Molecular Neurobiology

, Volume 55, Issue 5, pp 3841–3855 | Cite as

Rab21, a Novel PS1 Interactor, Regulates γ-Secretase Activity via PS1 Subcellular Distribution

  • Zhenzhen Sun
  • Yujie Xie
  • Yintong Chen
  • Qinghu Yang
  • Zhenzhen Quan
  • Rongji Dai
  • Hong QingEmail author


γ-Secretase has been a therapeutical target for its key role in cleaving APP to generate β-amyloid (Aβ), the primary constituents of senile plaques and a hallmark of Alzheimer’s disease (AD) pathology. Recently, γ-secretase-associating proteins showed promising role in specifically modulating APP processing while sparing Notch signaling; however, the underlying mechanism is still unclear. A co-immunoprecipitation (Co-IP) coupled with mass spectrometry proteomic assay for Presenilin1 (PS1, the catalytic subunit of γ-secretase) was firstly conducted to find more γ-secretase-associating proteins. Gene ontology analysis of these results identified Rab21 as a potential PS1 interacting protein, and the interaction between them was validated by reciprocal Co-IP and immunofluorescence assay. Then, molecular and biochemical methods were used to investigate the effect of Rab21 on APP processing. Results showed that overexpression of Rab21 enhanced Aβ generation, while silencing of Rab21 reduced the accumulation of Aβ, which resulted due to change in γ-secretase activity rather than α- or β-secretase. Finally, we demonstrated that Rab21 had no effect on γ-secretase complex synthesis or metabolism but enhanced PS1 endocytosis and translocation to late endosome/lysosome. In conclusion, we identified a novel γ-secretase-associating protein Rab21 and illustrate that Rab21 promotes γ-secretase internalization and translocation to late endosome/lysosome. Moreover, silencing of Rab21 decreases the γ-secretase activity in APP processing thus production of Aβ. All these results open new gateways towards the understanding of γ-secretase-associating proteins in APP processing and make inhibition of Rab21 a promising strategy for AD therapy.


Alzheimer’s disease γ-Secretase Presenilin 1 Co-IP/MS/MS Rab21 Endocytosis 




Alzheimer’s disease


Amyloid precursor protein


C-Terminal Fragment of APP


anterior pharynx-defective 1


β-site APP cleaving enzyme 1




phosphatidylinositol binding clathrin assembly protein


Early endosome


Early endosome antigen1


familial Alzheimer’s disease




Full length Presenilin1


C terminus of Presenilin1


N terminus of Presenilin1


Presenilin enhancer-2




Lysosome-associated membrane protein1


Late endosome


short hairpin RNA


short hairpin RNA of Rab21


trans Golgi network.



We thank Talal Jamil Qazi and Kefu Liu for their help in manuscript drafting. This study was supported by the National Natural Science Foundation of China (81671268), the National Key Scientific Instrument and Equipment Development Project (2013YQ03059514), China Postdoctoral Science Foundation funded project (2016M600931), and a grant from Beijing municipal science and technology commission (Z161100002616020).

Authors’ Contributions

Zhenzhen Sun and Hong Qing designed the study. Zhenzhen Sun, Yujie Xie, and Yintong Chen performed the experiment. Zhenzhen Sun analyzed the data and wrote the manuscript. Qinghu Yang and Zhenzhen Quan helped to revise the manuscript. Dai Rongji provided assistance in data analysis.

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

Supplementary material

12035_2017_606_MOESM1_ESM.docx (584 kb)
Fig. S1 Effect of Rab21 on APP processing in 2 EB2 cells. (DOCX 583 kb)
12035_2017_606_MOESM2_ESM.docx (1.8 mb)
Fig. S2 The immunostaining of PS1 on cell membrane by three different anti-PS1 antibody. (DOCX 1794 kb)
12035_2017_606_MOESM3_ESM.docx (26 kb)
Table S1 The list of primers for qPCR. (DOCX 26 kb)
12035_2017_606_MOESM4_ESM.docx (36 kb)
Table S2 The list of potential PS1 interacting proteins. (DOCX 35 kb)


