Advertisement

Molecular Neurobiology

, Volume 55, Issue 5, pp 4362–4372 | Cite as

Cytoskeleton as a Target of Quinolinic Acid Neurotoxicity: Insight from Animal Models

  • Paula Pierozan
  • Regina Pessoa-Pureur
Article

Abstract

Cytoskeletal proteins are increasingly recognized as having important roles as a target of the action of different neurotoxins. In the last years, several works of our group have shown that quinolinic acid (QUIN) was able to disrupt the homeostasis of the cytoskeleton of neural cells and this was associated with cell dysfunction and neurodegeneration. QUIN is an excitotoxic metabolite of tryptophan metabolism and its accumulation is associated with several neurodegenerative diseases. In the present review, we provide a comprehensive view of the actions of QUIN upstream of glutamate receptors, eliciting kinase/phosphatase signaling cascades that disrupt the homeostasis of the phosphorylation system associated with intermediate filament proteins of astrocytes and neurons. We emphasize the critical role of calcium in these actions and the evidence that misregulated cytoskeleton takes part of the cell response to the injury resulting in neurodegeneration in different brain regions, disrupted cell signaling in acute tissue slices, and disorganized cytoskeleton with altered cell morphology in primary cultures. We also discuss the interplay among misregulated cytoskeleton, oxidative stress, and cell-cell contact through gap junctions mediating the quinolinic acid injury in rat brain. The increasing amount of cross talks identified between cytoskeletal proteins and cellular signaling cascades reinforces the exciting possibility that cytoskeleton could be a new target in the neurotoxicity of QUIN and further studies will be necessary to develop strategies to protect the cytoskeleton and counteracts the cytotoxicity of this metabolite.

Keywords

Quinolinic acid Neurotoxicity Cell signaling Cytoskeleton Calcium 

Notes

Compliance with Ethical Standards

Funding

This work was supported by grants of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [grant number 303913/2013–4] and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) [grant number 11/0897–0].

References

  1. 1.
    Chen Y, Guillemin GJ (2009) Kynurenine pathway metabolites in humans: disease and healthy states. Int J Tryptophan Res 2:1–19PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Schwarcz R, Bruno JP, Muchowski PJ, Wu H-Q (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nature Reviews/Neuroscience 13:464–476Google Scholar
  3. 3.
    Lugo-Huitron R, Ugalde Muniz P, Pineda B, Pedraza-Chaverri J, Rios C, Perez-de la Cruz V (2013) Quinolinic acid: an endogenous neurotoxin with multiple targets. Oxidative Med Cell Longev 2013:104024. doi: 10.1155/2013/104024 CrossRefGoogle Scholar
  4. 4.
    Perez-De La Cruz V, Carrillo-Mora P, Santamaria A (2012) Quinolinic acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms. Int J Tryptophan Res 5:1–8. doi: 10.4137/IJTR.S8158 PubMedPubMedCentralGoogle Scholar
  5. 5.
    Pessoa-Pureur R, Wajner M (2007) Cytoskeleton as a potential target in the neuropathology of maple syrup urine disease: insight from animal studies. J Inherit Metab Dis Oct;30(5)::664–672Google Scholar
  6. 6.
    Zamoner A, and Pessoa-Pureur R (2011) Nongenomic actions of thyroid hormones: every why has a wherefore. Immunology, Endocrine & Metabolic Agents in medical chemistry 11(3): :165-178Google Scholar
  7. 7.
    Pessoa-Pureur R, Heimfarth L, Rocha JB (2014) Signaling mechanisms and disrupted cytoskeleton in the diphenyl ditelluride neurotoxicity. Oxidative Med Cell Longev 2014:458601. doi: 10.1155/2014/458601 CrossRefGoogle Scholar
  8. 8.
    Huber F, Boire A, Lopez MP, Koenderink GH (2015) Cytoskeletal crosstalk: when three different personalities team up. Curr Opin Cell Biol 32:39–47. doi: 10.1016/j.ceb.2014.10.005 PubMedCrossRefGoogle Scholar
  9. 9.
    Bolin K, Rachmaninoff N, Moncada K, Pula K, Kennell J, Buttitta L (2016) miR-8 modulates cytoskeletal regulators to influence cell survival and epithelial organization in drosophila wings. Dev Biol 412(1):83–98. doi: 10.1016/j.ydbio.2016.01.041 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Yi B, Chen L, Zeng J, Cui J, Wang G, Qian G, Belguise K, Wang X, Lu K (2015) Ezrin regulating the cytoskeleton remodeling is required for hypoxia-induced myofibroblast proliferation and migration. Front Cardiovasc Med 3: 2:10,Google Scholar
  11. 11.
    Compagnucci C, Piemonte F, Sferra A, Piermarini E, Bertini E (2016) The cytoskeletal arrangements necessary to neurogenesis. Oncotarget 7(15):19414–19429. doi: 10.18632/oncotarget.6838 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Le Clainche C, Carlier MF (2008) Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev 88(2):489–513. doi: 10.1152/physrev.00021.2007 PubMedCrossRefGoogle Scholar
  13. 13.
    Xiong T, Liu J, Dai G, Hou Y, Tan B, Zhang Y, Li S, Song Y et al (2015) The progressive changes of filamentous actin cytoskeleton in the hippocampal neurons after pilocarpine-induced status epilepticus. Epilepsy Res 118:55–67. doi: 10.1016/j.eplepsyres.2015.11.002 PubMedCrossRefGoogle Scholar
  14. 14.
    Herrmann H, Bar H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8(7):562–573. doi: 10.1038/nrm2197 PubMedCrossRefGoogle Scholar
  15. 15.
    Gentil BJ, Tibshirani M, Durham HD (2015) Neurofilament dynamics and involvement in neurological disorders. Cell Tissue Res 360(3):609–620. doi: 10.1007/s00441-014-2082-7 PubMedCrossRefGoogle Scholar
  16. 16.
    Laser-Azogui A, Kornreich M, Malka-Gibor E, Beck R (2015) Neurofilament assembly and function during neuronal development. Curr Opin Cell Biol 32:92–101. doi: 10.1016/j.ceb.2015.01.003 PubMedCrossRefGoogle Scholar
  17. 17.
    Beck R, Deek J, Choi MC, Ikawa T, Watanabe O, Frey E, Pincus P, Safinya CR (2010) Unconventional salt trend from soft to stiff in single neurofilament biopolymers. Langmuir 26(24):18595–18599. doi: 10.1021/la103655x PubMedCrossRefGoogle Scholar
  18. 18.
    Mellad JA, Warren DT, Shanahan CM (2011) Nesprins LINC the nucleus and cytoskeleton. Curr Opin Cell Biol 23(1):47–54. doi: 10.1016/j.ceb.2010.11.006 PubMedCrossRefGoogle Scholar
  19. 19.
    Rao MV, Engle LJ, Mohan PS, Yuan A, Qiu D, Cataldo A, Hassinger L, Jacobsen S et al (2002) Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density. J Cell Biol 159(2):279–290. doi: 10.1083/jcb.200205062 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Rao MV, Mohan PS, Kumar A, Yuan A, Montagna L, Campbell J, Veeranna EEM, Julien JP et al (2011) The myosin Va head domain binds to the neurofilament-L rod and modulates endoplasmic reticulum (ER) content and distribution within axons. PLoS One 6(2):e17087. doi: 10.1371/journal.pone.0017087 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Macioce P, Gandolfi N, Leung CL, Chin SS, Malchiodi-Albedi F, Ceccarini M, Petrucci TC, Liem RK (1999) Characterization of NF-L and betaIISigma1-spectrin interaction in live cells. Exp Cell Res 250(1):142–154. doi: 10.1006/excr.1999.4479 PubMedCrossRefGoogle Scholar
  22. 22.
    Wiche G, Winter L (2011) Plectin isoforms as organizers of intermediate filament cytoarchitecture. BioArchitecture 1(1):14–20. doi: 10.4161/bioa.1.1.14630 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Koutras C, Levesque G (2011) Identification of novel NPRAP/delta-catenin-interacting proteins and the direct association of NPRAP with dynamin 2. PLoS One 6(10):e25379. doi: 10.1371/journal.pone.0025379 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ehlers MD, Fung ET, O'Brien RJ, Huganir RL (1998) Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. J Neurosci 18(2):720–730PubMedCrossRefGoogle Scholar
  25. 25.
    Yabe JT, Chylinski T, Wang FS, Pimenta A, Kattar SD, Linsley MD, Chan WK, Shea TB (2001) Neurofilaments consist of distinct populations that can be distinguished by C-terminal phosphorylation, bundling, and axonal transport rate in growing axonal neurites. J Neurosci 21(7):2195–2205PubMedCrossRefGoogle Scholar
  26. 26.
    Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6(8):626–640. doi: 10.1038/nrn1722 PubMedCrossRefGoogle Scholar
  27. 27.
    Pirttimaki TM, Parri HR (2013) Astrocyte plasticity: implications for synaptic and neuronal activity. Neuroscientist 19(6):604–615. doi: 10.1177/1073858413504999 PubMedCrossRefGoogle Scholar
  28. 28.
    Middeldorp J, Hol EM (2011) GFAP in health and disease. Prog Neurobiol 93(3):421–443. doi: 10.1016/j.pneurobio.2011.01.005 PubMedCrossRefGoogle Scholar
  29. 29.
    Hol EM, Pekny M (2015) Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 32:121–130. doi: 10.1016/j.ceb.2015.02.004 PubMedCrossRefGoogle Scholar
  30. 30.
    Orre M, Kamphuis W, Osborn LM, Jansen AH, Kooijman L, Bossers K, Hol EM (2014) Isolation of glia from Alzheimer’s mice reveals inflammation and dysfunction. Neurobiol Aging 35(12):2746–2760. doi: 10.1016/j.neurobiolaging.2014.06.004 PubMedCrossRefGoogle Scholar
  31. 31.
    Kamphuis W, Orre M, Kooijman L, Dahmen M, Hol EM (2012) Differential cell proliferation in the cortex of the APPswePS1dE9 Alzheimer’s disease mouse model. Glia 60(4):615–629. doi: 10.1002/glia.22295 PubMedCrossRefGoogle Scholar
  32. 32.
    Kamphuis W, Middeldorp J, Kooijman L, Sluijs JA, Kooi EJ, Moeton M, Freriks M, Mizee MR et al (2014) Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer’s disease. Neurobiol Aging 35(3):492–510. doi: 10.1016/j.neurobiolaging.2013.09.035 PubMedCrossRefGoogle Scholar
  33. 33.
    Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8(7):530–541. doi: 10.1038/nrm2203 PubMedCrossRefGoogle Scholar
  34. 34.
    Sihag RK, Nixon RA (1991) Identification of Ser-55 as a major protein kinase a phosphorylation site on the 70-kDa subunit of neurofilaments. Early turnover during axonal transport. J Biol Chem 266(28):18861–18867PubMedGoogle Scholar
  35. 35.
    Omary MB, Ku NO, Tao GZ, Toivola DM, Liao J (2006) "heads and tails" of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem Sci 31(7):383–394. doi: 10.1016/j.tibs.2006.05.008 PubMedCrossRefGoogle Scholar
  36. 36.
    Shea TB, Chan WK (2008) Regulation of neurofilament dynamics by phosphorylation. Eur J Neurosci 27(8):1893–1901. doi: 10.1111/j.1460-9568.2008.06165.x PubMedCrossRefGoogle Scholar
  37. 37.
    Sihag RK, Inagaki M, Yamaguchi T, Shea TB, Pant HC (2007) Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp Cell Res 313(10):2098–2109. doi: 10.1016/j.yexcr.2007.04.010 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Zhou J, Wang H, Feng Y, Chen J (2010) Increased expression of cdk5/p25 in N2a cells leads to hyperphosphorylation and impaired axonal transport of neurofilament proteins. Life Sci 86:532–537PubMedCrossRefGoogle Scholar
  39. 39.
    GRANT P, PANT HC (2000) Neurofilament protein synthesis and phosphorylation. Journal of Neurocytology 29:843–872PubMedCrossRefGoogle Scholar
  40. 40.
    Lee S, Pant HC, Shea TB (2014) Divergent and convergent roles for kinases and phosphatases in neurofilament dynamics. J Cell Sci 127(Pt 18):4064–4077. doi: 10.1242/jcs.153346 PubMedCrossRefGoogle Scholar
  41. 41.
    Lewis SE, Nixon RA (1988) Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments. J Cell Biol 107(6 Pt 2):2689–2701PubMedCrossRefGoogle Scholar
  42. 42.
    Yabe JT, Pimenta A, Shea TB (1999) Kinesin-mediated transport of neurofilament protein oligomers in growing axons. J Cell Sci 112 ( Pt 21):3799–3814Google Scholar
  43. 43.
    Shea TB, Chan WK, Kushkuley J, Lee S (2009) Organizational dynamics, functions, and pathobiological dysfunctions of neurofilaments. Results Probl Cell Differ 48:29–45. doi: 10.1007/400_2009_8 PubMedGoogle Scholar
  44. 44.
    Motil J, Chan WK, Dubey M, Chaudhury P, Pimenta A, Chylinski TM, Ortiz DT, Shea TB (2006) Dynein mediates retrograde neurofilament transport within axons and anterograde delivery of NFs from perikarya into axons: regulation by multiple phosphorylation events. Cell Motil Cytoskeleton 63(5):266–286. doi: 10.1002/cm.20122 PubMedCrossRefGoogle Scholar
  45. 45.
    Shea TB, Chan A (2008) S-adenosyl methionine: a natural therapeutic agent effective against multiple hallmarks and risk factors associated with Alzheimer’s disease. J Alzheimers Dis 13(1):67–70PubMedCrossRefGoogle Scholar
  46. 46.
    Bajaj NPS, Al-Sarraj ST, Leigh PN, Anderson V, Miller CCJ (1999) Cyclin dependent kinase 5 (cdk5) phosphorylates neurofilament heavy (NF-H) chain to generate epitopes for antibodies that label neurofilament affected motor neurons in ALS. Neuro-Psychopharm Biol Psychiat 23:833–850CrossRefGoogle Scholar
  47. 47.
    Strong MJ, Strong WL, Jaffe H, Traggert B, Sopper MM, Pant HC (2001) Phosphorylation state of the native high-molecular-weight neurofilament subunit protein from cervical spinal cord in sporadic amyotrophic lateral sclerosis. J Neurochem 76(5):1315–1325PubMedCrossRefGoogle Scholar
  48. 48.
    Sontag E, Hladik C, Montgomery L, Luangpirom A, Mudrak I, Ogris E, White CL 3rd (2004) Downregulation of protein phosphatase 2A carboxyl methylation and methyltransferase may contribute to Alzheimer disease pathogenesis. J Neuropathol Exp Neurol 63(10):1080–1091PubMedCrossRefGoogle Scholar
  49. 49.
    Loureiro SO, Heimfarth L, Lacerda BA, Vidal LF, Soska A, dos Santos NG, de Souza Wyse AT, Pessoa-Pureur R (2010) Homocysteine induces hypophosphorylation of intermediate filaments and reorganization of actin cytoskeleton in C6 glioma cells. Cell Mol Neurobiol 30(4):557–568. doi: 10.1007/s10571-009-9480-5 PubMedCrossRefGoogle Scholar
  50. 50.
    Fernandes CG, Pierozan P, Soares GM, Ferreira F, Zanatta A, Amaral AU, Borges CG, Wajner M et al (2015) NMDA receptors and oxidative stress induced by the major metabolites accumulating in HMG Lyase deficiency mediate hypophosphorylation of cytoskeletal proteins in brain from adolescent rats: potential mechanisms contributing to the neuropathology of this disease. Neurotox Res 28(3):239–252. doi: 10.1007/s12640-015-9542-z PubMedCrossRefGoogle Scholar
  51. 51.
    Carvalho RV, da Silva FF, Heimfarth L, Pierozan P, Fernandes C, Pessoa-Pureur R (2016) Acute hyperammonemia induces NMDA-mediated hypophosphorylation of intermediate filaments through PP1 and PP2B in cerebral cortex of young rats. Neurotox Res 30(2):138–149. doi: 10.1007/s12640-016-9607-7 PubMedCrossRefGoogle Scholar
  52. 52.
    Bordelon YM, Chesselet MF, Nelson D, Welsh F, Erecinska M (1997) Energetic dysfunction in quinolinic acid-lesioned rat striatum. J Neurochem 69(4):1629–1639PubMedCrossRefGoogle Scholar
  53. 53.
    Portera-Cailliau C, Hedreen JC, Price DL, Koliatsos VE (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J Neurosci 15 (5 Pt 2):3775–3787Google Scholar
  54. 54.
    Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ (2009) Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res 16(1):77–86. doi: 10.1007/s12640-009-9051-z PubMedCrossRefGoogle Scholar
  55. 55.
    Ramaswamy S, McBride JL, Kordower JH (2007) Animal models of Huntington’s disease. ILAR J 48(4):356–373PubMedCrossRefGoogle Scholar
  56. 56.
    Pierozan P, Zamoner A, Soska AK, Silvestrin RB, Loureiro SO, Heimfarth L, Mello e Souza T, Wajner M, Pessoa-Pureur R (2010) Acute intrastriatal administration of quinolinic acid provokes hyperphosphorylation of cytoskeletal intermediate filament proteins in astrocytes and neurons of rats. Exp Neurol 224 (1):188–196. doi: 10.1016/j.expneurol.2010.03.009
  57. 57.
    Gill SR, Wong PC, Monteiro MJ, Cleveland DW (1990) Assembly properties of dominant and recessive mutations in the small mouse neurofilament (NF-L) subunit. J Cell Biol 111(5 Pt 1):2005–2019PubMedCrossRefGoogle Scholar
  58. 58.
    Heins S, Wong PC, Muller S, Goldie K, Cleveland DW, Aebi U (1993) The rod domain of NF-L determines neurofilament architecture, whereas the end domains specify filament assembly and network formation. J cell Biol 123(6 Pt 1):1517–1533PubMedCrossRefGoogle Scholar
  59. 59.
    Pierozan P, Gonçalves FC, Ferreira F, Pessoa-Pureur R (2014) Acute intrastriatal injection of quinolinic acid provokes long-lasting misregulation of the cytoskeleton in the striatum, cerebral cortex and hippocampus of young rats. Brain res Aug 19:1577:1571–1510Google Scholar
  60. 60.
    Holmgren A, Bouhy D, Timmerman V (2012) Neurofilament phosphorylation and their proline-directed kinases in health and disease. J Peripher Nerv Syst 17(4):365–376. doi: 10.1111/j.1529-8027.2012.00434.x PubMedCrossRefGoogle Scholar
  61. 61.
    Pierozan P, Fernandes CG, Dutra MF, Pandolfo P, Ferreira F, de Lima BO, Porciuncula L, Wajner M et al (2014) Biochemical, histopathological and behavioral alterations caused by intrastriatal administration of quinolic acid to young rats. FEBS J 281(8):2061–2073. doi: 10.1111/febs.12762 PubMedCrossRefGoogle Scholar
  62. 62.
    Pierozan P, Zamoner A, Soska AK, de Lima BO, Reis KP, Zamboni F, Wajner M, Pessoa-Pureur R (2012) Signaling mechanisms downstream of quinolinic acid targeting the cytoskeleton of rat striatal neurons and astrocytes. Exp Neurol 233(1):391–399. doi: 10.1016/j.expneurol.2011.11.005 PubMedCrossRefGoogle Scholar
  63. 63.
    Steiner D, Saya D, Schallmach E, Simonds WF, Vogel Z (2006) Adenylyl cyclase type-VIII activity is regulated by G (betagamma) subunits. Cell Signal 18(1):62–68PubMedCrossRefGoogle Scholar
  64. 64.
    Bonsi P, Platania P, Martella G, Madeo G, Vita D, Tassone A, Bernardi G, Pisani A (2008) Distinct roles of group I mGlu receptors in striatal function. Neuropharmacology 55(4):392–395. doi: 10.1016/j.neuropharm.2008.05.020 PubMedCrossRefGoogle Scholar
  65. 65.
    Ribeiro FM, Paquet M, Cregan SP, Ferguson SS (2010) Group I metabotropic glutamate receptor signalling and its implication in neurological disease. CNS Neurol Disord Drug Targets 9(5):574–595PubMedCrossRefGoogle Scholar
  66. 66.
    Wang Q, Walsh DM, Rowan MJ, Selkoe DJ, Anwyl R (2004) Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J Neurosci 24(13):3370–3378. doi: 10.1523/JNEUROSCI.1633-03.2004 PubMedCrossRefGoogle Scholar
  67. 67.
    Pierozan P, Ferreira F, de Lima BO, Pessoa-Pureur R (2015) Quinolinic acid induces disrupts cytoskeletal homeostasis in striatal neurons. Protective role of astrocyte-neuron interaction. J Neurosci Res 93(2):268–284. doi: 10.1002/jnr.23494 PubMedCrossRefGoogle Scholar
  68. 68.
    Huber F, Montani M, Sulser T, Jaggi R, Wild P, Moch H, Gevensleben H, Schmid M et al (2015) Comprehensive validation of published immunohistochemical prognostic biomarkers of prostate cancer —what has gone wrong? A blueprint for the way forward in biomarker studies. Br J Cancer 112(1):140–148. doi: 10.1038/bjc.2014.588 PubMedCrossRefGoogle Scholar
  69. 69.
    Chang L, Goldman RD (2004) Intermediate filaments mediate cytoskeletal crosstalk. Nat Rev Mol Cell Biol 5(8):601–613. doi: 10.1038/nrm1438 PubMedCrossRefGoogle Scholar
  70. 70.
    Tan L, Yu JT (2012) The kynurenine pathway in neurodegenerative diseases: mechanistic and therapeutic considerations. J Neurol Sci 323(1–2):1–8. doi: 10.1016/j.jns.2012.08.005 PubMedCrossRefGoogle Scholar
  71. 71.
    Pierozan P, Fernandes CG, Dutra MF, Pandolfo P, Ferreira F, de Lima BO, Porciúncula L, Wajner M et al (2014) Biochemical, histopathological and behavioral alterations caused by intrastriatal administration of quinolic acid to young rats. FEBS J 281(5)Google Scholar
  72. 72.
    Pierozan P, Biasibetti H, Schmitz F, Avila H, Parisi MM, Barbe-Tuana F, Wyse AT, Pessoa-Pureur R (2016) Quinolinic acid neurotoxicity: differential roles of astrocytes and microglia via FGF-2-mediated signaling in redox-linked cytoskeletal changes. Biochim Biophys Acta 1863(12):3001–3014. doi: 10.1016/j.bbamcr.2016.09.014 PubMedCrossRefGoogle Scholar
  73. 73.
    Pierozan P, Ferreira F, Ortiz de Lima B, Goncalves Fernandes C, Totarelli Monteforte P, de Castro MN, Bincoletto C, Soubhi Smaili S et al (2014) The phosphorylation status and cytoskeletal remodeling of striatal astrocytes treated with quinolinic acid. Exp Cell Res 322(2):313–323. doi: 10.1016/j.yexcr.2014.02.024 PubMedCrossRefGoogle Scholar
  74. 74.
    Freese A, DiFiglia M, Koroshetz WJ, Beal MF, Martin JB (1990) Characterization and mechanism of glutamate neurotoxicity in primary striatal cultures. Brain Res 521(1–2):254–264PubMedCrossRefGoogle Scholar
  75. 75.
    Lamprecht R (2016) The role of actin cytoskeleton in memory formation in amygdala. Front Mol Neurosci 9:23. doi: 10.3389/fnmol.2016.00023 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Chazeau A, Giannone G (2016) Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling. Cell Mol Life Sci 73(16):3053–3073. doi: 10.1007/s00018-016-2214-1 PubMedCrossRefGoogle Scholar
  77. 77.
    Yuan A, Rao MV, Veeranna NRA (2017) Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb Perspect Biol 9(4). doi: 10.1101/cshperspect.a018309
  78. 78.
    Asahara H, Taniwaki T, Ohyagi Y, Yamada T, Kira J (1999) Glutamate enhances phosphorylation of neurofilaments in cerebellar granule cell culture. J Neurol Sci 171(2):84–87PubMedCrossRefGoogle Scholar
  79. 79.
    Ackerley S, Grierson AJ, Brownlees J, Thornhill P, Anderton BH, Leigh PN, Shaw CE, Miller CC (2000) Glutamate slows axonal transport of neurofilaments in transfected neurons. J Cell Biol 150(1):165–176PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Yano S, Fukunaga K, Ushio Y, Miyamoto E (1994) Activation of Ca2+/calmodulin-dependent protein kinase II and phosphorylation of intermediate filament proteins by stimulation of glutamate receptors in cultured rat cortical astrocytes. J Biol Chem 269(7):5428–5439PubMedGoogle Scholar
  81. 81.
    Kommers T, Rodnight R, Boeck C, Vendite D, Oliveira D, Horn J, Oppelt D, Wofchuk S (2002) Phosphorylation of glial fibrillary acidic protein is stimulated by glutamate via NMDA receptors in cortical microslices and in mixed neuronal/glial cell cultures prepared from the cerebellum. Developmental Brain Research 137(2):139–148PubMedCrossRefGoogle Scholar
  82. 82.
    Chew SS, Johnson CS, Green CR, Danesh-Meyer HV (2010) Role of connexin43 in central nervous system injury. Exp Neurol 225(2):250–261. doi: 10.1016/j.expneurol.2010.07.014 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations