally with rAAV8 and treated with intracortical kainic acid to induce status epilepticus (SE) and hence epileptogenesis. In vivo bioluminescence imaging combined with immunohistochemistry revealed a significant activation of the GFAP promoter 24 h and 3 days after kainate-induced SE. For IL-1β, we identified the promoter region required for studying cell-specific induction of the promoter in longitudinal studies. We conclude that the GFAP promoter fragment represents a useful tool for monitoring the in vivo activation of astrocytes with an inflammatory phenotype during epileptogenesis, or under other pathophysiological conditions.


In vivo imaging IL-1β GFAP Epilepsy Adeno-associated viral vectors 



We thank Prof. P. Auron for his suggestions on the IL-1β promoter cloning; Y. Wang for assisting with in vivo bioluminescence studies; A.Oprisoreanu for assistance with the virus production; L.Dammer and S.Opitz for technical assistance.

Compliance with Ethical Standards

All experimental procedures were conducted in conformity with institutional guidelines that are in compliance with national (D.L. n.26, G.U. March 4, 2014) and international guidelines and laws (EEC Council Directive 86/609, OJ L 358, 1, December 12, 1987, Guide for the Care and Use of Laboratory Animals, U.S. National Research Council, 1996), and were reviewed and approved by the intramural ethical committee and the University of Bonn Medical Center Animal Care Committee.

The studies were approved by the University of Bonn Medical Center Animal Care Committee and Mario Negri Institute for Pharmacological Research Animal Care Committee.

Conflict of Interest

The authors declare that they have no conflict of interest.


This study was supported by the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 602102 (EPITARGET), the Deutsche Forschungsgemeinschaft (SFB 1089) and Fondazione Italiana per la Ricerca sull’Epilessia (AICE-FIRE). The funding bodies did not participate in the design of the study, data collection and analysis, or preparation of the manuscript.


  1. 1.
    Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7:31–40CrossRefPubMedGoogle Scholar
  2. 2.
    Aronica E, Ravizza T, Zurolo E, Vezzani A (2012) Astrocyte immune responses in epilepsy. Glia 60(8):1258–1268CrossRefPubMedGoogle Scholar
  3. 3.
    Maroso M, Balosso S, Ravizza T, Iori V, Wright CI, French J, Vezzani A (2011 Apr) Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics 8(2):304–315CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Eng LF, Ghirnikar RS, Lee YL (2000 Oct) Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem Res 25(9–10):1439–1451CrossRefPubMedGoogle Scholar
  5. 5.
    Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013 Mar) Glia and epilepsy: Excitability and inflammation. Trends Neurosci 36(3):174–184CrossRefPubMedGoogle Scholar
  6. 6.
    Friedman A, Kaufer D, Heinemann U (2009 Aug) Blood-brain barrier breakdown-inducing astrocytic transformation: Novel targets for the prevention of epilepsy. Epilepsy Res 85(2–3):142–149CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lee Y, Messing A, Su M, Brenner M (2008 Apr) GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia 56(5):481–493CrossRefPubMedGoogle Scholar
  8. 8.
    Shirakawa F, Saito K, Bonagura CA, Galson DL, Fenton MJ, Webb AC, Auron PE (1993) The human prointerleukin 1 beta gene requires DNA sequences both proximal and distal to the transcription start site for tissue-specific induction. Mol Cell Biol 13(3):1332–1344CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kulbida R, Wang Y, Mandelkow EM, Schoch S, Becker A, van Loo KMJ (2014) Molecular imaging reveals epileptogenic Ca2+−channel promoter activation in hippocampi of living mice. Brain Struct FunctGoogle Scholar
  10. 10.
    van Loo KM, Schaub C, Pernhorst K, Yaari Y, Beck H, Schoch S, Becker AJ (2012) Transcriptional regulation of T-type calcium channel CaV3.2: bi-directionality by early growth response 1 (Egr1) and repressor element 1 (RE-1) protein-silencing transcription factor (REST). Biol Chem 287(19):15489–15501CrossRefGoogle Scholar
  11. 11.
    Jefferys J, Steinhäuser C, Bedner P (2016 Feb 15) Chemically-induced TLE models: Topical application. J Neurosci Methods 260:53–61CrossRefPubMedGoogle Scholar
  12. 12.
    Noé F, Frasca A, Balducci C, Carli M, Sperk G, Ferraguti F, Pitkänen A, Bland R et al (2009) Neuropeptide Y overexpression using recombinant Adenoassociated viral vectors. Neurotherapeutics 6(2):300–306CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hochgräfe K, Mandelkow EM (2013) Making the brain glow: In vivo bioluminescence imaging to study neurodegeneration. Mol Neurobiol 47(3):868–882CrossRefPubMedGoogle Scholar
  14. 14.
    Garlanda C, Dinarello CA, Mantovani A (2013 Dec 12) The interleukin-1 family: Back to the future. Immunity 39(6):1003–1018CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vezzani A, Conti M, De Luigi A, Ravizza T, Moneta D, Marchesi F, De Simoni MG (1999 Jun 15) Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: Functional evidence for enhancement of electrographic seizures. J Neurosci 19(12):5054–5065PubMedGoogle Scholar
  16. 16.
    De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, De Luigi A, Garattini S et al (2000 Jul) Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 12(7):2623–2633CrossRefPubMedGoogle Scholar
  17. 17.
    Ravizza T, Gagliardi B, Noé F, Boer K, Aronica E, Vezzani A (2008 Jan) Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 29(1):142–160CrossRefPubMedGoogle Scholar
  18. 18.
    Balosso S, Maroso M, Sanchez-Alavez M, Ravizza T, Frasca A, Bartfai T, Vezzani A (2008) A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1beta. Brain 131(Pt 12):3256–3265CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Aronica E, Crino PB (2011 May) Inflammation in epilepsy: Clinical observations. Epilepsia 52(Suppl 3):26–32CrossRefPubMedGoogle Scholar
  20. 20.
    Aschauer DF, Kreuz S, Rumpel S (2013 Sep 27) Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 8(9):e76310CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dong JY, Fan PD, Frizzell RA (1996 Nov 10) Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum Gene Ther 7(17):2101–2112CrossRefPubMedGoogle Scholar
  22. 22.
    Hermonat PL, Quirk JG, Bishop BM, Han L (1997 Apr 21) The packaging capacity of adeno-associated virus (AAV) and the potential for wild-type-plus AAV gene therapy vectors. FEBS Lett 407(1):78–84CrossRefPubMedGoogle Scholar
  23. 23.
    Fassler M, Weissberg I, Levy N, Diaz-Griffero F, Monsonego A, Friedman A, Taube R (2013) Preferential lentiviral targeting of astrocytes in the central nervous system. PLoS One 8(10):e76092CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Li L, Fei Z, Ren J, Sun R, Liu Z, Sheng Z, Wang L, Sun X et al (2008) Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice. BMC Immunol 9:49CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Chrysavgi Kostoula
    • 1
  • Rosaria Pascente
    • 1
  • Teresa Ravizza
    • 1
  • Thomas McCown
    • 2
  • Susanne Schoch
    • 3
  • Annamaria Vezzani
    • 1
  • Albert J. Becker
    • 3
  • Karen M. J van Loo
    • 3
  1. 1.Department of NeuroscienceIRCCS-Istituto di Ricerche Farmacologiche Mario NegriMilanItaly
  2. 2.UNC Gene Therapy CenterChapel HillUSA
  3. 3.Section for Translational Epilepsy Research, Department of NeuropathologyUniversity of Bonn Medical CenterBonnGermany

Personalised recommendations