  1. 1.
    Prince M, Comas-Herrera A, Knapp M, Guerchet M, Karagiannidou M (2016) World Alzheimer Report 2016, Improving healthcare for people living with dementia: Coverage, quality and costs now and in the future. Alzheimers Dis Int 1–140Google Scholar
  2. 2.
    Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12(10):383–388CrossRefPubMedGoogle Scholar
  3. 3.
    Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM (2016) Alzheimer’s disease. Lancet 388(10043):505–517. doi: 10.1016/s0140-6736(15)01124-1 CrossRefPubMedGoogle Scholar
  4. 4.
    Takami M, Nagashima Y, Sano Y, Ishihara S, Morishima-Kawashima M, Funamoto S, Ihara Y (2009) Gamma-secretase: Successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment. J Neurosci 29(41):13042–13052. doi: 10.1523/JNEUROSCI.2362-09.2009 CrossRefPubMedGoogle Scholar
  5. 5.
    De Strooper B (2003) Aph-1, pen-2, and Nicastrin with Presenilin generate an active gamma-secretase complex. Neuron 38(1):9–12CrossRefPubMedGoogle Scholar
  6. 6.
    Piaceri I, Nacmias B, Sorbi S (2013) Genetics of familial and sporadic Alzheimer’s disease. Front Biosci 5:167–177CrossRefGoogle Scholar
  7. 7.
    Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada CM, Kim G et al (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron 17(5):1005–1013CrossRefPubMedGoogle Scholar
  8. 8.
    Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2(8):864–870CrossRefPubMedGoogle Scholar
  9. 9.
    De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Von Figura K, Van Leuven F (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391(6665):387–390. doi: 10.1038/34910 CrossRefPubMedGoogle Scholar
  10. 10.
    Dewachter I, Reverse D, Caluwaerts N, Ris L, Kuiperi C, Van den Haute C, Spittaels K, Umans L et al (2002) Neuronal deficiency of presenilin 1 inhibits amyloid plaque formation and corrects hippocampal long-term potentiation but not a cognitive defect of amyloid precursor protein [V717I] transgenic mice. J Neurosci 22(9):3445–3453 doi: 20026290 PubMedGoogle Scholar
  11. 11.
    Bergmans BA, De Strooper B (2010) Gamma-secretases: From cell biology to therapeutic strategies. Lancet Neurol 9(2):215–226CrossRefPubMedGoogle Scholar
  12. 12.
    Imbimbo BP, Panza F, Frisardi V, Solfrizzi V, D’Onofrio G, Logroscino G, Seripa D, Pilotto A (2011) Therapeutic intervention for Alzheimer’s disease with gamma-secretase inhibitors: Still a viable option? Expert Opin Investig Drugs 20(3):325–341. doi: 10.1517/13543784.2011.550572 CrossRefPubMedGoogle Scholar
  13. 13.
    Albright CF, Dockens RC, Meredith JE Jr, Olson RE, Slemmon R, Lentz KA, Wang JS, Denton RR et al (2013) Pharmacodynamics of selective inhibition of gamma-secretase by avagacestat. J Pharmacol Exp Ther 344(3):686–695. doi: 10.1124/jpet.112.199356 CrossRefPubMedGoogle Scholar
  14. 14.
    Coric V, van Dyck CH, Salloway S, Andreasen N, Brody M, Richter RW, Soininen H, Thein S et al (2012) Safety and tolerability of the gamma-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch Neurol 69(11):1430–1440. doi: 10.1001/archneurol.2012.2194 CrossRefPubMedGoogle Scholar
  15. 15.
    Coric V, Salloway S, van Dyck CH, Dubois B, Andreasen N, Brody M, Curtis C, Soininen H et al (2015) Targeting prodromal Alzheimer disease with Avagacestat: A randomized clinical trial. JAMA Neurol 72(11):1324–1333. doi: 10.1001/jamaneurol.2015.0607 CrossRefPubMedGoogle Scholar
  16. 16.
    Doody RS, Raman R, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, He F et al (2013) A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med 369(4):341–350. doi: 10.1056/NEJMoa1210951 CrossRefPubMedGoogle Scholar
  17. 17.
    Karran E, Hardy J (2014) A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease. Ann Neurol 76(2):185–205. doi: 10.1002/ana.24188 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Crump CJ, Castro SV, Wang F, Pozdnyakov N, Ballard TE, Sisodia SS, Bales KR, Johnson DS et al (2012) BMS-708, 163 targets presenilin and lacks notch-sparing activity. Biochemistry 51(37):7209–7211. doi: 10.1021/bi301137h CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chavez-Gutierrez L, Bammens L, Benilova I, Vandersteen A, Benurwar M, Borgers M, Lismont S, Zhou L et al (2012) The mechanism of gamma-secretase dysfunction in familial Alzheimer disease. EMBO J 31(10):2261–2274. doi: 10.1038/emboj.2012.79 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    De Strooper B (2014) Lessons from a failed gamma-secretase Alzheimer trial. Cell 159(4):721–726. doi: 10.1016/j.cell.2014.10.016 CrossRefPubMedGoogle Scholar
  21. 21.
    McCarthy JV, Twomey C, Wujek P (2009) Presenilin-dependent regulated intramembrane proteolysis and gamma-secretase activity. Cell Mol Life Sci 66(9):1534–1555. doi: 10.1007/s00018-009-8435-9 CrossRefPubMedGoogle Scholar
  22. 22.
    Wakabayashi T, De Strooper B (2008) Presenilins: Members of the gamma-secretase quartets, but part-time soloists too. Physiology (Bethesda) 23:194–204. doi: 10.1152/physiol.00009.2008 Google Scholar
  23. 23.
    Ni Y, Zhao X, Bao G, Zou L, Teng L, Wang Z, Song M, Xiong J et al (2006) Activation of beta2-adrenergic receptor stimulates gamma-secretase activity and accelerates amyloid plaque formation. Nat Med 12(12):1390–1396. doi: 10.1038/nm1485 CrossRefPubMedGoogle Scholar
  24. 24.
    Thathiah A, Spittaels K, Hoffmann M, Staes M, Cohen A, Horre K, Vanbrabant M, Coun F et al (2009) The orphan G protein-coupled receptor 3 modulates amyloid-Beta peptide generation in neurons. Science 323(5916):946–951. doi: 10.1126/science.1160649 CrossRefPubMedGoogle Scholar
  25. 25.
    Kanatsu K, Morohashi Y, Suzuki M, Kuroda H, Watanabe T, Tomita T, Iwatsubo T (2014) Decreased CALM expression reduces Abeta42 to total Abeta ratio through clathrin-mediated endocytosis of gamma-secretase. Nat Commun 5:3386. doi: 10.1038/ncomms4386 CrossRefPubMedGoogle Scholar
  26. 26.
    De Strooper B, Annaert W (2010) Novel research horizons for presenilins and gamma-secretases in cell biology and disease. Annu Rev Cell Dev Biol 26:235–260. doi: 10.1146/annurev-cellbio-100109-104117 CrossRefPubMedGoogle Scholar
  27. 27.
    Jiang S, Li Y, Zhang X, Bu G, Xu H, Y-w Z (2014) Trafficking regulation of proteins in Alzheimer’s disease. Mol Neurodegener 9:6. doi: 10.1186/1750-1326-9-6 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pasternak SH, Bagshaw RD, Guiral M, Zhang S, Ackerley CA, Pak BJ, Callahan JW, Mahuran DJ (2003) Presenilin-1, nicastrin, amyloid precursor protein, and gamma-secretase activity are co-localized in the lysosomal membrane. J Biol Chem 278(29):26687–26694. doi: 10.1074/jbc.M212192200 CrossRefPubMedGoogle Scholar
  29. 29.
    Teng L, Zhao J, Wang F, Ma L, Pei G (2010) A GPCR/secretase complex regulates beta- and gamma-secretase specificity for a beta production and contributes to AD pathogenesis. Cell Res 20(2):138–153. doi: 10.1038/cr.2010.3 CrossRefPubMedGoogle Scholar
  30. 30.
    Thathiah A, Horré K, Snellinx A, Vandewyer E, Huang Y, Ciesielska M, De Kloe G, Munck S et al (2012) [beta]-arrestin 2 regulates a [beta] generation and [gamma]-secretase activity in Alzheimer’s disease. Nat Med 19:43–49CrossRefPubMedGoogle Scholar
  31. 31.
    Sannerud R, Esselens C, Ejsmont P, Mattera R, Rochin L, Tharkeshwar AK, De Baets G, De Wever V et al (2016) Restricted location of PSEN2/gamma-secretase determines substrate specificity and generates an intracellular Abeta pool. Cell 166(1):193–208. doi: 10.1016/j.cell.2016.05.020 CrossRefPubMedGoogle Scholar
  32. 32.
    Chen F, Hasegawa H, Schmitt-Ulms G, Kawarai T, Bohm C, Katayama T, Gu Y, Sanjo N et al (2006) TMP21 is a presenilin complex component that modulates [gamma]-secretase but not [epsiv]-secretase activity. Nature 440(7088):1208–1212 CrossRefPubMedGoogle Scholar
  33. 33.
    Bromley-Brits K, Song WH (2012) The role of TMP21 in trafficking and amyloid-beta precursor protein (APP) processing in Alzheimer’s disease. Curr Alzheimer Res 9(4):411–424CrossRefPubMedGoogle Scholar
  34. 34.
    Ginsberg SD, Alldred MJ, Counts SE, Cataldo AM, Neve RL, Jiang Y, Wuu J, Chao MV et al (2010) Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer’s disease progression. Biol Psychiatry 68(10):885–893. doi: 10.1016/j.biopsych.2010.05.030 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ginsberg SD, Mufson EJ, Counts SE, Wuu J, Alldred MJ, Nixon RA, Che S (2010) Regional selectivity of rab5 and rab7 protein upregulation in mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimer’s disease: JAD 22(2):631–639. doi: 10.3233/jad-2010-101080 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Grbovic OM, Mathews PM, Jiang Y, Schmidt SD, Dinakar R, Summers-Terio NB, Ceresa BP, Nixon RA et al (2003) Rab5-stimulated up-regulation of the endocytic pathway increases intracellular beta-cleaved amyloid precursor protein carboxyl-terminal fragment levels and Abeta production. J Biol Chem 278(33):31261–31268. doi: 10.1074/jbc.M304122200 CrossRefPubMedGoogle Scholar
  37. 37.
    Udayar V, Buggia-Prevot V, Guerreiro RL, Siegel G, Rambabu N, Soohoo AL, Ponnusamy M, Siegenthaler B et al (2013) A paired RNAi and RabGAP overexpression screen identifies Rab11 as a regulator of beta-amyloid production. Cell Rep 5(6):1536–1551. doi: 10.1016/j.celrep.2013.12.005 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Dumanchin C, Czech C, Campion D, Cuif MH, Poyot T, Martin C, Charbonnier F, Goud B et al (1999) Presenilins interact with Rab11, a small GTPase involved in the regulation of vesicular transport. Hum Mol Genet 8(7):1263–1269CrossRefPubMedGoogle Scholar
  39. 39.
    Jean S, Cox S, Schmidt EJ, Robinson FL, Kiger A (2012) Sbf/MTMR13 coordinates PI(3)P and Rab21 regulation in endocytic control of cellular remodeling. Mol Biol Cell 23(14):2723–2740. doi: 10.1091/mbc.E12-05-0375 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ali M, Leung KF, Field MC (2014) The ancient small GTPase Rab21 functions in intermediate endocytic steps in trypanosomes. Eukaryot Cell 13(2):304–319. doi: 10.1128/ec.00269-13 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jean S, Cox S, Nassari S, Kiger AA (2015) Starvation-induced MTMR13 and RAB21 activity regulates VAMP8 to promote autophagosome-lysosome fusion. EMBO Rep 16(3):297–311. doi: 10.15252/embr.201439464 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pellinen T, Tuomi S, Arjonen A, Wolf M, Edgren H, Meyer H, Grosse R, Kitzing T et al (2008) Integrin trafficking regulated by Rab21 is necessary for cytokinesis. Dev Cell 15(3):371–385. doi: 10.1016/j.devcel.2008.08.001 CrossRefPubMedGoogle Scholar
  43. 43.
    Simpson JC, Griffiths G, Wessling-Resnick M, Fransen JAM, Bennett H, Jones AT (2004) A role for the small GTPase Rab21 in the early endocytic pathway. J Cell Sci 117(26):6297–6311. doi: 10.1242/jcs.01560 CrossRefPubMedGoogle Scholar
  44. 44.
    Farmery MR, Tjernberg LO, Pursglove SE, Bergman A, Winblad B, Naslund J (2003) Partial purification and characterization of gamma-secretase from post-mortem human brain. J Biol Chem 278(27):24277–24284. doi: 10.1074/jbc.M211992200 CrossRefPubMedGoogle Scholar
  45. 45.
    Waugh MG (2013) Raft-like membranes from the trans-Golgi network and endosomal compartments. Nat Protoc 8(12):2429–2439. doi: 10.1038/nprot.2013.148 CrossRefPubMedGoogle Scholar
  46. 46.
    Vetrivel KS, Cheng H, Lin W, Sakurai T, Li T, Nukina N, Wong PC, Xu H et al (2004) Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes. J Biol Chem 279(43):44945–44954. doi: 10.1074/jbc.M407986200 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fukumori A, Okochi M, Tagami S, Jiang J, Itoh N, Nakayama T, Yanagida K, Ishizuka-Katsura Y et al (2006) Presenilin-dependent gamma-secretase on plasma membrane and endosomes is functionally distinct. Biochemistry 45(15):4907–4914. doi: 10.1021/bi052412w CrossRefPubMedGoogle Scholar
  48. 48.
    Yang X, Zhang Y, Li S, Liu C, Jin Z, Wang Y, Ren F, Chang Z (2012) Rab21 attenuates EGF-mediated MAPK signaling through enhancing EGFR internalization and degradation. Biochem Biophys Res Commun 421(4):651–657. doi: 10.1016/j.bbrc.2012.04.049 CrossRefPubMedGoogle Scholar
  49. 49.
    Buggia-Prevot V, Fernandez CG, Riordan S, Vetrivel KS, Roseman J, Waters J, Bindokas VP, Vassar R et al (2014) Axonal BACE1 dynamics and targeting in hippocampal neurons: A role for Rab11 GTPase. Mol Neurodegener 9:1. doi: 10.1186/1750-1326-9-1 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lopez-Perez E, Dumanchin C, Czech C, Campion D, Goud B, Pradier L, Frebourg T, Checler F (2000) Overexpression of Rab11 or constitutively active Rab11 does not affect sAPPalpha and Abeta secretions by wild-type and Swedish mutated betaAPP-expressing HEK293 cells. Biochem Biophys Res Commun 275(3):910–915. doi: 10.1006/bbrc.2000.3404 CrossRefPubMedGoogle Scholar
  51. 51.
    Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y (1994) Visualization of a beta 42(43) and a beta 40 in senile plaques with end-specific a beta monoclonals: Evidence that an initially deposited species is a beta 42(43). Neuron 13(1):45–53CrossRefPubMedGoogle Scholar
  52. 52.
    Li N, Liu K, Qiu Y, Ren Z, Dai R, Deng Y, Qing H (2016) Effect of Presenilin mutations on APP cleavage; insights into the pathogenesis of FAD. Front Aging Neurosci 8:51. doi: 10.3389/fnagi.2016.00051 PubMedPubMedCentralGoogle Scholar
  53. 53.
    Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I et al (1992) Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature 360(6405):672–674. doi: 10.1038/360672a0 CrossRefPubMedGoogle Scholar
  54. 54.
    Huang Y, Skwarek-Maruszewska A, Horre K, Vandewyer E, Wolfs L, Snellinx A, Saito T, Radaelli E et al (2015) Loss of GPR3 reduces the amyloid plaque burden and improves memory in Alzheimer’s disease mouse models. Sci Transl Med 7(309):309ra164. doi: 10.1126/scitranslmed.aab3492 CrossRefPubMedGoogle Scholar
  55. 55.
    Emmanuel M, Nakano YS, Nozaki T, Datta S (2015) Small GTPase Rab21 mediates fibronectin induced actin reorganization in Entamoeba histolytica: Implications in pathogen invasion. PLoS Pathog 11(3):e1004666. doi: 10.1371/journal.ppat.1004666 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Nagano M, Toshima JY, Toshima J (2015) Rab GTPases networks in membrane traffic in Saccharomyces cerevisiae. Yakugaku zasshi : J Pharm Soc Jpn 135(3):483–492. doi: 10.1248/yakushi.14-00246 CrossRefGoogle Scholar
  57. 57.
    Feng Y, Press B, Wandinger-Ness A (1995) Rab 7: An important regulator of late endocytic membrane traffic. J Cell Biol 131(6 Pt 1):1435–1452CrossRefPubMedGoogle Scholar
  58. 58.
    Guerra F, Bucci C (2016) Multiple roles of the small GTPase Rab7. Cell 5(3). doi: 10.3390/cells5030034
  59. 59.
    Mai A, Veltel S, Pellinen T, Padzik A, Coffey E, Marjomaki V, Ivaska J (2011) Competitive binding of Rab21 and p120RasGAP to integrins regulates receptor traffic and migration. J Cell Biol 194(2):291–306. doi: 10.1083/jcb.201012126 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Life ScienceBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations