Molecular Neurobiology

, Volume 55, Issue 5, pp 4030–4050 | Cite as

Brain GLP-1/IGF-1 Signaling and Autophagy Mediate Exendin-4 Protection Against Apoptosis in Type 2 Diabetic Rats

  • Emanuel Candeias
  • Inês Sebastião
  • Susana Cardoso
  • Cristina Carvalho
  • Maria Sancha Santos
  • Catarina Resende Oliveira
  • Paula I. Moreira
  • Ana I. Duarte


Type 2 diabetes (T2D) is a modern socioeconomic burden, mostly due to its long-term complications affecting nearly all tissues. One of them is the brain, whose dysfunctional intracellular quality control mechanisms (namely autophagy) may upregulate apoptosis, leading to cognitive dysfunction and Alzheimer disease (AD). Since impaired brain insulin signaling may constitute the crosslink between T2D and AD, its restoration may be potentially therapeutic herein. Accordingly, the insulinotropic anti-T2D drugs from glucagon-like peptide-1 (GLP-1) mimetics, namely, exendin-4 (Ex-4), could be a promising therapy. In line with this, we hypothesized that peripherally administered Ex-4 rescues brain intracellular signaling pathways, promoting autophagy and ultimately protecting against chronic T2D-induced apoptosis. Thus, we aimed to explore the effects of chronic, continuous, subcutaneous (s.c.) exposure to Ex-4 in brain cortical GLP-1/insulin/insulin-like growth factor-1 (IGF-1) signaling, and in autophagic and cell death mechanisms in middle-aged (8 months old), male T2D Goto-Kakizaki (GK) rats. We used brain cortical homogenates obtained from middle-aged (8 months old) male Wistar (control) and T2D GK rats. Ex-4 was continuously administered for 28 days, via s.c. implanted micro-osmotic pumps (5 μg/kg/day; infusion rate 2.5 μL/h). Peripheral characterization of the animal models was given by the standard biochemical analyses of blood or plasma, the intraperitoneal glucose tolerance test, and the heart rate. GLP-1, insulin, and IGF-1, their downstream signaling and autophagic markers were evaluated by specific ELISA kits and Western blotting. Caspase-like activities and other apoptotic markers were given by colorimetric methods and Western blotting. Chronic Ex-4 treatment attenuated peripheral features of T2D in GK rats, including hyperglycemia and insulin resistance. Furthermore, s.c. Ex-4 enhanced their brain cortical GLP-1 and IGF-1 levels, and subsequent signaling pathways. Specifically, Ex-4 stimulated protein kinase A (PKA) and phosphoinositide 3-kinase (PI3K)/Akt signaling, increasing cGMP and AMPK levels, and decreasing GSK3β and JNK activation in T2D rat brains. Moreover, Ex-4 regulated several markers for autophagy in GK rat brains (as mTOR, PI3K class III, LC3 II, Atg7, p62, LAMP-1, and Parkin), ultimately protecting against apoptosis (by decreasing several caspase-like activities and mitochondrial cytochrome c, and increasing Bcl2 levels upon T2D). Altogether, this study demonstrates that peripheral Ex-4 administration may constitute a promising therapy against the chronic complications of T2D affecting the brain.


Exendin-4 Type 2 diabetes Brain cortex GLP-1 signaling Autophagy Apoptosis 



We are grateful to Doctor Cláudia Pereira (CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal) for kindly providing us the antibody anti-caspase-12. This work was funded by European funds from FEDER, through the Programa Operacional Factores de Competitividade – COMPETE 2020; by Portuguese funds from FCT - Fundação para a Ciência e a Tecnologia (PTDC/SAU-TOX/117481/2010 and Strategic Project UID/NEU/04539/2013), and by European Social Fund: Fellowships PTDC/SAU-TOX/117481/2010 to I. Sebastião and S. Cardoso; SFRH/BD/90036/2012 to E. Candeias; SFRH/BPD/84473/2012 to A. I. Duarte.

Compliance with Ethical Standards

Ethical Approval

The authors declare that this study involving laboratory animals was performed in accordance with ARRIVE guidelines, and European Union and Portuguese legislation (Directive 2010/63/EU; DL113/2013, August 7, respectively), upon the ethical approval by the Animal Welfare Committee of the Center for Neuroscience and Cell Biology and Faculty of Medicine, University of Coimbra.


  1. 1.
    World Health Organization (WHO) (2016) Diabetes. Accessed 2016.
  2. 2.
    Sebastião I, Candeias E, Santos MS, de Oliveira CR, Moreira PI, Duarte AI (2014) Insulin as a bridge between type 2 diabetes and Alzheimer disease—how anti-diabetics could be a solution for dementia. Front Endocrinol (Lausanne). doi: 10.3389/fendo.2014.00110
  3. 3.
    Pugazhenthi S, Qin L, Reddy PH (2016) Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta. doi: 10.1016/j.bbadis.2016.04.017
  4. 4.
    Duarte AI, Candeias E, Correia SC, Santos RX, Carvalho C, Cardoso S, Plácido A, Santos MS et al (2013) Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration. Biochim Biophys Acta. doi: 10.1016/j.bbadis.2013.01.008
  5. 5.
    Nguyen XT, Le L (2016) Therapeutic development of interrelated metabolic and neurodegenerative disorders. Curr Pharm Des. doi: 10.2174/1381612822666160420141325
  6. 6.
    Candeias E, Duarte AI, Carvalho C, Correia SC, Cardoso S, Santos RX, Plácido AI, Perry G et al (2012) The impairment of insulin signaling in Alzheimer’s disease. IUBMB Life. doi: 10.1002/iub.1098
  7. 7.
    Hsu P, Shi Y (2017) Regulation of autophagy by mitochondrial phospholipids in health and diseases. Biochim Biophys Acta. doi: 10.1016/j.bbalip.2016.08.003
  8. 8.
    Ribe EM, Lovestone S (2016) Insulin signalling in Alzheimer’s disease and diabetes: from epidemiology to molecular links. J Intern Med. doi: 10.1111/joim.12534
  9. 9.
    Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2011) Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol. doi: 10.1002/path.2912
  10. 10.
    Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signaling. Neurobiol Aging. doi: 10.1016/j.neurobiolaging.2008.04.002
  11. 11.
    Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Häring HU (2016) Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiol Rev. doi: 10.1152/physrev.00032.2015
  12. 12.
    Moreira PI, Santos MS, Sena C, Seiça R, Oliveira CR (2005) Insulin protects against amyloid beta-peptide toxicity in brain mitochondria of diabetic rats. Neurobiol Dis. doi: 10.1016/j.nbd.2004.10.017
  13. 13.
    Zhang H, Hao Y, Manor B, Novak P, Milberg W, Zhang J, Fang J, Novak V (2015) Intranasal insulin enhanced resting-state functional connectivity of hippocampal regions in type 2 diabetes. Diabetes. doi: 10.2337/db14-1000
  14. 14.
    Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature. doi: 10.1038/414782a
  15. 15.
    Cardoso S, Santos MS, Seiça R, Moreira PI (2010) Cortical and hippocampal mitochondria bioenergetics and oxidative status during hyperglycemia and/or insulin-induced hypoglycemia. Biochim Biophys Acta. doi: 10.1016/j.bbadis.2010.07.001
  16. 16.
    Gavin JR, Stolar MW, Freeman JS, Spellman CW (2010) Improving outcomes in patients with type 2 diabetes mellitus: practical solutions for clinical challenges. J Am Osteopath Assoc 110:S2–14PubMedGoogle Scholar
  17. 17.
    Suh SW, Aoyama K, Matsumori Y, Liu J, Swanson RA (2005) Pyruvate administered after severe hypoglycemia reduces neuronal death and cognitive impairment. Diabetes. doi: 10.2337/diabetes.54.5.1452
  18. 18.
    MacLeod KM, Hepburn DA, Frier BM (1993) Frequency and morbidity of severe hypoglycaemia in insulin-treated diabetic patients. Diabet Med. doi: 10.1111/j.1464-5491.1993.tb00051.x
  19. 19.
    Campbell RK, White JR Jr (2008) More choices than ever before: emerging therapies for type 2 diabetes. Diabetes Educ. doi: 10.1177/0145721708317870
  20. 20.
    Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. doi: 10.1016/S0140-6736(06)69705-5
  21. 21.
    Elrick H, Stimmler L, Hlad CJ Jr, Arai Y (1964) Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab. doi: 10.1210/jcem-24-10-1076
  22. 22.
    Candeias EM, Sebastião IC, Cardoso SM, Correia SC, Carvalho CI, Plácido AI, Santos MS, Oliveira CR et al (2015) Gut-brain connection: the neuroprotective effects of the anti-diabetic drug liraglutide. World J Diabetes. doi: 10.4239/wjd.v6.i6.807
  23. 23.
    Gallwitz B (2005) Glucagon-like peptide-1-based therapies for the treatment of type 2 diabetes mellitus. Treat Endocrinol. doi: 10.2165/00024677-200504060-00005
  24. 24.
    Bhavsar S, Mudaliar S, Cherrington A (2013) Evolution of exenatide as a diabetes therapeutic. Curr Diabetes Rev. doi: 10.2174/1573399811309020007
  25. 25.
    Eng J, Kleinman WA, Singh L, Singh G, Raufman JP (1992) Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas J Biol Chem 267:7402–7405PubMedGoogle Scholar
  26. 26.
    Natalicchio A, Labarbuta R, Tortosa F, Biondi G, Marrano N, Peschechera A, Carchia E, Orlando MR et al (2013) Exendin-4 protects pancreatic beta cells from palmitate-induced apoptosis by interfering with GPR40 and the MKK4/7 stress kinase signalling pathway. Diabetologia. doi: 10.1007/s00125-013-3028-4
  27. 27.
    Wang C, Chen X, Ding X, He Y, Gu C, Zhou L (2015) Exendin-4 promotes beta cell proliferation via PI3k/Akt signalling pathway. Cell Physiol Biochem. doi: 10.1159/000374027
  28. 28.
    Wysham CH, MacConell LA, Maggs DG, Zhou M, Griffin PS, Trautmann ME (2015) Five-year efficacy and safety data of exenatide once weekly: long-term results from the DURATION-1 randomized clinical trial. Mayo Clin Proc. doi: 10.1016/j.mayocp.2015.01.008
  29. 29.
    Mangmool S, Hemplueksa P, Parichatikanond W, Chattipakorn N (2015) Epac is required for GLP-1R-mediated inhibition of oxidative stress and apoptosis in cardiomyocytes. Mol Endocrinol. doi: 10.1210/me.2014-1346
  30. 30.
    Darsalia V, Hua S, Larsson M, Mallard C, Nathanson D, Nyström T, Sjöholm Å, Johansson ME et al (2014) Exendin-4 reduces ischemic brain injury in normal and aged type 2 diabetic mice and promotes microglial M2 polarization. PLoS One. doi: 10.1371/journal.pone.0103114
  31. 31.
    Eakin K, Li Y, Chiang YH, Hoffer BJ, Rosenheim H, Greig NH, Miller JP (2013) Exendin-4 ameliorates traumatic brain injury-induced cognitive impairment in rats. PLoS One. doi: 10.1371/journal.pone.0082016
  32. 32.
    Svenning S, Johansen T (2013) Selective autophagy. Essays Biochem. doi: 10.1042/bse0550079
  33. 33.
    Zaffagnini G, Martens S (2016) Mechanisms of selective autophagy. J Mol Biol. doi: 10.1016/j.jmb.2016.02.004
  34. 34.
    Menzies FM, Fleming A, Rubinsztein DC (2015) Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci. doi: 10.1038/nrn3961
  35. 35.
    White E, Karp C, Strohecker AM, Guo Y, Mathew R (2010) Role of autophagy in suppression of inflammation and cancer. Curr Opin Cell Biol. doi: 10.1016/
  36. 36.
    Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci. doi: 10.1038/nn.2575
  37. 37.
    Petrovski G, Das DK (2010) Does autophagy take a front seat in lifespan extension? J Cell Mol Med. doi: 10.1111/j.1582-4934.2010.01196.x
  38. 38.
    Du LL, Chai DM, Zhao LN, Li XH, Zhang FC, Zhang HB, Liu LB, Wu K et al (2015) AMPK activation ameliorates Alzheimer’s disease-like pathology and spatial memory impairment in a streptozotocin-induced Alzheimer’s disease model in rats. J Alzheimers Dis. doi: 10.3233/JAD-140564
  39. 39.
    Salminen A, Kaarniranta K (2012) AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. doi: 10.1016/j.arr.2011.12.005
  40. 40.
    Cai Z, Yan LJ, Li K, Quazi SH, Zhao B (2012) Roles of AMP-activated protein kinase in Alzheimer’s disease. NeuroMolecular Med. doi: 10.1007/s12017-012-8173-2
  41. 41.
    Gonzalez CD, Lee MS, Marchetti P, Pietropaolo M, Towns R, Vaccaro MI, Watada H, Wiley JW (2011) The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy. doi: 10.4161/auto.7.1.13044
  42. 42.
    Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. doi: 10.1038/ncb2152
  43. 43.
    Candeias E, Duarte AI, Sebastião I, Fernandes MA, Plácido AI, Carvalho C, Correia S, Santos RX et al (2016) Middle-aged diabetic females and males present distinct susceptibility to Alzheimer disease-like pathology. Mol Neurobiol. doi: 10.1007/s12035-016-0155-1
  44. 44.
    Carvalho C, Correia SC, Santos MS, Baldeiras I, Oliveira CR, Seica R, Moreira PI (2014) Vascular, oxidative, and synaptosomal abnormalities during aging and the progression of type 2 diabetes. Curr Neurovasc Res. doi: 10.2174/1567202611666140903122801
  45. 45.
    Santos RX, Correia SC, Alves MG, Oliveira PF, Cardoso S, Carvalho C, Seiça R, Santos MS et al (2014) Mitochondrial quality control systems sustain brain mitochondrial bioenergetics in early stages of type 2 diabetes. Mol Cell Biochem. doi: 10.1007/s11010-014-2076-5
  46. 46.
    Duarte AI, Santos MS, Seiça R, Oliveira CR (2004) Oxidative stress affects synaptosomal gamma-aminobutyric acid and glutamate transport in diabetic rats: the role of insulin. Diabetes. doi: 10.2337/diabetes.53.8.2110
  47. 47.
    Moreira PI, Santos MS, Moreno AM, Seiça R, Oliveira CR (2003) Increased vulnerability of brain mitochondria in diabetic (Goto-Kakizaki) rats with aging and amyloid-beta exposure. Diabetes. doi: 10.2337/diabetes.52.6.1449
  48. 48.
    Santos MS, Duarte AI, Matos MJ, Proença T, Seiça R, Oliveira CR (2000) Synaptosomes isolated from Goto-Kakizaki diabetic rat brain exhibit increased resistance to oxidative stress: role of vitamin E. Life Sci. doi: 10.1016/S0024-3205(00)00892-4
  49. 49.
    Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. doi: 10.3758/BF03193146
  50. 50.
    Duarte AI, Petit GH, Ranganathan S, Li JY, Oliveira CR, Brundin P, Björkqvist M, Rego AC (2011) IGF-1 protects against diabetic features in an in vivo model of Huntington’s disease. Exp Neurol. doi: 10.1016/j.expneurol.2011.06.016
  51. 51.
    Bowe JE, Franklin ZJ, Hauge-Evans AC, King AJ, Persaud SJ, Jones PM (2014) Metabolic phenotyping guidelines: assessing glucose homeostasis in rodent models. J Endocrinol. doi: 10.1530/JOE-14-0182
  52. 52.
    de Assis AM, Rieger DK, Longoni A, Battu C, Raymundi S, da Rocha RF, Andreazza AC, Farina M et al (2009) High fat and highly thermolyzed fat diets promote insulin resistance and increase DNA damage in rats. Exp Biol Med (Maywood). doi: 10.3181/0904-RM-126
  53. 53.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. doi: 10.1007/BF00280883
  54. 54.
    Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diabetes Care. doi: 10.2337/diacare.27.6.1487
  55. 55.
    Sedmak JJ, Grossberg SE (1977) A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. doi: 10.1016/0003-2697(77)90428-6
  56. 56.
    Rosenthal RE, Hamud F, Fiskum G, Varghese PJ, Sharpe S (1987) Cerebral ischemia and reperfusion: Prevention of brain mitochondrial injury by lidoflazine. J Cereb Blood Flow Metab. doi: 10.1038/jcbfm.1987.130
  57. 57.
    Moreira PI, Santos MS, Moreno A, Oliveira C (2001) Amyloid beta-peptide promotes permeability transition pore in brain mitochondria. Biosci Rep. doi: 10.1023/A:1015536808304
  58. 58.
    Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766PubMedGoogle Scholar
  59. 59.
    Cregan SP, MacLaurin JG, Craig CG, Robertson GS, Nicholson DW, Park DS, Slack RS (1999) Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J Neurosci 19:7860–7869PubMedGoogle Scholar
  60. 60.
    Gil J, Almeida S, Oliveira CR, Rego AC (2003) Cytosolic and mitochondrial ROS in staurosporine-induced retinal cell apoptosis. Free Radic Biol Med. doi: 10.1016/j.freeradbiomed.2003.08.022
  61. 61.
    Vahtola E, Louhelainen M, Merasto S, Martonen E, Penttinen S, Aahos I, Kytö V, Virtanen I et al (2008) Forkhead class O transcription factor 3a activation and Sirtuin1 overexpression in the hypertrophied myocardium of the diabetic Goto-Kakizaki rat. J Hypertens. doi: 10.1097/HJH.0b013e3282f293c8
  62. 62.
    Duarte A, Santos M, Seiça R, Oliveira CR (2000) Effect of oxidative stress on the uptake of GABA and glutamate in synaptosomes isolated from diabetic rat brain. Neuroendocrinology. doi: 10.1159/000054585
  63. 63.
    Broichhagen J, Podewin T, Meyer-Berg H, von Ohlen Y, Johnston NR, Jones BJ, Bloom SR, Rutter GA et al (2015) Optical control of insulin secretion using an incretin switch. Angew Chem Int Ed Engl. doi: 10.1002/anie.201506384
  64. 64.
    van der Klauw MM, Wolffenbuttel BH (2012) The combination of insulin and GLP-1 analogues in the treatment of type 2 diabetes. Neth J Med 70:436–443PubMedGoogle Scholar
  65. 65.
    Hamilton A, Patterson S, Porter D, Gault VA, Holscher C (2011) Novel GLP-1 mimetics developed to treat type 2 diabetes promote progenitor cell proliferation in the brain. J Neurosci Res. doi: 10.1002/jnr.22565
  66. 66.
    He J, Wang C, Sun Y, Lu B, Cui J, Dong N, Zhang M, Liu Y et al (2016) Exendin-4 protects bone marrow-derived mesenchymal stem cells against oxygen/glucose and serum deprivation-induced apoptosis through the activation of the cAMP/PKA signaling pathway and the attenuation of ER stress. Int J Mol Med. doi: 10.3892/ijmm.2016.2509
  67. 67.
    Wei R, Ma S, Wang C, Ke J, Yang J, Li W, Liu Y, Hou W et al (2016) Exenatide exerts direct protective effects on endothelial cells through the AMPK/Akt/eNOS pathway in a GLP-1 receptor-dependent manner. Am J Physiol Endocrinol Metab. doi: 10.1152/ajpendo.00400.2015
  68. 68.
    Doyle ME, Egan JM (2007) Mechanisms of action of GLP-1 in the pancreas. Pharmacol Ther. doi: 10.1016/j.pharmthera.2006.11.007
  69. 69.
    Liang L, Chen J, Zhan L, Lu X, Sun X, Sui H, Zheng L, Xiang H et al (2015) Endoplasmic reticulum stress impairs insulin receptor signaling in the brains of obese rats. PLoS One. doi: 10.1371/journal.pone.0126384
  70. 70.
    Rector RS, Morris EM, Ridenhour S, Meers GM, Hsu FF, Turk J, Ibdah JA (2013) Selective hepatic insulin resistance in a murine model heterozygous for a mitochondrial trifunctional protein defect. Hepatology. doi: 10.1002/hep.26285
  71. 71.
    Lei P, Ayton S, Bush AI, Adlard PA (2011) GSK-3 in neurodegenerative diseases. Int J Alzheimers Dis. doi: 10.4061/2011/189246
  72. 72.
    Fang X, Yu SX, Lu Y, Bast RC Jr, Woodgett JR, Mills GB (2000) Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase a. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.220413597
  73. 73.
    Jiang T, Yu JT, Zhu XC, Wang HF, Tan MS, Cao L, Zhang QQ, Gao L et al (2014) Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy. Br J Pharmacol. doi: 10.1111/bph.12655
  74. 74.
    Li H, Yu X (2013) Emerging role of JNK in insulin resistance. Curr Diabetes Rev. doi: 10.2174/15733998113099990074
  75. 75.
    Beeler N, Riederer BM, Waeber G, Abderrahmani A (2009) Role of the JNK-interacting protein 1/islet brain 1 in cell degeneration in Alzheimer disease and diabetes. Brain Res Bull. doi: 10.1016/j.brainresbull.2009.07.006
  76. 76.
    Neves FS, Marques PT, Barros-Aragão F, Nunes JB, Venancio AM, Cozachenco D, Frozza RL, Passos GF, Costa R, de Oliveira J, Engel DF, De Bem AF, Benjamim CF, De Felice FG, Ferreira ST, Clarke JR, Figueiredo CP (2016) Brain-defective insulin signaling is associated to late cognitive impairment in post-septic mice. doi:  10.1007/s12035-016-0307-3
  77. 77.
    Jhala US, Canettieri G, Screaton RA, Kulkarni RN, Krajewski S, Reed J, Walker J, Lin X et al (2003) cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes Dev. doi: 10.1101/gad.1097103
  78. 78.
    Carvalho C, Santos MS, Oliveira CR, Moreira PI (2015) Alzheimer’s disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers. Biochim Biophys Acta. doi: 10.1016/j.bbadis.2015.05.001
  79. 79.
    Santos RX, Correia SC, Alves MG, Oliveira PF, Cardoso S, Carvalho C, Duarte AI, Santos MS et al (2014) Insulin therapy modulates mitochondrial dynamics and biogenesis, autophagy and tau protein phosphorylation in the brain of type 1 diabetic rats. Biochim Biophys Acta. doi: 10.1016/j.bbadis.2014.04.011
  80. 80.
    Hands SL, Proud CG, Wyttenbach A (2009) mTOR’s role in ageing: protein synthesis or autophagy. Aging (Albany NY). doi: 10.18632/aging.100070
  81. 81.
    Funderburk SF, Wang QJ, Yue Z (2010) The Beclin 1-VPS34 complex—at the crossroads of autophagy and beyond. Trends Cell Biol. doi: 10.1016/j.tcb.2010.03.002
  82. 82.
    Moreira PI, Santos RX, Zhu X, Lee HG, Smith MA, Casadesus G, Perry G (2010) Autophagy in Alzheimer’s disease. Expert Rev Neurother. doi: 10.1586/ern.10.84
  83. 83.
    Yamano K, Matsuda N, Tanaka K (2016) The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep. doi: 10.15252/embr.201541486
  84. 84.
    Scarffe LA, Stevens DA, Dawson VL, Dawson TM (2014) Parkin and PINK1: much more than mitophagy. Trends Neurosci. doi: 10.1016/j.tins.2014.03.004
  85. 85.
    Chen N, Karantza-Wadsworth V (2009) Role and regulation of autophagy in cancer. Biochim Biophys Acta. doi: 10.1016/j.bbamcr.2008.12.013
  86. 86.
    Nixon RA (2007) Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci. doi: 10.1242/jcs.019265
  87. 87.
    Katsuragi Y, Ichimura Y, Komatsu M (2015) p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J. doi: 10.1111/febs.13540
  88. 88.
    Bitto A, Lerner CA, Nacarelli T, Crowe E, Torres C, Sell C (2014) P62/SQSTM1 at the interface of aging, autophagy, and disease. Age (Dordr). doi: 10.1007/s11357-014-9626-3
  89. 89.
    Eskelinen EL (2006) Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Asp Med. doi: 10.1016/j.mam.2006.08.005
  90. 90.
    Derosa G, Maffioli P (2012) GLP-1 agonists exenatide and liraglutide: a review about their safety and efficacy. Curr Clin Pharmacol. doi: 10.2174/157488412800958686
  91. 91.
    Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol. doi: 10.1016/
  92. 92.
    Murphy KM, Ranganathan V, Farnsworth ML, Kavallaris M, Lock RB (2000) Bcl-2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells. Cell Death Differ. doi: 10.1038/sj.cdd.4400597
  93. 93.
    Holscher C (2014) Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases. J Endocrinol. doi: 10.1530/JOE-13-0221
  94. 94.
    Seufert J, Gallwitz B (2014) The extra-pancreatic effects of GLP-1 receptor agonists: a focus on the cardiovascular, gastrointestinal and central nervous systems. Diabetes Obes Metab. doi: 10.1111/dom.12251
  95. 95.
    Derosa G, Putignano P, Bossi AC, Bonaventura A, Querci F, Franzetti IG, Guazzini B, Testori G et al (2011) Exenatide or glimepiride added to metformin on metabolic control and on insulin resistance in type 2 diabetic patients. Eur J Pharmacol. doi: 10.1016/j.ejphar.2011.05.051
  96. 96.
    Gedulin BR, Nikoulina SE, Smith PA, Gedulin G, Nielsen LL, Baron AD, Parkes DG, Young AA (2005) Exenatide (exendin-4) improves insulin sensitivity and {beta}-cell mass in insulin-resistant obese fa/fa Zucker rats independent of glycemia and body weight. Endocrinology. doi: 10.1210/en.2004-1349
  97. 97.
    Smits MM, Muskiet MH, Tonneijck L, Kramer MH, Diamant M, van Raalte DH, Serné EH (2015) GLP-1 receptor agonist exenatide increases capillary perfusion independent of nitric oxide in healthy overweight men. Arterioscler Thromb Vasc Biol. doi: 10.1161/ATVBAHA.115.305447
  98. 98.
    Gastaldelli A, Brodows RG, D’Alessio D (2014) The effect of chronic twice daily exenatide treatment on β-cell function in new onset type 2 diabetes. Clin Endocrinol. doi: 10.1111/cen.12199
  99. 99.
    Dhanesha N, Joharapurkar A, Shah G, Dhote V, Kshirsagar S, Bahekar R, Jain M (2012) Exendin-4 reduces glycemia by increasing liver glucokinase activity: an insulin independent effect. Pharmacol Rep. doi: 10.1016/S1734-1140(12)70740-5
  100. 100.
    Simó R, Guerci B, Schernthaner G, Gallwitz B, Rosas-Guzmàn J, Dotta F, Festa A, Zhou M et al (2015) Long-term changes in cardiovascular risk markers during administration of exenatide twice daily or glimepiride: results from the European exenatide study. Cardiovasc Diabetol. doi: 10.1186/s12933-015-0279-z
  101. 101.
    Zhou Y, He X, Chen Y, Huang Y, Wu L, He J (2015) Exendin-4 attenuates cardiac hypertrophy via AMPK/mTOR signaling pathway activation. Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2015.09.179
  102. 102.
    Wu H, Sui C, Xia F, Zhai H, Zhang H, Xu H, Weng P, Lu Y (2016) Effects of exenatide therapy on insulin resistance in the skeletal muscles of high-fat diet and low-dose streptozotocin-induced diabetic rats. Endocr Res. doi: 10.3109/07435800.2015.1015726
  103. 103.
    Wang Y, Parlevliet ET, Geerling JJ, van der Tuin SJ, Zhang H, Bieghs V, Jawad AH, Shiri-Sverdlov R et al (2014) Exendin-4 decreases liver inflammation and atherosclerosis development simultaneously by reducing macrophage infiltration. Br J Pharmacol. doi: 10.1111/bph.12490
  104. 104.
    García-Casares N, Berthier ML, Jorge RE, Gonzalez-Alegre P, Gutiérrez Cardo A, Rioja Villodres J, Acion L, Ariza Corbo MJ et al (2014) Structural and functional brain changes in middle-aged type 2 diabetic patients: a cross-sectional study. J Alzheimers Dis 40:375–386. doi: 10.3233/JAD-131736 PubMedGoogle Scholar
  105. 105.
    Pintana H, Apaijai N, Chattipakorn N, Chattipakorn SC (2013) DPP-4 inhibitors improve cognition and brain mitochondrial function of insulin-resistant rats. J Endocrinol. doi: 10.1530/JOE-12-0521
  106. 106.
    Ryan CM, Freed MI, Rood JA, Cobitz AR, Waterhouse BR, Strachan MW (2006) Improving metabolic control leads to better working memory in adults with type 2 diabetes. Diabetes Care. doi: 10.2337/diacare.29.02.06.dc05-1626
  107. 107.
    Solmaz V, Çınar BP, Yiğittürk G, Çavuşoğlu T, Taşkıran D, Erbaş O (2015) Exenatide reduces TNF-α expression and improves hippocampal neuron numbers and memory in streptozotocin treated rats. Eur J Pharmacol. doi: 10.1016/j.ejphar.2015.09.024
  108. 108.
    Li PC, Liu LF, Jou MJ, Wang HK (2016) The GLP-1 receptor agonists exendin-4 and liraglutide alleviate oxidative stress and cognitive and micturition deficits induced by middle cerebral artery occlusion in diabetic mice. BMC Neurosci. doi: 10.1186/s12868-016-0272-9
  109. 109.
    Bertilsson G, Patrone C, Zachrisson O, Andersson A, Dannaeus K, Heidrich J, Kortesmaa J, Mercer A et al (2008) Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson’s disease. J Neurosci Res. doi: 10.1002/jnr.21483
  110. 110.
    Hölscher C (2010) The role of GLP-1 in neuronal activity and neurodegeneration. Vitam Horm. doi: 10.1016/B978-0-12-381517-0.00013-8
  111. 111.
    Lotfy M, Singh J, Rashed H, Tariq S, Zilahi E, Adeghate E (2014) Mechanism of the beneficial and protective effects of exenatide in diabetic rats. J Endocrinol 220(3):291–304. doi: 10.1530/JOE-13-0426 CrossRefPubMedGoogle Scholar
  112. 112.
    Piro S, Mascali LG, Urbano F, Filippello A, Malaguarnera R, Calanna S, Rabuazzo AM, Purrello F (2014) Chronic exposure to GLP-1 increases GLP-1 synthesis and release in a pancreatic alpha cell line (α-TC1): evidence of a direct effect of GLP-1 on pancreatic alpha cells. PLoS One. doi: 10.1371/journal.pone.0090093
  113. 113.
    Baraboi ED, St-Pierre DH, Shooner J, Timofeeva E, Richard D (2011) Brain activation following peripheral administration of the GLP-1 receptor agonist exendin-4. Am J Physiol Regul Integr Comp Physiol. doi: 10.1152/ajpregu.00424.2010
  114. 114.
    Kanoski SE, Fortin SM, Arnold M, Grill HJ, Hayes MR (2011) Peripheral and central GLP-1 receptor populations mediate the anorectic effects of peripherally administered GLP-1 receptor agonists, liraglutide and exendin-4. Endocrinology. doi: 10.1210/en.2011-0174
  115. 115.
    Mangiola A, Vigo V, Anile C, De Bonis P, Marziali G, Lofrese G (2015) Role and importance of IGF-1 in traumatic brain injuries. Biomed Res Int. doi: 10.1155/2015/736104
  116. 116.
    Werner H, LeRoith D (2014) Insulin and insulin-like growth factor receptors in the brain: physiological and pathological aspects. Eur Neuropsychopharmacol. doi: 10.1016/j.euroneuro.2014.01.020
  117. 117.
    Wang MD, Huang Y, Zhang GP, Mao L, Xia YP, Mei YW, Hu B (2012) Exendin-4 improved rat cortical neuron survival under oxygen/glucose deprivation through PKA pathway. Neuroscience. doi: 10.1016/j.neuroscience.2012.09.025
  118. 118.
    Hayes MR, Leichner TM, Zhao S, Lee GS, Chowansky A, Zimmer D, De Jonghe BC, Kanoski SE et al (2011) Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation. Cell Metab. doi: 10.1016/j.cmet.2011.02.001
  119. 119.
    Takach O, Gill TB, Silverman MA (2015) Modulation of insulin signaling rescues BDNF transport defects independent of tau in amyloid-β oligomer-treated hippocampal neurons. Neurobiol Aging. doi: 10.1016/j.neurobiolaging.2014.11.018
  120. 120.
    Xu W, Yang Y, Yuan G, Zhu W, Ma D, Hu S (2015) Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces Alzheimer disease-associated tau hyperphosphorylation in the hippocampus of rats with type 2 diabetes. J Investig Med 63:267–272. doi: 10.1097/JIM.0000000000000129 CrossRefPubMedGoogle Scholar
  121. 121.
    Chen S, Liu AR, An FM, Yao WB, Gao XD (2012) Amelioration of neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer’s disease by exendin-4. Age (Dordr). doi: 10.1007/s11357-011-9303-8
  122. 122.
    Kim JY, Lim DM, Moon CI, Jo KJ, Lee SK, Baik HW, Lee KH, Lee KW et al (2010) Exendin-4 protects oxidative stress-induced β-cell apoptosis through reduced JNK and GSK3β activity. J Korean Med Sci. doi: 10.3346/jkms.2010.25.11.1626
  123. 123.
    Wang L, Zhu ZA (2014) Nitric oxide show its survival role by NO-PKC pathway through cGMP-dependent or independent on the culture of cerebella granular neurons. Neurosci Lett. doi: 10.1016/j.neulet.2014.06.062
  124. 124.
    Ciani E, Virgili M, Contestabile A (2002) Akt pathway mediates a cGMP-dependent survival role of nitric oxide in cerebellar granule neurones. J Neurochem. doi: 10.1046/j.1471-4159.2002.00857.x
  125. 125.
    Natalicchio A, Biondi G, Marrano N, Labarbuta R, Tortosa F, Spagnuolo R, D’Oria R, Carchia E et al (2016) Long-term exposure of pancreatic β-cells to palmitate results in SREBP-1C-dependent decreases in GLP-1 receptor signaling via CREB and AKT and insulin secretory response. Endocrinology 157:2243–2258. doi: 10.1210/en.2015-2003 CrossRefPubMedGoogle Scholar
  126. 126.
    Fan Y, Liu K, Wang Q, Ruan Y, Ye W, Zhang Y (2014) Exendin-4 alleviates retinal vascular leakage by protecting the blood-retinal barrier and reducing retinal vascular permeability in diabetic Goto-Kakizaki rats. Exp Eye Res. doi: 10.1016/j.exer.2014.05.004
  127. 127.
    Liang CP, Han S, Li G, Tabas I, Tall AR (2012) Impaired MEK signaling and SERCA expression promote ER stress and apoptosis in insulin-resistant macrophages and are reversed by exenatide treatment. Diabetes. doi: 10.2337/db11-1415
  128. 128.
    Jolivalt CG, Fineman M, Deacon CF, Carr RD, Calcutt NA (2011) GLP-1 signals via ERK in peripheral nerve and prevents nerve dysfunction in diabetic mice. Diabetes Obes Metab. doi: 10.1111/j.1463-1326.2011.01431.x
  129. 129.
    Mukai E, Fujimoto S, Sato H, Oneyama C, Kominato R, Sato Y, Sasaki M, Nishi Y et al (2011) Exendin-4 suppresses SRC activation and reactive oxygen species production in diabetic Goto-Kakizaki rat islets in an Epac-dependent manner. Diabetes. doi: 10.2337/db10-0021
  130. 130.
    Lietzau G, Nyström T, Östenson CG, Darsalia V, Patrone C (2016) Type 2 diabetes-induced neuronal pathology in the piriform cortex of the rat is reversed by the GLP-1 receptor agonist exendin-4. Oncotarget. doi: 10.18632/oncotarget.6823
  131. 131.
    Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel JC, Decker H, Silverman MA, Kazi H et al (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease-associated Aβ oligomers. J Clin Invest. doi: 10.1172/JCI57256
  132. 132.
    Yang Y, Ma D, Xu W, Chen F, Du T, Yue W, Shao S, Yuan G (2016) Exendin-4 reduces tau hyperphosphorylation in type 2 diabetic rats via increasing brain insulin level. Mol Cell Neurosci. doi: 10.1016/j.mcn.2015.10.005
  133. 133.
    Sandoval D, Sisley SR (2015) Brain GLP-1 and insulin sensitivity. Mol Cell Endocrinol. doi: 10.1016/j.mce.2015.02.017
  134. 134.
    Xu Z, Yang L, Xu S, Zhang Z, Cao Y (2015) The receptor proteins: pivotal roles in selective autophagy. Acta Biochim Biophys Sin Shanghai. doi: 10.1093/abbs/gmv055
  135. 135.
    XiaoTian L, QiNan W, XiaGuang G, WuQuan D, Bing C, ZiWen L (2016) Exenatide activates the APPL1-AMPK-PPARα axis to prevent diabetic cardiomyocyte apoptosis. J Diabetes Res. doi: 10.1155/2016/4219735
  136. 136.
    Xu WW, Guan MP, Zheng ZJ, Gao F, Zeng YM, Qin Y, Xue YM (2014) Exendin-4 alleviates high glucose-induced rat mesangial cell dysfunction through the AMPK pathway. Cell Physiol Biochem. doi: 10.1159/000358623
  137. 137.
    Talaei F, Van Praag VM, Shishavan MH, Landheer SW, Buikema H, Henning RH (2014) Increased protein aggregation in Zucker diabetic fatty rat brain: identification of key mechanistic targets and the therapeutic application of hydrogen sulfide. BMC Cell Biol. doi: 10.1186/1471-2121-15-1
  138. 138.
    Chang G, Zhang D, Liu J, Zhang P, Ye L, Lu K, Duan Q, Zheng A et al (2014) Exenatide protects against hypoxia/reoxygenation-induced apoptosis by improving mitochondrial function in H9c2 cells. Exp Biol Med (Maywood). doi: 10.1177/1535370214522177
  139. 139.
    Gupta NA, Kolachala VL, Jiang R, Abramowsky C, Shenoi A, Kosters A, Pavuluri H, Anania F et al (2014) Mitigation of autophagy ameliorates hepatocellular damage following ischemia-reperfusion injury in murine steatotic liver. Am J Physiol Gastrointest Liver Physiol. doi: 10.1152/ajpgi.00210.2014
  140. 140.
    Abe H, Uchida T, Hara A, Mizukami H, Komiya K, Koike M, Shigihara N, Toyofuku Y et al (2013) Exendin-4 improves β-cell function in autophagy-deficient β-cells. Endocrinology. doi: 10.1210/en.2013-1578
  141. 141.
    Sharma S, Mells JE, Fu PP, Saxena NK, Anania FA (2011) GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLoS One. doi: 10.1371/journal.pone.0025269
  142. 142.
    Li HT, Zhao XZ, Zhang XR, Li G, Jia ZQ, Sun P, Wang JQ, Fan ZK et al (2016) Exendin-4 enhances motor function recovery via promotion of autophagy and inhibition of neuronal apoptosis after spinal cord injury in rats. Mol Neurobiol. doi: 10.1007/s12035-015-9327-7
  143. 143.
    Gumuslu E, Mutlu O, Celikyurt IK, Ulak G, Akar F, Erden F, Ertan M (2016) Exenatide enhances cognitive performance and upregulates neurotrophic factor gene expression levels in diabetic mice. Fundam Clin Pharmacol 30:376–384. doi: 10.1111/fcp.12192 CrossRefPubMedGoogle Scholar
  144. 144.
    Shin S, Le Lay J, Everett LJ, Gupta R, Rafiq K, Kaestner KH (2014) CREB mediates the insulinotropic and anti-apoptotic effects of GLP-1 signaling in adult mouse β-cells. Mol Metab. doi: 10.1016/j.molmet.2014.08.001
  145. 145.
    Velmurugan K, Balamurugan AN, Loganathan G, Ahmad A, Hering BJ, Pugazhenthi S (2012) Antiapoptotic actions of exendin-4 against hypoxia and cytokines are augmented by CREB. Endocrinology. doi: 10.1210/en.2011-1895
  146. 146.
    Chien CT, Jou MJ, Cheng TY, Yang CH, Yu TY, Li PC (2015) Exendin-4-loaded PLGA microspheres relieve cerebral ischemia/reperfusion injury and neurologic deficits through long-lasting bioactivity-mediated phosphorylated Akt/eNOS signaling in rats. J Cereb Blood Flow Metab 35:1790–1803. doi: 10.1038/jcbfm.2015.126 CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Pedro JM, Wei Y, Sica V, Maiuri MC, Zou Z, Kroemer G, Levine B (2015) BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy. doi: 10.1080/15548627.2015.1017191
  148. 148.
    Gordy C, He YW (2012) The crosstalk between autophagy and apoptosis: where does this lead? Protein Cell. doi: 10.1007/s13238-011-1127-x
  149. 149.
    Li H, Jia Z, Li G, Zhao X, Sun P, Wang J, Fan Z, Lv G (2015) Neuroprotective effects of exendin-4 in rat model of spinal cord injury via inhibiting mitochondrial apoptotic pathway. Int J Clin Exp Pathol 8:4837–4843PubMedPubMedCentralGoogle Scholar
  150. 150.
    Chandra D, Liu JW, Tang DG (2002) Early mitochondrial activation and cytochrome c up-regulation during apoptosis. J Biol Chem. doi: 10.1074/jbc.M207622200
  151. 151.
    Sánchez-Alcázar JA, Ault JG, Khodjakov A, Schneider E (2000) Increased mitochondrial cytochrome c levels and mitochondrial hyperpolarization precede camptothecin-induced apoptosis in Jurkat cells. Cell Death Differ. doi: 10.1038/sj.cdd.4400740
  152. 152.
    LaRocca TJ, Sosunov SA, Shakerley NL, Ten VS, Ratner AJ (2016) Hyperglycemic conditions prime cells for RIP1-dependent necroptosis. J Biol Chem 291:13753–13761. doi: 10.1074/jbc.M116.716027 CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Xuan M, Okazaki M, Iwata N, Asano S, Kamiuchi S, Matsuzaki H, Sakamoto T, Miyano Y et al (2015) Chronic treatment with a water-soluble extract from the culture medium of Ganoderma lucidum mycelia prevents apoptosis and necroptosis in hypoxia/ischemia-induced injury of type 2 diabetic mouse brain. Evid Based Complement Alternat Med. doi: 10.1155/2015/865986
  154. 154.
    Liu YS, Huang ZW, Wang L, Liu XX, Wang YM, Zhang Y, Zhang M (2015) Sitagliptin alleviated myocardial remodeling of the left ventricle and improved cardiac diastolic dysfunction in diabetic rats. J Pharmacol Sci. doi: 10.1016/j.jphs.2014.12.007
  155. 155.
    de Almagro MC, Vucic D (2015) Necroptosis: pathway diversity and characteristics. Semin Cell Dev Biol. doi: 10.1016/j.semcdb.2015.02.002
  156. 156.
    Hussain S, Mansouri S, Sjöholm Å, Patrone C, Darsalia V (2014) Evidence for cortical neuronal loss in male type 2 diabetic Goto-Kakizaki rats. J Alzheimers Dis. doi: 10.3233/JAD-131958
  157. 157.
    Liu J, Tang Y, Feng Z, Liu J, Liu J, Long J (2014) (-)-Epigallocatechin-3-gallate attenuated myocardial mitochondrial dysfunction and autophagy in diabetic Goto-Kakizaki rats. Free Radic Res. doi: 10.3109/10715762.2014.920955
  158. 158.
    Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. doi: 10.1038/nrm2529
  159. 159.
    Liu K, Ding L, Li Y, Yang H, Zhao C, Lei Y, Han S, Tao W et al (2014) Neuronal necrosis is regulated by a conserved chromatin-modifying cascade. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1413644111
  160. 160.
    Dhungana H, Malm T, Denes A, Valonen P, Wojciechowski S, Magga J, Savchenko E, Humphreys N et al (2013) Aging aggravates ischemic stroke-induced brain damage in mice with chronic peripheral infection. Aging Cell. doi: 10.1111/acel.12106

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Emanuel Candeias
    • 1
    • 2
  • Inês Sebastião
    • 1
  • Susana Cardoso
    • 1
    • 2
  • Cristina Carvalho
    • 1
    • 2
  • Maria Sancha Santos
    • 1
    • 3
  • Catarina Resende Oliveira
    • 1
    • 4
  • Paula I. Moreira
    • 1
    • 5
  • Ana I. Duarte
    • 1
    • 2
  1. 1.CNC—Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor)University of CoimbraCoimbraPortugal
  2. 2.Institute for Interdisciplinary Research (IIIUC)University of CoimbraCoimbraPortugal
  3. 3.Life Sciences DepartmentUniversity of CoimbraCoimbraPortugal
  4. 4.Institute of Biochemistry, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  5. 5.Institute of Physiology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal

Personalised recommendations