Skip to main content

Advertisement

Log in

Cyclosporine A-Mediated IL-6 Expression Promotes Neural Induction in Pluripotent Stem Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Differentiation of pluripotent stem cells (PSCs) to neural lineages has gathered huge attention in both basic research and regenerative medicine. The major hurdle lies in the efficiency of differentiation and identification of small molecules that facilitate neurogenesis would partly circumvent this limitation. The small molecule Cyclosporine A (CsA), a commonly used immunosuppressive drug, has been shown to enhance in vivo neurogenesis. To extend the information to in vitro neurogenesis, we examined the effect of CsA on neural differentiation of PSCs. We found CsA to increase the expression of neural progenitor genes during early neural differentiation. Gene silencing approach revealed CsA-mediated neural induction to be dependent on blocking the Ca2+-activated phosphatase calcineurin (Cn) signaling. Similar observation with FK506, an independent inhibitor of Cn, further strengthened the necessity of blocking Cn for enhanced neurogenesis. Surprisingly, mechanistic insight revealed Cn-inhibition dependent upregulation of IL-6 protein to be necessary for CsA-mediated neurogenesis. Together, these findings provide a comprehensive understanding of the role of CsA in neurogenesis, thus suggesting a method for obtaining large numbers of neural progenitors from PSCs for possible transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PSC:

Pluripotent stem cells

iPSC:

Induced pluripotent stem cells

miPSC:

Mouse induced pluripotent stem cells

CsA:

Cyclosporine A

Cn:

Calcineurin

NFAT:

Nuclear factor of activated T cells

ESC:

Embryonic stem cells

iMEF:

Inactivated mouse embryonic fibroblasts

LIF:

Leukemia inhibitory factor

EB:

Embryoid body

References

  1. Stewart R, Stojkovic M, Lako M (2006) Mechanisms of self-renewal in human embryonic stem cells. Eur J Cancer 42:1257–1272. doi:10.1016/j.ejca.2006.01.033

    Article  CAS  PubMed  Google Scholar 

  2. Avior Y, Sagi I, Benvenisty N (2016) Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 17:170–182. doi:10.1038/nrm.2015.27

    Article  CAS  PubMed  Google Scholar 

  3. Chuang J-H (2015) Neural differentiation from embryonic stem cells in vitro: an overview of the signaling pathways. World Journal of Stem Cells 7:437. doi:10.4252/wjsc.v7.i2.437

    Article  PubMed  PubMed Central  Google Scholar 

  4. Elkabetz Y, Panagiotakos G, Al Shamy G et al (2008) Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 22:152–165. doi:10.1101/gad.1616208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Engberg N, Kahn M, Petersen DR et al (2010) Retinoic acid synthesis promotes development of neural progenitors from mouse embryonic stem cells by suppressing endogenous, Wnt-dependent nodal signaling. Stem Cells 28:1498–1509. doi:10.1002/stem.479

    Article  CAS  PubMed  Google Scholar 

  6. Dhara SK, Stice SL (2008) Neural differentiation of human embryonic stem cells. J Cell Biochem 105:633–640. doi:10.1002/jcb.21891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gorba T, Allsopp TE (2003) Pharmacological potential of embryonic stem cells. Pharmacology Research 47:269–278

    Article  CAS  Google Scholar 

  8. Cezar GG (2007) Can human embryonic stem cells contribute to the discovery of safer and more effective drugs? Curr Opin Chem Biol 11:405–409. doi:10.1016/j.cbpa.2007.05.033

    Article  CAS  PubMed  Google Scholar 

  9. Chambers SM, Qi Y, Mica Y et al (2012) Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol 30:715–720. doi:10.1038/nbt.2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu B-Y, Zhang S-C (2009) Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc 4:1295–1304. doi:10.1038/nprot.2009.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Öström M, Loffler KA, Edfalk S et al (2008) Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into β-cells. PLoS One 3:e2841. doi:10.1371/journal.pone.0002841

    Article  PubMed  PubMed Central  Google Scholar 

  12. Smith JR, Vallier L, Lupo G et al (2008) Inhibition of activin/nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev Biol 313:107–117. doi:10.1016/j.ydbio.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  13. Zhou J, Su P, Li D et al (2010) High-efficiency induction of neural conversion in human ESCs and human induced pluripotent stem cells with a single chemical inhibitor of transforming growth factor Beta superfamily receptors. Stem Cells 28:1741–1750. doi:10.1002/stem.504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Osakada F, Ikeda H, Mandai M et al (2008) Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 26:215–224. doi:10.1038/nbt1384

    Article  CAS  PubMed  Google Scholar 

  15. Surmacz B, Fox H, Gutteridge A et al (2012) Directing differentiation of human embryonic stem cells toward anterior neural ectoderm using small molecules. Stem Cells 30:1875–1884. doi:10.1002/stem.1166

    Article  CAS  PubMed  Google Scholar 

  16. Li X, Zhu L, Yang A et al (2011) Calcineurin-NFAT signaling critically regulates early lineage specification in mouse embryonic stem cells and embryos. Cell Stem Cell 8:46–58. doi:10.1016/j.stem.2010.11.027

    Article  CAS  PubMed  Google Scholar 

  17. Sachinidis A, Schwengberg S, Hippler-Altenburg R et al (2006) Identification of small signalling molecules promoting cardiac-specific differentiation of mouse embryonic stem cells. Cell Physiol Biochem 18:303–314. doi:10.1159/000097608

    Article  CAS  PubMed  Google Scholar 

  18. Wang H (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284:339–343. doi:10.1126/science.284.5412.339

    Article  CAS  PubMed  Google Scholar 

  19. Oh-hora M, Rao A (2009) The calcium/NFAT pathway: role in development and function of regulatory T cells. Microbes Infect 11:612–619. doi:10.1016/j.micinf.2009.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sachewsky N, Hunt J, Cooke MJ et al (2014) Cyclosporin A enhances neural precursor cell survival in mice through a calcineurin-independent pathway. Dis Model Mech 7:953–961. doi:10.1242/dmm.014480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hunt J, Cheng A, Hoyles A et al (2010) Cyclosporin A has direct effects on adult neural precursor cells. J Neurosci 30:2888–2896. doi:10.1523/JNEUROSCI.5991-09.2010

    Article  CAS  PubMed  Google Scholar 

  22. Gómez-Sintes R, Lucas JJ (2010) NFAT/Fas signaling mediates the neuronal apoptosis and motor side effects of GSK-3 inhibition in a mouse model of lithium therapy. J Clin Investig 120:2432–2445. doi:10.1172/JCI37873

    Article  PubMed  PubMed Central  Google Scholar 

  23. Declercq J, Sheshadri P, Verfaillie CM, Kumar A (2013) Zic3 enhances the generation of mouse induced pluripotent stem cells. Stem Cells Dev 22:2017–2025. doi:10.1089/scd.2012.0651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu J, Tan L, Li P et al (2009) All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways. BMC Cell Biol 10:57. doi:10.1186/1471-2121-10-57

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wiederschain D, Susan W, Chen L et al (2009) Single-vector inducible lentiviral RNAi system for oncology target validation. Cell Cycle 8:498–504. doi:10.4161/cc.8.3.7701

    Article  CAS  PubMed  Google Scholar 

  26. Khodeer S, Era T (2017) Identifying the biphasic role of calcineurin/NFAT signaling enables replacement of Sox2 in somatic cell reprogramming: calcineurin/NFAT signaling in reprogramming. Stem Cells. doi:10.1002/stem.2572

  27. Lo Nigro A, de Jaime-Soguero A, Khoueiry R et al (2017) PDGFRα+ cells in embryonic stem cell cultures represent the in vitro equivalent of the pre-implantation primitive endoderm precursors. Stem Cell Reports 8:318–333. doi:10.1016/j.stemcr.2016.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Loh KM, Lim B (2011) A precarious balance: pluripotency factors as lineage specifiers. Cell Stem Cell 8:363–369. doi:10.1016/j.stem.2011.03.013

    Article  CAS  PubMed  Google Scholar 

  29. Martínez-Martínez S, Redondo JM (2004) Inhibitors of the calcineurin/NFAT pathway. Curr Med Chem 11:997–1007

    Article  PubMed  Google Scholar 

  30. Tanaka H, Kuroda A, Marusawa H et al (1987) Structure of FK506, a novel immunosuppressant isolated from Streptomyces. J Am Chem Soc 109:5031–5033. doi:10.1021/ja00250a050

    Article  CAS  Google Scholar 

  31. García JEL, Rodríguez FM, López AJ et al (1998) Effect of cyclosporin A on inflammatory cytokine production by human alveolar macrophages. Respir Med 92:722–728. doi:10.1016/S0954-6111(98)90002-6

    Article  Google Scholar 

  32. Borsini A, Zunszain PA, Thuret S, Pariante CM (2015) The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci 38:145–157. doi:10.1016/j.tins.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  33. Van Wagoner NJ, Oh JW, Repovic P, Benveniste EN (1999) Interleukin-6 (IL-6) production by astrocytes: autocrine regulation by IL-6 and the soluble IL-6 receptor. J Neurosci 19:5236–5244

    Article  CAS  PubMed  Google Scholar 

  34. Erta M, Quintana A, Hidalgo J (2012) Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 8:1254–1266. doi:10.7150/ijbs.4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Powles RL, Clink HM, Spence D et al (1980) Cyclosporin A to prevent graft-versus-host disease in man after allogeneic bone-marrow transplantation. Lancet 315:327–329. doi:10.1016/S0140-6736(80)90881-8

    Article  Google Scholar 

  36. Solomon SR, Nakamura R, Read EJ et al (2003) Cyclosporine is required to prevent severe acute GVHD following T-cell-depleted peripheral blood stem cell transplantation. Bone Marrow Transplant 31:783–788. doi:10.1038/sj.bmt.1703928

    Article  CAS  PubMed  Google Scholar 

  37. Altman RD, Schiff M, Kopp EJ (1999) Cyclosporine A in rheumatoid arthritis: randomized, placebo controlled dose finding study. J Rheumatol 26:2102–2109

    CAS  PubMed  Google Scholar 

  38. Ellis CN, Fradin MS, Messana JM et al (1991) Cyclosporine for plaque-type psoriasis: results of a multidose, double-blind trial. N Engl J Med 324:277–284. doi:10.1056/NEJM199101313240501

    Article  CAS  PubMed  Google Scholar 

  39. Ptachcinski RJ, Venkataramanan R, Burckart GJ (1986) Clinical Pharmacokinetics of Cyclosporin: Clinical Pharmacokinetics 11:107–132. doi:10.2165/00003088-198611020-00002

    Article  CAS  PubMed  Google Scholar 

  40. Fujiwara M, Yan P, Otsuji TG et al (2011) Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with Cyclosporin-A. PLoS One 6:e16734. doi:10.1371/journal.pone.0016734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun M, Liao B, Tao Y et al (2016) Calcineurin-NFAT signaling controls somatic cell reprogramming in a stage-dependent manner: calcineurin-NFAT signaling in reprogramming. J Cell Physiol 231:1151–1162. doi:10.1002/jcp.25212

    Article  CAS  PubMed  Google Scholar 

  42. Sato N, Meijer L, Skaltsounis L et al (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63. doi:10.1038/nm979

    Article  CAS  PubMed  Google Scholar 

  43. Qyang Y, Martin-Puig S, Chiravuri M et al (2007) The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/β-catenin pathway. Cell Stem Cell 1:165–179. doi:10.1016/j.stem.2007.05.018

    Article  CAS  PubMed  Google Scholar 

  44. Tarafdar A, Dobbin E, Corrigan P et al (2013) Canonical Wnt signaling promotes early hematopoietic progenitor formation and erythroid specification during embryonic stem cell differentiation. PLoS One 8:e81030. doi:10.1371/journal.pone.0081030

    Article  PubMed  PubMed Central  Google Scholar 

  45. Compagnucci C, Nizzardo M, Corti S et al (2014) In vitro neurogenesis: development and functional implications of iPSC technology. Cell Mol Life Sci 71:1623–1639. doi:10.1007/s00018-013-1511-1

    Article  CAS  PubMed  Google Scholar 

  46. Cho A, Tang Y, Davila J et al (2014) Calcineurin signaling regulates neural induction through antagonizing the BMP pathway. Neuron 82:109–124. doi:10.1016/j.neuron.2014.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jacobs S, Lie DC, DeCicco KL et al (2006) Retinoic acid is required early during adult neurogenesis in the dentate gyrus. Proc Natl Acad Sci 103:3902–3907. doi:10.1073/pnas.0511294103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Janesick A, Wu SC, Blumberg B (2015) Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 72:1559–1576. doi:10.1007/s00018-014-1815-9

    Article  CAS  PubMed  Google Scholar 

  49. Chow A, Morshead CM (2016) Cyclosporin A enhances neurogenesis in the dentate gyrus of the hippocampus. Stem Cell Res 16:79–87. doi:10.1016/j.scr.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  50. Vilar M, Mira H (2016) Regulation of neurogenesis by neurotrophins during adulthood: expected and unexpected roles. Front Neurosci. doi:10.3389/fnins.2016.00026

  51. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660. doi:10.1016/j.cell.2008.01.033

    Article  CAS  PubMed  Google Scholar 

  52. Satoh T, Nakamura S, Taga T et al (1988) Induction of neuronal differentiation in PC12 cells by B-cell stimulatory factor 2/interleukin 6. Mol Cell Biol 8:3546–3549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. März P, Herget T, Lang E et al (1997) Activation of gp130 by IL-6/soluble IL-6 receptor induces neuronal differentiation. Eur J Neurosci 9:2765–2773

    Article  PubMed  Google Scholar 

  54. Schafer K-H, Mestres P, Marz P, Rose-John S (1999) The IL-6/sIL-6R fusion protein hyper-IL-6 promotes neurite outgrowth and neuron survival in cultured enteric neurons. J Interf Cytokine Res 19:527–532. doi:10.1089/107999099313974

    Article  CAS  Google Scholar 

  55. Kahn MA, de Vellis J (1994) Regulation of an oligodendrocyte progenitor cell line by the interleukin-6 family of cytokines. Glia 12:87–98. doi:10.1002/glia.440120202

    Article  CAS  PubMed  Google Scholar 

  56. Nakanishi M, Niidome T, Matsuda S et al (2007) Microglia-derived interleukin-6 and leukemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells: microglia and NSPC differentiation. Eur J Neurosci 25:649–658. doi:10.1111/j.1460-9568.2007.05309.x

    Article  PubMed  Google Scholar 

  57. Maeda K, Mehta H, Drevets DA, Coggeshall KM (2010) IL-6 increases B-cell IgG production in a feed-forward proinflammatory mechanism to skew hematopoiesis and elevate myeloid production. Blood 115:4699–4706. doi:10.1182/blood-2009-07-230631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kishimoto T, Akira S, Narazaki M, Taga T (1995) Interleukin-6 family of cytokines and gp130. Blood 86:1243–1254

    CAS  PubMed  Google Scholar 

  59. Murayama K, Sawamura M, Murakami H et al (1994) FK506 and cyclosporin A enhance IL-6 production in monocytes: a single-cell assay. Mediat Inflamm 3:375–380. doi:10.1155/S0962935194000529

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank AK lab members for critical review of all the data. We thank Prof. Catherine Verfaillie for the generous gift of Oct4-GFP iPSCs. This work was supported by grants from CSIR [no. 27(0294)/13/EMRII] and intramural funding from SORM, Manipal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anujith Kumar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Fig. 1

Pluripotency and lineage expression analysis of ESCs treated with CsA. a Semi –quantitative PCR analysis of Src in mESCs in presence and absence of CsA b Semi-quantitative PCR showing the expression of pluripotency genes in mESCs in absence and presence of different concentrations of CsA. c Realtime PCR for lineage specific markers in mESCs treated with RA and CsA and withdrawal of LIF. d qPCR results showing lineage specific marker expression in EBs derived from mESCs with Day 3 to Day 14 CsA treatment. (GIF 302 kb).

High Resolution Image (TIFF 2142 kb).

Supplementary Fig. 2

CsA resuces OCT4-GFP expression and maintains pluripotency of miPSCs. a Flowcytometric analysis and b quantification of percent bright GFP positive miPSCs expressing OCT4-GFP. Single asterisk indicates p < 0.05 vs cells cultured in presence of LIF. (GIF 29 kb).

High Resolution Image (TIFF 3074 kb).

Supplementary Fig. 3

Differentiation of mESCs using N2B27 and RA demarcates early and late differentiation events. a Gene expression analysis and b immunofluorescence of of neural progenitor genes in the early differentiation event. c Transcript analysis and immunofluorescence analysis (d) of neurons derived from mPSCs during late differentiation Data is representative of three independent experiments and presented as mean ± SEM. Scale bar represents 100 μm. (GIF 82 kb).

High Resolution Image (TIFF 6823 kb).

Supplementary Fig. 4

CsA inhibits nuclear translocation of NFATC3. a Immunoblot depiciting NFATC3 levels in the nuclear extracts of neurons differentiated from mESCs with and without CsA; purity of nuclear extracts assessed by presence of Nulceolin and absence of ß-actin. (GIF 6 kb).

High Resolution Image (TIFF 873 kb).

Supplementary Fig. 5

KnockdownPpp3r1 enhances neural gene expression in mESCs. a Gene expression analysis of Ppp3r1 in Scrambled and Ppp3r1 shRNA in mESCs. b Neural gene expression of mESC scramble and Ppp3r1knockdown cells. Data is representative of three independent experiments and presented as mean ± SEM. *p ≤ 0.05 vs scrambled control. (GIF 12 kb).

High Resolution Image (TIFF 1482 kb).

Supplementary Fig. 6

Blocking of Cn-NFAT pathway is essential for IL-6 expression in iPSCs. a Transcript analysis of miPSCs derived embryoid bodies in the presence and absence of CsA for IL-6 expression. b mRNA expression of interleukin genes in miPSCs transduced with PPP3r1 shRNA and scrambled control and differentiated to neural lineage. Data is representative of three independent experiments and presented as mean ± SEM. *p < 0.05, **p < 0.01 vs scrambled control. c qPCR analysis of interleukin genes in miPSCs differentiated to neural lineage in the presence and absence of FK506. (GIF 28 kb).

High Resolution Image (TIFF 3925 kb).

Supplementary Table 1

(TIFF 18 kb).

Supplementary Table 2

(TIFF 12 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashwini, A., Naganur, S.S., Smitha, B. et al. Cyclosporine A-Mediated IL-6 Expression Promotes Neural Induction in Pluripotent Stem Cells. Mol Neurobiol 55, 4267–4279 (2018). https://doi.org/10.1007/s12035-017-0633-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0633-0

Keywords

Navigation