Advertisement

Molecular Neurobiology

, Volume 55, Issue 5, pp 3739–3754 | Cite as

Exploring the Validity of Proposed Transgenic Animal Models of Attention-Deficit Hyperactivity Disorder (ADHD)

  • June Bryan de la Peña
  • Irene Joy dela Peña
  • Raly James Custodio
  • Chrislean Jun Botanas
  • Hee Jin Kim
  • Jae Hoon Cheong
Article

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is a common, behavioral, and heterogeneous neurodevelopmental condition characterized by hyperactivity, impulsivity, and inattention. Symptoms of this disorder are managed by treatment with methylphenidate, amphetamine, and/or atomoxetine. The cause of ADHD is unknown, but substantial evidence indicates that this disorder has a significant genetic component. Transgenic animals have become an essential tool in uncovering the genetic factors underlying ADHD. Although they cannot accurately reflect the human condition, they can provide insights into the disorder that cannot be obtained from human studies due to various limitations. An ideal animal model of ADHD must have face (similarity in symptoms), predictive (similarity in response to treatment or medications), and construct (similarity in etiology or underlying pathophysiological mechanism) validity. As the exact etiology of ADHD remains unclear, the construct validity of animal models of ADHD would always be limited. The proposed transgenic animal models of ADHD have substantially increased and diversified over the years. In this paper, we compiled and explored the validity of proposed transgenic animal models of ADHD. Each of the reviewed transgenic animal models has strengths and limitations. Some fulfill most of the validity criteria of an animal model of ADHD and have been extensively used, while there are others that require further validation. Nevertheless, these transgenic animal models of ADHD have provided and will continue to provide valuable insights into the genetic underpinnings of this complex disorder.

Keywords

Attention-deficit/hyperactivity disorder ADHD Transgenic Animal model Validity 

Notes

Acknowledgements

This work was supported by Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), Ministry of Health & Welfare, Republic of Korea (HI12C0011), and the National Research Foundation of Korea (NRF) (2016R1D1A1B02010387 and 2015M3C7A1028926). JB de la Peña was also supported under the framework of international cooperation program managed by NRF Korea (NRF-2016K2A9A1A09914265).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders. 5th edn. Washington, DCGoogle Scholar
  2. 2.
    Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, Sklar P (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57(11):1313–1323. doi: 10.1016/j.biopsych.2004.11.024 CrossRefPubMedGoogle Scholar
  3. 3.
    Willcutt EG (2012) The prevalence of DSM-IV attention-deficit/hyperactivity disorder: a meta-analytic review. Neurotherapeutics 9(3):490–499. doi: 10.1007/s13311-012-0135-8 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Ginsberg Y, Quintero J, Anand E, Casillas M, Upadhyaya HP (2014) Underdiagnosis of attention-deficit/hyperactivity disorder in adult patients: a review of the literature. Prim Care Companion CNS Disord 16 (3). doi: 10.4088/PCC.13r01600
  5. 5.
    Kooij SJ, Bejerot S, Blackwell A, Caci H, Casas-Brugue M, Carpentier PJ, Edvinsson D, Fayyad J et al (2010) European consensus statement on diagnosis and treatment of adult ADHD: the European Network Adult ADHD. BMC Psychiatry 10:67. doi: 10.1186/1471-244X-10-67 PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Bernardi S, Faraone SV, Cortese S, Kerridge BT, Pallanti S, Wang S, Blanco C (2012) The lifetime impact of attention deficit hyperactivity disorder: results from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). Psychol Med 42(4):875–887. doi: 10.1017/S003329171100153X CrossRefPubMedGoogle Scholar
  7. 7.
    Biederman J (2005) Attention-deficit/hyperactivity disorder: a selective overview. Biol Psychiatry 57(11):1215–1220. doi: 10.1016/j.biopsych.2004.10.020 CrossRefPubMedGoogle Scholar
  8. 8.
    Wigal SB (2009) Efficacy and safety limitations of attention-deficit hyperactivity disorder pharmacotherapy in children and adults. CNS Drugs 23(Suppl 1):21–31. doi: 10.2165/00023210-200923000-00004 CrossRefPubMedGoogle Scholar
  9. 9.
    Accardo P, Blondis TA (2001) What’s all the fuss about Ritalin? J Pediatr 138(1):6–9CrossRefPubMedGoogle Scholar
  10. 10.
    Kuczenski R, Segal DS (2001) Locomotor effects of acute and repeated threshold doses of amphetamine and methylphenidate: relative roles of dopamine and norepinephrine. J Pharmacol Exp Ther 296(3):876–883PubMedGoogle Scholar
  11. 11.
    (1999) A 14-month randomized clinical trial of treatment strategies for attention-deficit/hyperactivity disorder. The MTA Cooperative Group. Multimodal Treatment Study of Children with ADHD. Arch Gen Psychiatry 56 (12):1073–1086Google Scholar
  12. 12.
    Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG (1999) Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283(5400):397–401CrossRefPubMedGoogle Scholar
  13. 13.
    Kuczenski R, Segal DS (1997) Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem 68(5):2032–2037CrossRefPubMedGoogle Scholar
  14. 14.
    Oades RD (2008) Dopamine-serotonin interactions in attention-deficit hyperactivity disorder (ADHD). Prog Brain Res 172:543–565. doi: 10.1016/S0079-6123(08)00926-6 CrossRefPubMedGoogle Scholar
  15. 15.
    Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR et al (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27(5):699–711CrossRefPubMedGoogle Scholar
  16. 16.
    Leo D, Gainetdinov RR (2013) Transgenic mouse models for ADHD. Cell Tissue Res 354(1):259–271. doi: 10.1007/s00441-013-1639-1 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Gallo EF, Posner J (2016) Moving towards causality in attention-deficit hyperactivity disorder: overview of neural and genetic mechanisms. Lancet Psychiatry 3(6):555–567. doi: 10.1016/S2215-0366(16)00096-1 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Gizer IR, Ficks C, Waldman ID (2009) Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 126(1):51–90. doi: 10.1007/s00439-009-0694-x CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang L, Chang S, Li Z, Zhang K, Du Y, Ott J, Wang J (2012) ADHDgene: a genetic database for attention deficit hyperactivity disorder. Nucleic Acids Res 40(Database issue):D1003–D1009. doi: 10.1093/nar/gkr992 CrossRefPubMedGoogle Scholar
  20. 20.
    Lasky-Su J, Neale BM, Franke B, Anney RJ, Zhou K, Maller JB, Vasquez AA, Chen W et al (2008) Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am J Med Genet B Neuropsychiatr Genet 147B(8):1345–1354. doi: 10.1002/ajmg.b.30867 CrossRefPubMedGoogle Scholar
  21. 21.
    Hawi Z, Cummins TD, Tong J, Johnson B, Lau R, Samarrai W, Bellgrove MA (2015) The molecular genetic architecture of attention deficit hyperactivity disorder. Mol Psychiatry 20(3):289–297. doi: 10.1038/mp.2014.183 CrossRefPubMedGoogle Scholar
  22. 22.
    Russell VA (2011) Overview of animal models of attention deficit hyperactivity disorder (ADHD). Curr Protoc Neurosci Chapter 9:Unit9 35. doi: 10.1002/0471142301.ns0935s54
  23. 23.
    Houdebine LM (2007) Transgenic animal models in biomedical research. Methods Mol Biol 360:163–202. doi: 10.1385/1-59745-165-7:163 PubMedGoogle Scholar
  24. 24.
    Sontag TA, Tucha O, Walitza S, Lange KW (2010) Animal models of attention deficit/hyperactivity disorder (ADHD): a critical review. Atten Defic Hyperact Disord 2(1):1–20. doi: 10.1007/s12402-010-0019-x CrossRefPubMedGoogle Scholar
  25. 25.
    Albelda N, Joel D (2012) Animal models of obsessive-compulsive disorder: exploring pharmacology and neural substrates. Neurosci Biobehav Rev 36(1):47–63. doi: 10.1016/j.neubiorev.2011.04.006 CrossRefPubMedGoogle Scholar
  26. 26.
    Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13(10):1161–1169. doi: 10.1038/nn.2647 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Gainetdinov RR, Caron MG (2001) Genetics of childhood disorders: XXIV. ADHD, part 8: hyperdopaminergic mice as an animal model of ADHD. J Am Acad Child Adolesc Psychiatry 40(3):380–382CrossRefPubMedGoogle Scholar
  28. 28.
    Gainetdinov RR, Jones SR, Caron MG (1999) Functional hyperdopaminergia in dopamine transporter knock-out mice. Biol Psychiatry 46(3):303–311CrossRefPubMedGoogle Scholar
  29. 29.
    Schenk JO (2002) The functioning neuronal transporter for dopamine: kinetic mechanisms and effects of amphetamines, cocaine and methylphenidate. In: Progress in drug research, Springer, pp 111–131Google Scholar
  30. 30.
    Li B, Arime Y, Hall FS, Uhl GR, Sora I (2010) Impaired spatial working memory and decreased frontal cortex BDNF protein level in dopamine transporter knockout mice. Eur J Pharmacol 628(1–3):104–107. doi: 10.1016/j.ejphar.2009.11.036 CrossRefPubMedGoogle Scholar
  31. 31.
    Ralph RJ, Paulus MP, Fumagalli F, Caron MG, Geyer MA (2001) Prepulse inhibition deficits and perseverative motor patterns in dopamine transporter knock-out mice: differential effects of D1 and D2 receptor antagonists. J Neurosci 21(1):305–313PubMedGoogle Scholar
  32. 32.
    Yamashita M, Fukushima S, Shen HW, Hall FS, Uhl GR, Numachi Y, Kobayashi H, Sora I (2006) Norepinephrine transporter blockade can normalize the prepulse inhibition deficits found in dopamine transporter knockout mice. Neuropsychopharmacology 31(10):2132–2139. doi: 10.1038/sj.npp.1301009 PubMedGoogle Scholar
  33. 33.
    Yamashita M, Sakakibara Y, Hall FS, Numachi Y, Yoshida S, Kobayashi H, Uchiumi O, Uhl GR et al (2013) Impaired cliff avoidance reaction in dopamine transporter knockout mice. Psychopharmacology 227(4):741–749. doi: 10.1007/s00213-013-3009-9 CrossRefPubMedGoogle Scholar
  34. 34.
    Itohara S, Kobayashi Y, Nakashiba T (2015) Genetic factors underlying attention and impulsivity: mouse models of attention-deficit/hyperactivity disorder. Current opinion in behavioral sciences 2:46–51CrossRefGoogle Scholar
  35. 35.
    Del’Guidice T, Lemasson M, Etievant A, Manta S, Magno LA, Escoffier G, Roman FS, Beaulieu JM (2014) Dissociations between cognitive and motor effects of psychostimulants and atomoxetine in hyperactive DAT-KO mice. Psychopharmacology 231(1):109–122. doi: 10.1007/s00213-013-3212-8 CrossRefPubMedGoogle Scholar
  36. 36.
    Li Z, Chang SH, Zhang LY, Gao L, Wang J (2014) Molecular genetic studies of ADHD and its candidate genes: a review. Psychiatry Res 219(1):10–24. doi: 10.1016/j.psychres.2014.05.005 CrossRefPubMedGoogle Scholar
  37. 37.
    Sakrikar D, Mazei-Robison MS, Mergy MA, Richtand NW, Han Q, Hamilton PJ, Bowton E, Galli A et al (2012) Attention deficit/hyperactivity disorder-derived coding variation in the dopamine transporter disrupts microdomain targeting and trafficking regulation. J Neurosci 32(16):5385–5397. doi: 10.1523/JNEUROSCI.6033-11.2012 PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Hesse S, Ballaschke O, Barthel H, Sabri O (2009) Dopamine transporter imaging in adult patients with attention-deficit/hyperactivity disorder. Psychiatry Res 171(2):120–128. doi: 10.1016/j.pscychresns.2008.01.002 CrossRefPubMedGoogle Scholar
  39. 39.
    Volkow ND, Wang GJ, Newcorn J, Fowler JS, Telang F, Solanto MV, Logan J, Wong C et al (2007) Brain dopamine transporter levels in treatment and drug naive adults with ADHD. NeuroImage 34(3):1182–1190. doi: 10.1016/j.neuroimage.2006.10.014 CrossRefPubMedGoogle Scholar
  40. 40.
    Cheon KA, Ryu YH, Kim YK, Namkoong K, Kim CH, Lee JD (2003) Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder. Eur J Nucl Med Mol Imaging 30(2):306–311. doi: 10.1007/s00259-002-1047-3 CrossRefPubMedGoogle Scholar
  41. 41.
    Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ (1999) Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 354(9196):2132–2133. doi: 10.1016/S0140-6736(99)04030-1 CrossRefPubMedGoogle Scholar
  42. 42.
    Krause KH, Dresel SH, Krause J, Kung HF, Tatsch K (2000) Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett 285(2):107–110CrossRefPubMedGoogle Scholar
  43. 43.
    Bruno KJ, Freet CS, Twining RC, Egami K, Grigson PS, Hess EJ (2007) Abnormal latent inhibition and impulsivity in coloboma mice, a model of ADHD. Neurobiol Dis 25(1):206–216. doi: 10.1016/j.nbd.2006.09.009 CrossRefPubMedGoogle Scholar
  44. 44.
    Hess EJ, Collins KA, Wilson MC (1996) Mouse model of hyperkinesis implicates SNAP-25 in behavioral regulation. J Neurosci 16(9):3104–3111CrossRefPubMedGoogle Scholar
  45. 45.
    Wilson MC (2000) Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder. Neurosci Biobehav Rev 24(1):51–57CrossRefPubMedGoogle Scholar
  46. 46.
    Heyser CJ, Wilson MC, Gold LH (1995) Coloboma hyperactive mutant exhibits delayed neurobehavioral developmental milestones. Brain Res Dev Brain Res 89(2):264–269CrossRefPubMedGoogle Scholar
  47. 47.
    Hess EJ, Jinnah HA, Kozak CA, Wilson MC (1992) Spontaneous locomotor hyperactivity in a mouse mutant with a deletion including the Snap gene on chromosome 2. J Neurosci 12(7):2865–2874CrossRefPubMedGoogle Scholar
  48. 48.
    Barr CL, Feng Y, Wigg K, Bloom S, Roberts W, Malone M, Schachar R, Tannock R et al (2000) Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatry 5(4):405–409CrossRefPubMedGoogle Scholar
  49. 49.
    Corradini I, Verderio C, Sala M, Wilson MC, Matteoli M (2009) SNAP-25 in neuropsychiatric disorders. Ann N Y Acad Sci 1152:93–99. doi: 10.1111/j.1749-6632.2008.03995.x PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Mill J, Curran S, Kent L, Gould A, Huckett L, Richards S, Taylor E, Asherson P (2002) Association study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder. Am J Med Genet 114(3):269–271CrossRefPubMedGoogle Scholar
  51. 51.
    Steffensen SC, Henriksen SJ, Wilson MC (1999) Transgenic rescue of SNAP-25 restores dopamine-modulated synaptic transmission in the coloboma mutant. Brain Res 847(2):186–195CrossRefPubMedGoogle Scholar
  52. 52.
    Raber J, Mehta PP, Kreifeldt M, Parsons LH, Weiss F, Bloom FE, Wilson MC (1997) Coloboma hyperactive mutant mice exhibit regional and transmitter-specific deficits in neurotransmission. J Neurochem 68(1):176–186CrossRefPubMedGoogle Scholar
  53. 53.
    Jones MD, Williams ME, Hess EJ (2001) Expression of catecholaminergic mRNAs in the hyperactive mouse mutant coloboma. Brain Res Mol Brain Res 96(1–2):114–121CrossRefPubMedGoogle Scholar
  54. 54.
    Jones MD, Williams ME, Hess EJ (2001) Abnormal presynaptic catecholamine regulation in a hyperactive SNAP-25-deficient mouse mutant. Pharmacol Biochem Behav 68(4):669–676CrossRefPubMedGoogle Scholar
  55. 55.
    Jones MD, Hess EJ (2003) Norepinephrine regulates locomotor hyperactivity in the mouse mutant coloboma. Pharmacol Biochem Behav 75(1):209–216CrossRefPubMedGoogle Scholar
  56. 56.
    Sharp SI, McQuillin A, Marks M, Hunt SP, Stanford SC, Lydall GJ, Morgan MY, Asherson P et al (2014) Genetic association of the tachykinin receptor 1 TACR1 gene in bipolar disorder, attention deficit hyperactivity disorder, and the alcohol dependence syndrome. Am J Med Genet B Neuropsychiatr Genet 165B(4):373–380. doi: 10.1002/ajmg.b.32241 CrossRefPubMedGoogle Scholar
  57. 57.
    Yan TC, Hunt SP, Stanford SC (2009) Behavioural and neurochemical abnormalities in mice lacking functional tachykinin-1 (NK1) receptors: a model of attention deficit hyperactivity disorder. Neuropharmacology 57(7–8):627–635. doi: 10.1016/j.neuropharm.2009.08.021 CrossRefPubMedGoogle Scholar
  58. 58.
    Fisher AS, Stewart RJ, Yan T, Hunt SP, Stanford SC (2007) Disruption of noradrenergic transmission and the behavioural response to a novel environment in NK1R−/− mice. Eur J Neurosci 25(4):1195–1204. doi: 10.1111/j.1460-9568.2007.05369.x CrossRefPubMedGoogle Scholar
  59. 59.
    Herpfer I, Hunt SP, Stanford SC (2005) A comparison of neurokinin 1 receptor knock-out (NK1−/−) and wildtype mice: exploratory behaviour and extracellular noradrenaline concentration in the cerebral cortex of anaesthetised subjects. Neuropharmacology 48(5):706–719. doi: 10.1016/j.neuropharm.2004.12.016 CrossRefPubMedGoogle Scholar
  60. 60.
    Porter AJ, Pillidge K, Tsai YC, Dudley JA, Hunt SP, Peirson SN, Brown LA, Stanford SC (2015) A lack of functional NK1 receptors explains most, but not all, abnormal behaviours of NK1R−/− mice(1). Genes Brain Behav 14(2):189–199. doi: 10.1111/gbb.12195 PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Yan TC, McQuillin A, Thapar A, Asherson P, Hunt SP, Stanford SC, Gurling H (2010) NK1 (TACR1) receptor gene ‘knockout’ mouse phenotype predicts genetic association with ADHD. J Psychopharmacol 24(1):27–38. doi: 10.1177/0269881108100255 PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Dudley JA, Weir RK, Yan TC, Grabowska EM, Grimme AJ, Amini S, Stephens DN, Hunt SP et al (2013) Antagonism of L-type Ca(v) channels with nifedipine differentially affects performance of wildtype and NK1R−/− mice in the 5-choice serial reaction-time task. Neuropharmacology 64:329–336. doi: 10.1016/j.neuropharm.2012.06.056 CrossRefPubMedGoogle Scholar
  63. 63.
    Pillidge K, Porter AJ, Young JW, Stanford SC (2016) Perseveration by NK1R−/− (‘knockout’) mice is blunted by doses of methylphenidate that affect neither other aspects of their cognitive performance nor the behaviour of wild-type mice in the 5-choice continuous performance test. J Psychopharmacol 30(9):837–847. doi: 10.1177/0269881116642541 PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Porter AJ, Pillidge K, Grabowska EM, Stanford SC (2015) The angiotensin converting enzyme inhibitor, captopril, prevents the hyperactivity and impulsivity of neurokinin-1 receptor gene ‘knockout’ mice: sex differences and implications for the treatment of attention deficit hyperactivity disorder. Eur Neuropsychopharmacol 25(4):512–521. doi: 10.1016/j.euroneuro.2015.01.013 PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Yan TC, Dudley JA, Weir RK, Grabowska EM, Pena-Oliver Y, Ripley TL, Hunt SP, Stephens DN et al (2011) Performance deficits of NK1 receptor knockout mice in the 5-choice serial reaction-time task: effects of d-amphetamine, stress and time of day. PLoS One 6(3):e17586. doi: 10.1371/journal.pone.0017586 PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Pillidge K, Porter AJ, Vasili T, Heal DJ, Stanford SC (2014) Atomoxetine reduces hyperactive/impulsive behaviours in neurokinin-1 receptor ‘knockout’ mice. Pharmacol Biochem Behav 127:56–61. doi: 10.1016/j.pbb.2014.10.008 PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Froger N, Gardier AM, Moratalla R, Alberti I, Lena I, Boni C, De Felipe C, Rupniak NM et al (2001) 5-Hydroxytryptamine (5-HT)1A autoreceptor adaptive changes in substance P (neurokinin 1) receptor knock-out mice mimic antidepressant-induced desensitization. J Neurosci 21(20):8188–8197PubMedGoogle Scholar
  68. 68.
    Murtra P, Sheasby AM, Hunt SP, De Felipe C (2000) Rewarding effects of opiates are absent in mice lacking the receptor for substance P. Nature 405(6783):180–183. doi: 10.1038/35012069 CrossRefPubMedGoogle Scholar
  69. 69.
    Siesser WB, Cheng SY, McDonald MP (2005) Hyperactivity, impaired learning on a vigilance task, and a differential response to methylphenidate in the TRbetaPV knock-in mouse. Psychopharmacology 181(4):653–663. doi: 10.1007/s00213-005-0024-5 CrossRefPubMedGoogle Scholar
  70. 70.
    Siesser WB, Zhao J, Miller LR, Cheng SY, McDonald MP (2006) Transgenic mice expressing a human mutant beta1 thyroid receptor are hyperactive, impulsive, and inattentive. Genes Brain Behav 5(3):282–297. doi: 10.1111/j.1601-183X.2005.00161.x CrossRefPubMedGoogle Scholar
  71. 71.
    Hauser P, Zametkin AJ, Martinez P, Vitiello B, Matochik JA, Mixson AJ, Weintraub BD (1993) Attention deficit-hyperactivity disorder in people with generalized resistance to thyroid hormone. N Engl J Med 328(14):997–1001. doi: 10.1056/NEJM199304083281403 CrossRefPubMedGoogle Scholar
  72. 72.
    Bernal J (2002) Action of thyroid hormone in brain. J Endocrinol Investig 25(3):268–288. doi: 10.1007/BF03344003 CrossRefGoogle Scholar
  73. 73.
    Modesto T, Tiemeier H, Peeters RP, Jaddoe VW, Hofman A, Verhulst FC, Ghassabian A (2015) Maternal mild thyroid hormone insufficiency in early pregnancy and attention-deficit/hyperactivity disorder symptoms in children. JAMA Pediatr 169(9):838–845. doi: 10.1001/jamapediatrics.2015.0498 CrossRefPubMedGoogle Scholar
  74. 74.
    McDonald MP, Wong R, Goldstein G, Weintraub B, Cheng SY, Crawley JN (1998) Hyperactivity and learning deficits in transgenic mice bearing a human mutant thyroid hormone beta1 receptor gene. Learn Mem 5(4–5):289–301PubMedCentralPubMedGoogle Scholar
  75. 75.
    Brucker-Davis F, Skarulis MC, Grace MB, Benichou J, Hauser P, Wiggs E, Weintraub BD (1995) Genetic and clinical features of 42 kindreds with resistance to thyroid hormone. The National Institutes of Health Prospective Study. Ann Intern Med 123(8):572–583CrossRefPubMedGoogle Scholar
  76. 76.
    Drerup JM, Hayashi K, Cui H, Mettlach GL, Long MA, Marvin M, Sun X, Goldberg MS et al (2010) Attention-deficit/hyperactivity phenotype in mice lacking the cyclin-dependent kinase 5 cofactor p35. Biol Psychiatry 68(12):1163–1171. doi: 10.1016/j.biopsych.2010.07.016 PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Krapacher FA, Mlewski EC, Ferreras S, Pisano V, Paolorossi M, Hansen C, Paglini G (2010) Mice lacking p35 display hyperactivity and paradoxical response to psychostimulants. J Neurochem 114(1):203–214. doi: 10.1111/j.1471-4159.2010.06748.x PubMedGoogle Scholar
  78. 78.
    Dhariwala FA, Rajadhyaksha MS (2008) An unusual member of the Cdk family: Cdk5. Cell Mol Neurobiol 28(3):351–369. doi: 10.1007/s10571-007-9242-1 CrossRefPubMedGoogle Scholar
  79. 79.
    Cai XH, Tomizawa K, Tang D, Lu YF, Moriwaki A, Tokuda M, Nagahata S, Hatase O et al (1997) Changes in the expression of novel Cdk5 activator messenger RNA (p39nck5ai mRNA) during rat brain development. Neurosci Res 28(4):355–360CrossRefPubMedGoogle Scholar
  80. 80.
    Lew J, Huang QQ, Qi Z, Winkfein RJ, Aebersold R, Hunt T, Wang JH (1994) A brain-specific activator of cyclin-dependent kinase 5. Nature 371(6496):423–426. doi: 10.1038/371423a0 CrossRefPubMedGoogle Scholar
  81. 81.
    Tsai LH, Delalle I, Caviness VS Jr, Chae T, Harlow E (1994) p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371(6496):419–423. doi: 10.1038/371419a0 CrossRefPubMedGoogle Scholar
  82. 82.
    Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna PHC, Brady RO, Martin LJ, Kulkarni AB (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci U S A 93(20):11173–11178PubMedCentralCrossRefPubMedGoogle Scholar
  83. 83.
    Arshad N, Visweswariah SS (2012) The multiple and enigmatic roles of guanylyl cyclase C in intestinal homeostasis. FEBS Lett 586(18):2835–2840. doi: 10.1016/j.febslet.2012.07.028 CrossRefPubMedGoogle Scholar
  84. 84.
    Gong R, Ding C, Hu J, Lu Y, Liu F, Mann E, Xu F, Cohen MB et al (2011) Role for the membrane receptor guanylyl cyclase-C in attention deficiency and hyperactive behavior. Science 333(6049):1642–1646. doi: 10.1126/science.1207675 CrossRefPubMedGoogle Scholar
  85. 85.
    Huang J, Zhong Z, Wang M, Chen X, Tan Y, Zhang S, He W, He X et al (2015) Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behavior. J Neurosci 35(6):2572–2587. doi: 10.1523/JNEUROSCI.2551-14.2015 PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Coogan AN, Baird AL, Popa-Wagner A, Thome J (2016) Circadian rhythms and attention deficit hyperactivity disorder: the what, the when and the why. Prog Neuro-Psychopharmacol Biol Psychiatry 67:74–81. doi: 10.1016/j.pnpbp.2016.01.006 CrossRefGoogle Scholar
  87. 87.
    Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657. doi: 10.1126/science.296.5573.1655 CrossRefPubMedGoogle Scholar
  88. 88.
    Fry MJ (1994) Structure, regulation and function of phosphoinositide 3-kinases. Biochim Biophys Acta 1226(3):237–268CrossRefPubMedGoogle Scholar
  89. 89.
    Choi JH, Park P, Baek GC, Sim SE, Kang SJ, Lee Y, Ahn SH, Lim CS et al (2014) Effects of PI3Kgamma overexpression in the hippocampus on synaptic plasticity and spatial learning. Mol Brain 7:78. doi: 10.1186/s13041-014-0078-6 PubMedCentralCrossRefPubMedGoogle Scholar
  90. 90.
    Kim JI, Lee HR, Sim SE, Baek J, Yu NK, Choi JH, Ko HG, Lee YS et al (2011) PI3Kgamma is required for NMDA receptor-dependent long-term depression and behavioral flexibility. Nat Neurosci 14(11):1447–1454. doi: 10.1038/nn.2937 CrossRefPubMedGoogle Scholar
  91. 91.
    D’Andrea I, Fardella V, Fardella S, Pallante F, Ghigo A, Iacobucci R, Maffei A, Hirsch E et al (2015) Lack of kinase-independent activity of PI3Kgamma in locus coeruleus induces ADHD symptoms through increased CREB signaling. EMBO Mol Med 7(7):904–917. doi: 10.15252/emmm.201404697 PubMedCentralCrossRefPubMedGoogle Scholar
  92. 92.
    Vielhaber E, Eide E, Rivers A, Gao ZH, Virshup DM (2000) Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol Cell Biol 20(13):4888–4899PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P (2004) DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 44:269–296. doi: 10.1146/annurev.pharmtox.44.101802.121415 CrossRefPubMedGoogle Scholar
  94. 94.
    Zhou M, Rebholz H, Brocia C, Warner-Schmidt JL, Fienberg AA, Nairn AC, Greengard P, Flajolet M (2010) Forebrain overexpression of CK1delta leads to down-regulation of dopamine receptors and altered locomotor activity reminiscent of ADHD. Proc Natl Acad Sci U S A 107(9):4401–4406. doi: 10.1073/pnas.0915173107 PubMedCentralCrossRefPubMedGoogle Scholar
  95. 95.
    Davies W, Humby T, Kong W, Otter T, Burgoyne PS, Wilkinson LS (2009) Converging pharmacological and genetic evidence indicates a role for steroid sulfatase in attention. Biol Psychiatry 66(4):360–367. doi: 10.1016/j.biopsych.2009.01.001 PubMedCentralCrossRefPubMedGoogle Scholar
  96. 96.
    Brookes KJ, Hawi Z, Park J, Scott S, Gill M, Kent L (2010) Polymorphisms of the steroid sulfatase (STS) gene are associated with attention deficit hyperactivity disorder and influence brain tissue mRNA expression. Am J Med Genet B Neuropsychiatr Genet 153B(8):1417–1424. doi: 10.1002/ajmg.b.31120 PubMedCentralCrossRefPubMedGoogle Scholar
  97. 97.
    Davies W, Humby T, Trent S, Eddy JB, Ojarikre OA, Wilkinson LS (2014) Genetic and pharmacological modulation of the steroid sulfatase axis improves response control; comparison with drugs used in ADHD. Neuropsychopharmacology 39(11):2622–2632. doi: 10.1038/npp.2014.115 PubMedCentralCrossRefPubMedGoogle Scholar
  98. 98.
    Trent S, Dennehy A, Richardson H, Ojarikre OA, Burgoyne PS, Humby T, Davies W (2012) Steroid sulfatase-deficient mice exhibit endophenotypes relevant to attention deficit hyperactivity disorder. Psychoneuroendocrinology 37(2):221–229. doi: 10.1016/j.psyneuen.2011.06.006 PubMedCentralCrossRefPubMedGoogle Scholar
  99. 99.
    Trent S, Cassano T, Bedse G, Ojarikre OA, Humby T, Davies W (2012) Altered serotonergic function may partially account for behavioral endophenotypes in steroid sulfatase-deficient mice. Neuropsychopharmacology 37(5):1267–1274. doi: 10.1038/npp.2011.314 CrossRefPubMedGoogle Scholar
  100. 100.
    Gong X, Shao Y, Li B, Chen L, Wang C, Chen Y (2015) Gamma-aminobutyric acid transporter-1 is involved in anxiety-like behaviors and cognitive function in knockout mice. Exp Ther Med 10(2):653–658. doi: 10.3892/etm.2015.2577 PubMedCentralCrossRefPubMedGoogle Scholar
  101. 101.
    Yang P, Cai G, Cai Y, Fei J, Liu G (2013) Gamma aminobutyric acid transporter subtype 1 gene knockout mice: a new model for attention deficit/hyperactivity disorder. Acta Biochim Biophys Sin Shanghai 45(7):578–585. doi: 10.1093/abbs/gmt043 CrossRefPubMedGoogle Scholar
  102. 102.
    Chen L, Yang X, Zhou X, Wang C, Gong X, Chen B, Chen Y (2015) Hyperactivity and impaired attention in gamma aminobutyric acid transporter subtype 1 gene knockout mice. Acta Neuropsychiatr 27(6):368–374. doi: 10.1017/neu.2015.37 CrossRefPubMedGoogle Scholar
  103. 103.
    Granon S, Changeux JP (2006) Attention-deficit/hyperactivity disorder: a plausible mouse model? Acta Paediatr 95(6):645–649. doi: 10.1080/08035250600719747 CrossRefPubMedGoogle Scholar
  104. 104.
    Weiss S, Tzavara ET, Davis RJ, Nomikos GG, Michael McIntosh J, Giros B, Martres MP (2007) Functional alterations of nicotinic neurotransmission in dopamine transporter knock-out mice. Neuropharmacology 52(7):1496–1508. doi: 10.1016/j.neuropharm.2007.02.002 CrossRefPubMedGoogle Scholar
  105. 105.
    Potter AS, Schaubhut G, Shipman M (2014) Targeting the nicotinic cholinergic system to treat attention-deficit/hyperactivity disorder: rationale and progress to date. CNS Drugs 28(12):1103–1113. doi: 10.1007/s40263-014-0208-9 PubMedCentralCrossRefPubMedGoogle Scholar
  106. 106.
    Lee J, Laurin N, Crosbie J, Ickowicz A, Pathare T, Malone M, Kennedy JL, Tannock R et al (2008) Association study of the nicotinic acetylcholine receptor alpha4 subunit gene, CHRNA4, in attention-deficit hyperactivity disorder. Genes Brain Behav 7(1):53–60. doi: 10.1111/j.1601-183X.2007.00325.x PubMedGoogle Scholar
  107. 107.
    Mameli-Engvall M, Evrard A, Pons S, Maskos U, Svensson TH, Changeux JP, Faure P (2006) Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors. Neuron 50(6):911–921. doi: 10.1016/j.neuron.2006.05.007 CrossRefPubMedGoogle Scholar
  108. 108.
    Granon S, Faure P, Changeux JP (2003) Executive and social behaviors under nicotinic receptor regulation. Proc Natl Acad Sci U S A 100(16):9596–9601. doi: 10.1073/pnas.1533498100 PubMedCentralCrossRefPubMedGoogle Scholar
  109. 109.
    Guillem K, Bloem B, Poorthuis RB, Loos M, Smit AB, Maskos U, Spijker S, Mansvelder HD (2011) Nicotinic acetylcholine receptor beta2 subunits in the medial prefrontal cortex control attention. Science 333(6044):888–891. doi: 10.1126/science.1207079 CrossRefPubMedGoogle Scholar
  110. 110.
    Gorlich A, Wolf M, Zimmermann AM, Gurniak CB, Al Banchaabouchi M, Sassoe-Pognetto M, Witke W, Friauf E et al (2011) N-cofilin can compensate for the loss of ADF in excitatory synapses. PLoS One 6(10):e26789. doi: 10.1371/journal.pone.0026789 PubMedCentralCrossRefPubMedGoogle Scholar
  111. 111.
    Racz B, Weinberg RJ (2006) Spatial organization of cofilin in dendritic spines. Neuroscience 138(2):447–456. doi: 10.1016/j.neuroscience.2005.11.025 CrossRefPubMedGoogle Scholar
  112. 112.
    Zimmermann AM, Jene T, Wolf M, Gorlich A, Gurniak CB, Sassoe-Pognetto M, Witke W, Friauf E et al (2015) Attention-deficit/hyperactivity disorder-like phenotype in a mouse model with impaired actin dynamics. Biol Psychiatry 78(2):95–106. doi: 10.1016/j.biopsych.2014.03.011 CrossRefPubMedGoogle Scholar
  113. 113.
    Claing A, Perry SJ, Achiriloaie M, Walker JK, Albanesi JP, Lefkowitz RJ, Premont RT (2000) Multiple endocytic pathways of G protein-coupled receptors delineated by GIT1 sensitivity. Proc Natl Acad Sci U S A 97(3):1119–1124PubMedCentralCrossRefPubMedGoogle Scholar
  114. 114.
    Premont RT, Claing A, Vitale N, Freeman JL, Pitcher JA, Patton WA, Moss J, Vaughan M et al (1998) beta2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc Natl Acad Sci U S A 95(24):14082–14087PubMedCentralCrossRefPubMedGoogle Scholar
  115. 115.
    Won H, Mah W, Kim E, Kim JW, Hahm EK, Kim MH, Cho S, Kim J et al (2011) GIT1 is associated with ADHD in humans and ADHD-like behaviors in mice. Nat Med 17(5):566–572. doi: 10.1038/nm.2330 CrossRefPubMedGoogle Scholar
  116. 116.
    Schmalzigaug R, Rodriguiz RM, Bonner PE, Davidson CE, Wetsel WC, Premont RT (2009) Impaired fear response in mice lacking GIT1. Neurosci Lett 458(2):79–83. doi: 10.1016/j.neulet.2009.04.037 PubMedCentralCrossRefPubMedGoogle Scholar
  117. 117.
    Klein M, van der Voet M, Harich B, van Hulzen KJ, Onnink AM, Hoogman M, Guadalupe T, Zwiers M et al, Psychiatric Genomics Consortium AWG (2015) Converging evidence does not support GIT1 as an ADHD risk gene. Am J Med Genet B Neuropsychiatr Genet. doi: 10.1002/ajmg.b.32327
  118. 118.
    Salatino-Oliveira A, Genro JP, Chazan R, Zeni C, Schmitz M, Polanczyk G, Roman T, Rohde LA et al (2012) Association study of GIT1 gene with attention-deficit hyperactivity disorder in Brazilian children and adolescents. Genes Brain Behav 11(7):864–868. doi: 10.1111/j.1601-183X.2012.00835.x CrossRefPubMedGoogle Scholar
  119. 119.
    Goto K, Kondo H (1993) Molecular cloning and expression of a 90-kDa diacylglycerol kinase that predominantly localizes in neurons. Proc Natl Acad Sci U S A 90(16):7598–7602PubMedCentralCrossRefPubMedGoogle Scholar
  120. 120.
    Hozumi Y, Fukaya M, Adachi N, Saito N, Otani K, Kondo H, Watanabe M, Goto K (2008) Diacylglycerol kinase beta accumulates on the perisynaptic site of medium spiny neurons in the striatum. Eur J Neurosci 28(12):2409–2422. doi: 10.1111/j.1460-9568.2008.06547.x CrossRefPubMedGoogle Scholar
  121. 121.
    Caricasole A, Bettini E, Sala C, Roncarati R, Kobayashi N, Caldara F, Goto K, Terstappen GC (2002) Molecular cloning and characterization of the human diacylglycerol kinase beta (DGKbeta) gene: alternative splicing generates DGKbeta isotypes with different properties. J Biol Chem 277(7):4790–4796. doi: 10.1074/jbc.M110249200 CrossRefPubMedGoogle Scholar
  122. 122.
    Ishisaka M, Kakefuda K, Oyagi A, Ono Y, Tsuruma K, Shimazawa M, Kitaichi K, Hara H (2012) Diacylglycerol kinase beta knockout mice exhibit attention-deficit behavior and an abnormal response on methylphenidate-induced hyperactivity. PLoS One 7(5):e37058. doi: 10.1371/journal.pone.0037058 PubMedCentralCrossRefPubMedGoogle Scholar
  123. 123.
    Kakefuda K, Oyagi A, Ishisaka M, Tsuruma K, Shimazawa M, Yokota K, Shirai Y, Horie K et al (2010) Diacylglycerol kinase beta knockout mice exhibit lithium-sensitive behavioral abnormalities. PLoS One 5(10):e13447. doi: 10.1371/journal.pone.0013447 PubMedCentralCrossRefPubMedGoogle Scholar
  124. 124.
    Xie K, Ge S, Collins VE, Haynes CL, Renner KJ, Meisel RL, Lujan R, Martemyanov KA (2012) Gbeta5-RGS complexes are gatekeepers of hyperactivity involved in control of multiple neurotransmitter systems. Psychopharmacology 219(3):823–834. doi: 10.1007/s00213-011-2409-y CrossRefPubMedGoogle Scholar
  125. 125.
    Kazdoba TM, Leach PT, Silverman JL, Crawley JN (2014) Modeling fragile X syndrome in the Fmr1 knockout mouse. Intractable Rare Dis Res 3(4):118–133. doi: 10.5582/irdr.2014.01024 PubMedCentralCrossRefPubMedGoogle Scholar
  126. 126.
    Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S et al (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65(5):905–914CrossRefPubMedGoogle Scholar
  127. 127.
    Hagerman RJ, Hagerman PJ (2002) The fragile X premutation: into the phenotypic fold. Curr Opin Genet Dev 12(3):278–283CrossRefPubMedGoogle Scholar
  128. 128.
    Hatton DD, Hooper SR, Bailey DB, Skinner ML, Sullivan KM, Wheeler A (2002) Problem behavior in boys with fragile X syndrome. Am J Med Genet 108(2):105–116CrossRefPubMedGoogle Scholar
  129. 129.
    Wilding J, Cornish K, Munir F (2002) Further delineation of the executive deficit in males with fragile-X syndrome. Neuropsychologia 40(8):1343–1349CrossRefPubMedGoogle Scholar
  130. 130.
    Moon J, Beaudin AE, Verosky S, Driscoll LL, Weiskopf M, Levitsky DA, Crnic LS, Strupp BJ (2006) Attentional dysfunction, impulsivity, and resistance to change in a mouse model of fragile X syndrome. Behav Neurosci 120(6):1367–1379. doi: 10.1037/0735-7044.120.6.1367 CrossRefPubMedGoogle Scholar
  131. 131.
    Kramvis I, Mansvelder HD, Loos M, Meredith R (2013) Hyperactivity, perseveration and increased responding during attentional rule acquisition in the fragile X mouse model. Front Behav Neurosci 7:172. doi: 10.3389/fnbeh.2013.00172 PubMedCentralCrossRefPubMedGoogle Scholar
  132. 132.
    Wrenn CC, Heitzer AM, Roth AK, Nawrocki L, Valdovinos MG (2015) Effects of clonidine and methylphenidate on motor activity in Fmr1 knockout mice. Neurosci Lett 585:109–113. doi: 10.1016/j.neulet.2014.11.035 CrossRefPubMedGoogle Scholar
  133. 133.
    Filges I, Rothlisberger B, Blattner A, Boesch N, Demougin P, Wenzel F, Huber AR, Heinimann K et al (2011) Deletion in Xp22.11: PTCHD1 is a candidate gene for X-linked intellectual disability with or without autism. Clin Genet 79(1):79–85. doi: 10.1111/j.1399-0004.2010.01590.x CrossRefPubMedGoogle Scholar
  134. 134.
    Chaudhry A, Noor A, Degagne B, Baker K, Bok LA, Brady AF, Chitayat D, Chung BH et al (2015) Phenotypic spectrum associated with PTCHD1 deletions and truncating mutations includes intellectual disability and autism spectrum disorder. Clin Genet 88(3):224–233. doi: 10.1111/cge.12482 CrossRefPubMedGoogle Scholar
  135. 135.
    Wells MF, Wimmer RD, Schmitt LI, Feng G, Halassa MM (2016) Thalamic reticular impairment underlies attention deficit in Ptchd1(Y/−) mice. Nature 532(7597):58–63. doi: 10.1038/nature17427 PubMedCentralCrossRefPubMedGoogle Scholar
  136. 136.
    Gao Y, Heldt SA (2015) Lack of neuronal nitric oxide synthase results in attention deficit hyperactivity disorder-like behaviors in mice. Behav Neurosci 129(1):50–61. doi: 10.1037/bne0000031 PubMedCentralCrossRefPubMedGoogle Scholar
  137. 137.
    Tricoire L, Vitalis T (2012) Neuronal nitric oxide synthase expressing neurons: a journey from birth to neuronal circuits. Front Neural Circuits 6:82. doi: 10.3389/fncir.2012.00082 PubMedCentralCrossRefPubMedGoogle Scholar
  138. 138.
    Reif A, Jacob CP, Rujescu D, Herterich S, Lang S, Gutknecht L, Baehne CG, Strobel A et al (2009) Influence of functional variant of neuronal nitric oxide synthase on impulsive behaviors in humans. Arch Gen Psychiatry 66(1):41–50. doi: 10.1001/archgenpsychiatry.2008.510 CrossRefPubMedGoogle Scholar
  139. 139.
    Wess J (1996) Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol 10(1):69–99CrossRefPubMedGoogle Scholar
  140. 140.
    Buckley NJ, Bonner TI, Brann MR (1988) Localization of a family of muscarinic receptor mRNAs in rat brain. J Neurosci 8(12):4646–4652CrossRefPubMedGoogle Scholar
  141. 141.
    Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ (1995) Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci 15(5 Pt 2):4077–4092CrossRefPubMedGoogle Scholar
  142. 142.
    Gerber DJ, Sotnikova TD, Gainetdinov RR, Huang SY, Caron MG, Tonegawa S (2001) Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci U S A 98(26):15312–15317. doi: 10.1073/pnas.261583798 PubMedCentralCrossRefPubMedGoogle Scholar
  143. 143.
    Miyakawa T, Yamada M, Duttaroy A, Wess J (2001) Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci 21(14):5239–5250PubMedGoogle Scholar
  144. 144.
    Do CB, Tung JY, Dorfman E, Kiefer AK, Drabant EM, Francke U, Mountain JL, Goldman SM et al (2011) Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson’s disease. PLoS Genet 7(6):e1002141. doi: 10.1371/journal.pgen.1002141 PubMedCentralCrossRefPubMedGoogle Scholar
  145. 145.
    Heinzen EL, Need AC, Hayden KM, Chiba-Falek O, Roses AD, Strittmatter WJ, Burke JR, Hulette CM et al (2010) Genome-wide scan of copy number variation in late-onset Alzheimer’s disease. J Alzheimers Dis 19(1):69–77. doi: 10.3233/JAD-2010-1212 PubMedCentralCrossRefPubMedGoogle Scholar
  146. 146.
    Vrijenhoek T, Buizer-Voskamp JE, van der Stelt I, Strengman E, Genetic R, Outcome in Psychosis C, Sabatti C, Geurts van Kessel A, Brunner HG et al (2008) Recurrent CNVs disrupt three candidate genes in schizophrenia patients. Am J Hum Genet 83(4):504–510. doi: 10.1016/j.ajhg.2008.09.011 PubMedCentralCrossRefPubMedGoogle Scholar
  147. 147.
    Kawano H, Nakatani T, Mori T, Ueno S, Fukaya M, Abe A, Kobayashi M, Toda F et al (2004) Identification and characterization of novel developmentally regulated neural-specific proteins, BRINP family. Brain Res Mol Brain Res 125(1–2):60–75. doi: 10.1016/j.molbrainres.2004.04.001 CrossRefPubMedGoogle Scholar
  148. 148.
    Kobayashi M, Nakatani T, Koda T, Matsumoto K, Ozaki R, Mochida N, Takao K, Miyakawa T et al (2014) Absence of BRINP1 in mice causes increase of hippocampal neurogenesis and behavioral alterations relevant to human psychiatric disorders. Mol Brain 7:12. doi: 10.1186/1756-6606-7-12 PubMedCentralCrossRefPubMedGoogle Scholar
  149. 149.
    Berkowicz SR, Featherby TJ, Qu Z, Giousoh A, Borg NA, Heng JI, Whisstock JC, Bird PI (2016) Brinp1(−/−) mice exhibit autism-like behaviour, altered memory, hyperactivity and increased parvalbumin-positive cortical interneuron density. Mol Autism 7:22. doi: 10.1186/s13229-016-0079-7 PubMedCentralCrossRefPubMedGoogle Scholar
  150. 150.
    Rivero O, Sich S, Popp S, Schmitt A, Franke B, Lesch KP (2013) Impact of the ADHD-susceptibility gene CDH13 on development and function of brain networks. Eur Neuropsychopharmacol 23(6):492–507. doi: 10.1016/j.euroneuro.2012.06.009 CrossRefPubMedGoogle Scholar
  151. 151.
    Uhl GR, Drgon T, Johnson C, Li CY, Contoreggi C, Hess J, Naiman D, Liu QR (2008) Molecular genetics of addiction and related heritable phenotypes: genome-wide association approaches identify “connectivity constellation” and drug target genes with pleiotropic effects. Ann N Y Acad Sci 1141:318–381. doi: 10.1196/annals.1441.018 PubMedCentralCrossRefPubMedGoogle Scholar
  152. 152.
    Drgonova J, Walther D, Hartstein GL, Bukhari MO, Baumann MH, Katz J, Hall FS, Arnold ER et al (2016) Cadherin 13: human cis-regulation and selectively-altered addiction phenotypes and cerebral cortical dopamine in knockout mice. Mol Med 22. doi: 10.2119/molmed.2015.00170
  153. 153.
    Rivero O, Selten MM, Sich S, Popp S, Bacmeister L, Amendola E, Negwer M, Schubert D et al (2015) Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition. Transl Psychiatry 5:e655. doi: 10.1038/tp.2015.152 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Uimyung Research Institute for Neuroscience, Department of PharmacySahmyook UniversitySeoulRepublic of Korea

Personalised recommendations