Molecular Neurobiology

, Volume 55, Issue 5, pp 4115–4125 | Cite as

The Lesion Analysis of Cholinergic Neurons in 5XFAD Mouse Model in the Three-Dimensional Level of Whole Brain

  • Huanhuan Yan
  • Pei Pang
  • Wenqi Chen
  • Houze Zhu
  • Henok K.A.
  • Hao Li
  • Zuoze Wu
  • Xiao Ke
  • Jianhua Wu
  • Tongmei Zhang
  • Kai Pan
  • Lei Pei
  • Yunyun HanEmail author
  • Youming LuEmail author


Cholinergic system is very important for many higher brain functions, including learning and memory. Cholinergic neurons, especially those in the basal forebrain, are specifically susceptible in some neurodegenerative diseases, such as in Alzheimer’s disease (AD). Here, we studied the cholinergic system lesion effects of five familial AD mutations in 5XFAD mice, a transgenic mouse model of AD. Although the cholinergic system has been studied in this mouse model, the cholinergic deficits in AD mice have never been systematically mapped in a whole-brain three-dimensional (3D) reconstruction. Using the 3D reconstruction technology combined with immunohistochemistry (3D-IHC) and design-based stereology, we comprehensively compared the differences of the cholinergic neurons and fibers between the 5XFAD mice and C57BL/6 control mice at different age. Here, we found that the lesion of cholinergic fibers occurred earlier than the cholinergic neuron loss in 5XFAD mice. The cholinergic fiber lesions in the AD mice started sequentially in amygdala, cortex, hippocampus, and then basal forebrain. However, the basal forebrain was the first brain region observed with cholinergic neuron loss at the age of 9 months in 5XFAD mice, whereas such phenomenon first occurred at the age of 15 months in C57BL/6 control mice. Moreover, using 3D reconstruction to compare the lesion of cholinergic system of aged 5XFAD and C57BL/6 control mice, it is intuitive to notice the pathologic regions and severity of lesion. Therefore, the 3D-IHC provides detailed overview of the cholinergic neurons in the whole mouse brain, which will contribute to the study of the developing and pathologic mouse brain.


Alzheimer’s disease 5XFAD mouse model Cholinergic neurons Three dimension Whole brain 



We gratefully acknowledge Dr. Qing Tian, Dr. Linqiang Zhu, and Dr. Juan Chen for their helpful discussion and suggestions; Jiaming Liang for the image alignment code; and Shaohua Zhang for the assistance with equipment maintenance. This study was supported by the National Nature Science Foundation of China (Grant Nos. 81130079, 91232302, 81571078, and 3160047).

Author’s Contributions

Y.L. conceived and designed the study. H.Y. and P.P. did the work of immunohistochemistry and three-dimensional reconstruction of cholinergic neurons. W.C., H.Z., H.L., Z.W., X.K., and J.W. conducted the counting work of cholinergic neurons and cholinergic lesions. T.Z. and K.P. conducted the statistical work. H.Y., L.P., Y.H., H.K., and Y.L. wrote the manuscript.

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

Supplementary material

12035_2017_621_Fig8_ESM.gif (60 kb)
Supplementary Figure 1

The labeling of cholinergic fiber lesions in the aged 5XFAD mouse brain. (GIF 60 kb).

12035_2017_621_MOESM1_ESM.tif (9.4 mb)
High resolution image (TIFF 9676 kb).
12035_2017_621_Fig9_ESM.gif (38 kb)
Supplementary Figure 2

The distribution diagram of cholinergic system in mouse brain. (GIF 37 kb).

12035_2017_621_MOESM2_ESM.tif (6.4 mb)
High resolution image (TIFF 6507 kb).
12035_2017_621_Fig10_ESM.gif (79 kb)
Supplementary Figure 3

The cholinergic fiber lesions in the LEnt of aged C57BL/6 and 5XFAD mice (20 months old). Black arrow indicates the fiber lesion, and the green arrow .indicates the normal cholinergic fiber. (GIF 78 kb).

12035_2017_621_MOESM3_ESM.tif (7.8 mb)
High resolution image (TIFF 7985 kb). (6.7 mb)
Supplementary Video 1 The 3D movie of cholinergic neurons in the mouse brain. Firstly, there are all the ChAT-positive neurons in the hemisphere mouse brain. Then, these neurons in the different brain regions are labeled by different color balls. Last, all the cholinergic fiber lesions in the various brain regions are labeled by different color balls. (MOV 6910 kb).
12035_2017_621_MOESM5_ESM.m (2 kb)
ESM 1 The code, which was written based on the software of MATLAB R2015b, was used for the alignment of pictures of serial brain sections. (M 1 kb).


  1. 1.
    Arendt T, Bigl V, Tennstedt A, Arendt A (1985) Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease. Neuroscience 14(1):1–14CrossRefPubMedGoogle Scholar
  2. 2.
    Perry EK, Irving D, Kerwin JM, McKeith IG, Thompson P, Collerton D, Fairbairn AF, Ince PG et al (1993) Cholinergic transmitter and neurotrophic activities in Lewy body dementia: Similarity to Parkinson’s and distinction from Alzheimer disease. Alzheimer Dis Assoc Disord 7(2):69–79CrossRefPubMedGoogle Scholar
  3. 3.
    Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221(2):555–563. doi: 10.1016/j.bbr.2010.11.058 CrossRefPubMedGoogle Scholar
  4. 4.
    Whitehouse PJ, Struble RG, Hedreen JC, Clark AW, Price DL (1985) Alzheimer’s disease and related dementias: selective involvement of specific neuronal systems. CRC Crit Rev Clin Neurobiol 1(4):319–339PubMedGoogle Scholar
  5. 5.
    Kolisnyk B, Al-Onaizi MA, Hirata PH, Guzman MS, Nikolova S, Barbash S, Soreq H, Bartha R et al (2013) Forebrain deletion of the vesicular acetylcholine transporter results in deficits in executive function, metabolic, and RNA splicing abnormalities in the prefrontal cortex. J Neurosci 33(37):14908–14920. doi: 10.1523/JNEUROSCI.1933-13.2013 CrossRefPubMedGoogle Scholar
  6. 6.
    Lonnerberg P, Schoenherr CJ, Anderson DJ, Ibanez CF (1996) Cell type-specific regulation of choline acetyltransferase gene expression. Role of the neuron-restrictive silencer element and cholinergic-specific enhancer sequences. J Biol Chem 271(52):33358–33365CrossRefPubMedGoogle Scholar
  7. 7.
    Bloomfield C, O’Donnell P, French SJ, Totterdell S (2007) Cholinergic neurons of the adult rat striatum are immunoreactive for glutamatergic N-methyl-d-aspartate 2D but not N-methyl-d-aspartate 2C receptor subunits. Neuroscience 150(3):639–646. doi: 10.1016/j.neuroscience.2007.09.035 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Consonni S, Leone S, Becchetti A, Amadeo A (2009) Developmental and neurochemical features of cholinergic neurons in the murine cerebral cortex. BMC Neurosci 10:18. doi: 10.1186/1471-2202-10-18 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kolos YA, Korzhevskiy DE (2015) The distribution of cholinergic and nitroxidergic neurons in the spinal cord of newborn and adult rats. Morfologiia 147(2):32–37PubMedGoogle Scholar
  10. 10.
    Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J et al (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373(6514):523–527. doi: 10.1038/373523a0 CrossRefPubMedGoogle Scholar
  11. 11.
    Rockenstein EM, McConlogue L, Tan H, Power M, Masliah E, Mucke L (1995) Levels and alternative splicing of amyloid beta protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer’s disease. J Biol Chem 270(47):28257–28267CrossRefPubMedGoogle Scholar
  12. 12.
    Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274(5284):99–102CrossRefPubMedGoogle Scholar
  13. 13.
    Calhoun ME, Wiederhold KH, Abramowski D, Phinney AL, Probst A, Sturchler-Pierrat C, Staufenbiel M, Sommer B et al (1998) Neuron loss in APP transgenic mice. Nature 395(6704):755–756. doi: 10.1038/27351 CrossRefPubMedGoogle Scholar
  14. 14.
    Chishti MA, Yang DS, Janus C, Phinney AL, Horne P, Pearson J, Strome R, Zuker N et al (2001) Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 276(24):21562–21570. doi: 10.1074/jbc.M100710200 CrossRefPubMedGoogle Scholar
  15. 15.
    Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-tur J, Hutton M, Buee L et al (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383(6602):710–713. doi: 10.1038/383710a0 CrossRefPubMedGoogle Scholar
  16. 16.
    Guo Q, Sebastian L, Sopher BL, Miller MW, Ware CB, Martin GM, Mattson MP (1999) Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid beta-peptide toxicity: central roles of superoxide production and caspase activation. J Neurochem 72(3):1019–1029CrossRefPubMedGoogle Scholar
  17. 17.
    Casas C, Sergeant N, Itier JM, Blanchard V, Wirths O, van der Kolk N, Vingtdeux V, van de Steeg E et al (2004) Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 165(4):1289–1300CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schmitz C, Rutten BP, Pielen A, Schafer S, Wirths O, Tremp G, Czech C, Blanchard V et al (2004) Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer’s disease. Am J Pathol 164(4):1495–1502. doi: 10.1016/S0002-9440(10)63235-X CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M et al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26(40):10129–10140. doi: 10.1523/JNEUROSCI.1202-06.2006 CrossRefPubMedGoogle Scholar
  20. 20.
    Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N et al (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293(5534):1487–1491. doi: 10.1126/science.1058189 CrossRefPubMedGoogle Scholar
  21. 21.
    Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421CrossRefPubMedGoogle Scholar
  22. 22.
    Li A, Gong H, Zhang B, Wang Q, Yan C, Wu J, Liu Q, Zeng S et al (2010) Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science 330(6009):1404–1408. doi: 10.1126/science.1191776 CrossRefPubMedGoogle Scholar
  23. 23.
    Quan T, Zhou H, Li J, Li S, Li A, Li Y, Lv X, Luo Q et al (2016) NeuroGPS-tree: automatic reconstruction of large-scale neuronal populations with dense neurites. Nat Methods 13(1):51–54. doi: 10.1038/nmeth.3662 CrossRefPubMedGoogle Scholar
  24. 24.
    Schmitz C, Hof PR (2005) Design-based stereology in neuroscience. Neuroscience 130(4):813–831. doi: 10.1016/j.neuroscience.2004.08.050 CrossRefPubMedGoogle Scholar
  25. 25.
    Perego C, Fumagalli S, De Simoni MG (2013) Three-dimensional confocal analysis of microglia/macrophage markers of polarization in experimental brain injury. J Vis Exp (79) doi: 10.3791/50605
  26. 26.
    B.J GPK (2001) Thre mouse brain in Stereotaxic Coordinates. Vol 92101–4495. Academic Press, USAGoogle Scholar
  27. 27.
    Chao OY, Huston JP, Li JS, Wang AL, de Souza Silva MA (2016) The medial prefrontal cortex-lateral entorhinal cortex circuit is essential for episodic-like memory and associative object-recognition. Hippocampus 26(5):633–645. doi: 10.1002/hipo.22547 CrossRefPubMedGoogle Scholar
  28. 28.
    Gold AL, Morey RA, McCarthy G (2015) Amygdala-prefrontal cortex functional connectivity during threat-induced anxiety and goal distraction. Biol Psychiatry 77(4):394–403. doi: 10.1016/j.biopsych.2014.03.030 CrossRefPubMedGoogle Scholar
  29. 29.
    Rushworth MF, Noonan MP, Boorman ED, Walton ME, Behrens TE (2011) Frontal cortex and reward-guided learning and decision-making. Neuron 70(6):1054–1069. doi: 10.1016/j.neuron.2011.05.014 CrossRefPubMedGoogle Scholar
  30. 30.
    Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20(1):11–21CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Geula C, Nagykery N, Nicholas A, Wu CK (2008) Cholinergic neuronal and axonal abnormalities are present early in aging and in Alzheimer disease. J Neuropathol Exp Neurol 67(4):309–318. doi: 10.1097/NEN.0b013e31816a1df3 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Devi L, Alldred MJ, Ginsberg SD, Ohno M (2010) Sex- and brain region-specific acceleration of beta-amyloidogenesis following behavioral stress in a mouse model of Alzheimer’s disease. Mol Brain 3:34. doi: 10.1186/1756-6606-3-34 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Devi L, Ohno M (2015) A combination Alzheimer’s therapy targeting BACE1 and neprilysin in 5XFAD transgenic mice. Mol Brain 8:19. doi: 10.1186/s13041-015-0110-5 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Preuss TM (2011) The human brain: rewired and running hot. Ann N Y Acad Sci 1225(Suppl 1):E182–E191. doi: 10.1111/j.1749-6632.2011.06001.x CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Smeets WJ, Marin O, Gonzalez A (2000) Evolution of the basal ganglia: new perspectives through a comparative approach. J Anat 196(Pt 4):501–517CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344. doi: 10.1056/NEJMra0909142 CrossRefPubMedGoogle Scholar
  37. 37.
    Schellenberg GD, Montine TJ (2012) The genetics and neuropathology of Alzheimer’s disease. Acta Neuropathol 124(3):305–323. doi: 10.1007/s00401-012-0996-2 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mesulam MM, Geula C (1988) Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol 275(2):216–240. doi: 10.1002/cne.902750205 CrossRefPubMedGoogle Scholar
  39. 39.
    Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214(2):170–197. doi: 10.1002/cne.902140206 CrossRefPubMedGoogle Scholar
  40. 40.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259CrossRefPubMedGoogle Scholar
  41. 41.
    Markesbery WR, Schmitt FA, Kryscio RJ, Davis DG, Smith CD, Wekstein DR (2006) Neuropathologic substrate of mild cognitive impairment. Arch Neurol 63(1):38–46. doi: 10.1001/archneur.63.1.38 CrossRefPubMedGoogle Scholar
  42. 42.
    Yilmazer-Hanke DM (1998) Alzheimer’s disease. The density of amygdalar neuritic plaques is associated with the severity of neurofibrillary pathology and the degree of beta-amyloid protein deposition in the cerebral cortex. Acta Anat (Basel) 162(1):46–55CrossRefGoogle Scholar
  43. 43.
    Vogels OJ, Broere CA, ter Laak HJ, ten Donkelaar HJ, Nieuwenhuys R, Schulte BP (1990) Cell loss and shrinkage in the nucleus basalis Meynert complex in Alzheimer’s disease. Neurobiol Aging 11(1):3–13CrossRefPubMedGoogle Scholar
  44. 44.
    Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10(2):122–126. doi: 10.1002/ana.410100203 CrossRefPubMedGoogle Scholar
  45. 45.
    Stephenson AR, Edler MK, Erwin JM, Jacobs B, Hopkins WD, Hof PR, Sherwood CC, Raghanti MA (2017) Cholinergic innervation of the basal ganglia in humans and other anthropoid primates. J Comp Neurol 525(2):319–332. doi: 10.1002/cne.24067 CrossRefPubMedGoogle Scholar
  46. 46.
    Bonsi P, Cuomo D, Martella G, Madeo G, Schirinzi T, Puglisi F, Ponterio G, Pisani A (2011) Centrality of striatal cholinergic transmission in basal ganglia function. Front Neuroanat 5:6. doi: 10.3389/fnana.2011.00006 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457(7232):981–989. doi: 10.1038/nature07767 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Physiology, School of Basic Medicine and Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.The Institute for Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
  3. 3.Hubei Raydata Technology Co., Ltd.EzhouChina
  4. 4.Department of Neurobiology, School of Basic Medicine and Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  5. 5.Department of Pathology and Pathophysiology, School of Basic Medicine and Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations