Molecular Neurobiology

, Volume 55, Issue 5, pp 3866–3874 | Cite as

Manganese(II) Chloride Alters Nucleotide and Nucleoside Catabolism in Zebrafish (Danio rerio) Adult Brain

  • Stefani Altenhofen
  • Débora Dreher Nabinger
  • Talita Carneiro Brandão Pereira
  • Carlos Eduardo Leite
  • Maurício Reis Bogo
  • Carla Denise Bonan
Article
  • 278 Downloads

Abstract

ATP and adenosine, the main signaling molecules of purinergic system, are involved in toxicological effects induced by metals. The manganese (Mn) exposure induces several cellular changes, which could interfere with signaling pathways, such as the purinergic system. In this study, we evaluated the effects of exposure to manganese(II) chloride (MnCl2) during 96 h on nucleoside triphosphate diphosphohydrolase (NTPDase), ecto-5′-nucleotidase, and adenosine deaminase (ADA) activities, followed by analyzing the gene expression patterns of NTPDases (entpd1, entpd2a.1, entpd2a.2, entpd2-like, entpd3) and ADA (ADA 1 , ADA 2.1 , ADA 2.2 , ADAasi, ADAL) families in zebrafish brain. In addition, the brain metabolism of nucleotides and nucleosides was evaluated after MnCl2 exposure. The results showed that MnCl2 exposure during 96 h inhibited the NTPDase (1.0 and 1.5 mM) and ecto-ADA (0.5, 1.0, and 1.5 mM) activities, further decreasing ADA2.1 expression at all MnCl2 concentrations analyzed. Purine metabolism was also altered by the action of MnCl2. An increased amount of ADP appeared at all MnCl2 concentrations analyzed; however, AMP and adenosine levels are decreased at the concentrations of 1.0 and 1.5 mM MnCl2, whereas decreased inosine (INO) levels were observed at all concentrations tested. The findings of this study demonstrated that MnCl2 may inhibit NTPDase and ecto-ADA activities, consequently modulating nucleotide and nucleoside levels, which may contribute for the toxicological effects induced by this metal.

Keywords

Adenosine deaminase Manganese(II) chloride NTPDases Purinergic signaling Zebrafish 

Notes

Acknowledgments

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Proc. 446025/2014-3). S.A., D.D.N., and T.C.B.P. were the recipient of a fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). M.R.B and C.D.B were recipients of a fellowship from CNPq.

References

  1. 1.
    Agteresch HJ, Dagnelie PC, van den Berg JW, Wilson J (1999) Adenosine triphosphate: established and potential clinical applications. Drugs 58:211–232. doi: 10.2165/00003495-199958020-00002 CrossRefPubMedGoogle Scholar
  2. 2.
    Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:231–304. doi: 10.1016/S0074-7696(04)40002-3 Google Scholar
  3. 3.
    Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581PubMedGoogle Scholar
  4. 4.
    Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7:575–590. doi: 10.1038/nrd2605 CrossRefPubMedGoogle Scholar
  5. 5.
    Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492PubMedGoogle Scholar
  6. 6.
    Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2 purinoceptor? Gen Pharmacol 16:433–440. doi: 10.1016/0306-3623(85)90001-1 CrossRefPubMedGoogle Scholar
  7. 7.
    Burnstock G (2012) Purinergic signalling: its unpopular beginning, its acceptance and its exciting future. BioEssays 34:218–225. doi: 10.1002/bies.201100130 CrossRefPubMedGoogle Scholar
  8. 8.
    Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436. doi: 10.1038/nrn1928 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Möller T, Kann O, Verkhratsky A, Kettenmann H (2000) Activation of mouse microglial cells affects P2 receptor signaling. Brain Res 853:49–59. doi: 10.1016/S0006-8993(99)02244-1 CrossRefPubMedGoogle Scholar
  10. 10.
    North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067. doi: 10.1152/physrev.00015.2002 CrossRefPubMedGoogle Scholar
  11. 11.
    North RA, Verkhratsky A (2006) Purinergic transmission in the central nervous system. Pflugers Arch 452:479–485. doi: 10.1007/s00424-006-0060-y CrossRefPubMedGoogle Scholar
  12. 12.
    Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483. doi: 10.1007/s00018-007-6497-0 CrossRefPubMedGoogle Scholar
  13. 13.
    Díaz-Hernández M, Pintor J, Castro E, Miras-Portugal MT (2002) Co-localisation of functional nicotinic and ionotropic nucleotide receptors in isolated cholinergic synaptic terminals. Neuropharmacology 42:20–33. doi: 10.1016/S0028-3908(01)00157-5 CrossRefPubMedGoogle Scholar
  14. 14.
    Zimmermann H (2011) Purinergic signaling in neural development. Semin Cell Dev Biol 22:194–204. doi: 10.1016/j.semcdb.2011.02.007 CrossRefPubMedGoogle Scholar
  15. 15.
    Bonan CD (2012) Ectonucleotidases and nucleotide/nucleoside transporters as pharmacological targets for neurological disorders. CNS Neurol Disord Drug Targets 11:739–750. doi: 10.2174/187152712803581092 CrossRefPubMedGoogle Scholar
  16. 16.
    Mulero JJ, Yeung G, Nelken ST, Ford JE (1999) CD39-L4 is a secreted human apyrase, specific for the hydrolysis of nucleoside diphosphates. J Biol Chem 274:20064–20067. doi: 10.1074/jbc.274.29.20064 CrossRefPubMedGoogle Scholar
  17. 17.
    Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430. doi: 10.1007/s11302-006-9003-5 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang TF, Guidotti G (1998) Golgi localization and functional expression of human uridine diphosphatase. J Biol Chem 273:11392–11399. doi: 10.1074/jbc.273.18.11392 CrossRefPubMedGoogle Scholar
  19. 19.
    Kluge H, Hartmenn W, Wieczorek V, Zahlten W, Gröschel W (1972) Kinetic properties of cerebral 5′-nucleotidase. J Neurochem 19:1409–1411. doi: 10.1111/j.1471-4159.1972.tb01468.x CrossRefPubMedGoogle Scholar
  20. 20.
    Zimmermann H (1996) Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Prog Neurobiol 49:589–618. doi: 10.1016/0301-0082(96)00026-3 CrossRefPubMedGoogle Scholar
  21. 21.
    El Yacoubi M, Ledent C, Menard JF, Parmentier M, Costentin J, Vaugeois JM (2000) The stimulant effects of caffeine on locomotor behaviour in mice are mediated through its blockade of adenosine A(2A) receptors. Br J Pharmacol 129:1465–1473. doi: 10.1038/sj.bjp.0703170 CrossRefPubMedGoogle Scholar
  22. 22.
    Maximino C, Lima MG, Olivera KR, Picanço-Diniz DL, Herculano AM (2011) Adenosine A1, but not A2, receptor blockade increases anxiety and arousal in zebrafish. Basic Clin Pharmacol Toxicol 109:203–207. doi: 10.1111/j.1742-7843.2011.00710.x CrossRefPubMedGoogle Scholar
  23. 23.
    Bortolotto JW, Melo GM, Cognato GP, Vianna MR, Bonan CD (2015) Modulation of adenosine signaling prevents scopolamine-induced cognitive impairment in zebrafish. Neurobiol Learn Mem 118:113–119. doi: 10.1016/j.nlm.2014.11.016 CrossRefPubMedGoogle Scholar
  24. 24.
    Wei CJ, Singer P, Coelho J, Boison D, Feldon J, Yee BK, Chen JF (2011) Selective inactivation of adenosine A(2A) receptors in striatal neurons enhances working memory and reversal learning. Learn Mem 18:459–474. doi: 10.1101/lm.2136011 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Daly JW (1985) Adenosine receptors. Adv Cyclic Nucleotide Protein Phosphorylation Res 19:29–46PubMedGoogle Scholar
  26. 26.
    Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63:1–34. doi: 10.1124/pr.110.003285 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Franco R, Casadó V, Ciruela F, Saura C, Mallol J, Canela EI, Lluis C (1997) Cell surface adenosine deaminase: much more than an ectoenzyme. Prog Neurobiol 52:283–294. doi: 10.1124/pr.110.003285 CrossRefPubMedGoogle Scholar
  28. 28.
    Haskó G, Kuhel DG, Németh ZH, Mabley JG, Stachlewitz RF, Virág L, Lohinai Z, Southan GJ et al (2000) Inosine inhibits inflammatory cytokine production by a posttranscriptional mechanism and protects against endotoxin-induced shock. J Immunol 164:1013–1019. doi: 10.4049/jimmunol.164.2.1013
  29. 29.
    Ipata PL, Camici M, Micheli V, Tozz MG (2011) Metabolic network of nucleosides in the brain. Curr Top Med Chem 11:909–922. doi: 10.2174/156802611795347555 CrossRefPubMedGoogle Scholar
  30. 30.
    Sheth S, Brito R, Mukherjea D, Rybak LP, Ramkumar V (2014) Adenosine receptors: expression, function and regulation. Int J Mol Sci 15:2024–2052. doi: 10.3390/ijms15022024 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Benowitz LI, Goldberg DE, Irwin N (2002) Inosine stimulates axon growth in vitro and in the adult CNS. Prog Brain Res 137:389–399. doi: 10.1016/S0079-6123(02)37030-4 CrossRefPubMedGoogle Scholar
  32. 32.
    Benowitz LI, Carmichael ST (2010) Promoting axonal rewiring to improve outcome after stroke. Neurobiol Dis 37:259–266. doi: 10.1016/j.nbd.2009.11.009 CrossRefPubMedGoogle Scholar
  33. 33.
    Litsky ML, Hohl CM, Lucas JH, Jurkowitz MS (1999) Inosine and guanosine preserve neuronal and glial cell viability in mouse spinal cord cultures during chemical hypoxia. Brain Res 821:426–432. doi: 10.1016/S0006-8993(99)01086-0 CrossRefPubMedGoogle Scholar
  34. 34.
    Parkinson Study Group SURE-PD Investigators, Schwarzschild MA, Ascherio A et al (2014) Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease: a randomized clinical trial. JAMA Neurol 71:141–150. doi: 10.1001/jamaneurol.2013.5528 CrossRefGoogle Scholar
  35. 35.
    Greger JL (1999) Nutrition versus toxicology of manganese in humans: evaluation of potential biomarkers. Neurotoxicology 20:205–212PubMedGoogle Scholar
  36. 36.
    Keen CL, Ensunsa JL, Watson MH, Baly DL, Donovan SM, Monaco MH, Clegg MS (1999) Nutritional aspects of manganese from experimental studies. Neurotoxicology 20:213–223PubMedGoogle Scholar
  37. 37.
    Hurley LS (1981) Teratogenic aspects of manganese, zinc, and copper nutrition. Physiol Rev 61:249–295CrossRefPubMedGoogle Scholar
  38. 38.
    Golub MS, Hogrefe CE, Germann SL, Tran TT, Beard JL, Crinella FM, Lonnerdal B (2005). Neurobehavioral evaluation of rhesus monkey infants fed cow’s milk formula, soy formula, or soy formula with added manganese. Neurotoxicol Teratol 27:615-627. Doi:  10.1016/j.Ntt.2005.04.003. Erratum in (2012): Neurotoxicol Teratol 34:220 doi:  10.1016/j.ntt.2011.11.002
  39. 39.
    Michalke B, Berthele A, Mistriotis P, Ochsenkühn-Petropoulou M, Halbach S (2007) Manganese species from human serum, cerebrospinal fluid analyzed by size exclusion chromatography-, capillary electrophoresis coupled to inductively coupled plasma mass spectrometry. J Trace Elem Med Biol Suppl 1:4–9. doi: 10.1016/j.jtemb.2007.09.004 CrossRefGoogle Scholar
  40. 40.
    Erikson KM, John CE, Jones SR, Aschner M (2005) Manganese accumulation in striatum of mice exposed to toxic doses is dependent upon a functional dopamine transporter. Environ Toxicol Pharmacol 20:390–394. doi: 10.1016/j.etap.2005.03.009 CrossRefPubMedGoogle Scholar
  41. 41.
    Cotzias GC, Greenough JJ (1958) The high specificity of the manganese pathway through the body. J Clin Invest 37:1298–1305. doi: 10.1172/JCI103718 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wang D, Du X, Zheng W (2008) Alteration of saliva and serum concentrations of manganese, copper, zinc, cadmium and lead among career welders. Toxicol Lett 176:40–47. doi: 10.1016/j.toxlet.2007.10.003 CrossRefPubMedGoogle Scholar
  43. 43.
    Krachler M, Rossipal E (2000) Concentrations of trace elements in extensively hydrolysed infant formulae and their estimated daily intakes. Ann Nutr Metab 44:68–74. doi: 10.1159/000012823 CrossRefPubMedGoogle Scholar
  44. 44.
    Pal PK, Samii A, Calne DB (1999) Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology 20:227–238PubMedGoogle Scholar
  45. 45.
    Finkelstein MM, Jerrett M (2007) A study of the relationships between Parkinson’s disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environ Res 104:420–432. doi: 10.1016/j.envres.2007.03.002 CrossRefPubMedGoogle Scholar
  46. 46.
    Shukla GS, Singhal RL (1984) The present status of biological effects of toxic metals in the environment: lead, cadmium, and manganese. Can J Physiol Pharmacol 62:1015–1031. doi: 10.1139/y84-171 CrossRefPubMedGoogle Scholar
  47. 47.
    Tomás-Camardiel M, Herrera AJ, Venero JL, Cruz Sánchez-Hidalgo M, Cano J, Machado A (2002) Differential regulation of glutamic acid decarboxylase mRNA and tyrosine hydroxylase mRNA expression in the aged manganese-treated rats. Brain Res Mol Brain Res 103:116–129. doi: 10.1016/S0169-328X(02)00192-4 CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang D, Kanthasamy A, Anantharam V, Kanthasamy A (2011) Effects of manganese on tyrosine hydroxylase (TH) activity and TH-phosphorylation in a dopaminergic neural cell line. Toxicol Appl Pharmacol 254:65–71. doi: 10.1016/j.taap.2010.03.023 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Seibt KJ, Oliveira RL, Rico EP, Dias RD, Bogo MR, Bonan CD (2009) Antipsychotic drugs inhibit nucleotide hydrolysis in zebrafish (Danio rerio) brain membranes. Toxicol in Vitro 23:78–82. doi: 10.1016/j.tiv.2008.10.003 CrossRefPubMedGoogle Scholar
  50. 50.
    Siebel AM, Piato AL, Capiotti KM, Seibt KJ, Bogo MR, Bonan CD (2011) PTZ-induced seizures inhibit adenosine deamination in adult zebrafish brain membranes. Brain Res Bull 86:385–389. doi: 10.1016/j.brainresbull.2011.08.017 CrossRefPubMedGoogle Scholar
  51. 51.
    Rico EP, Senger MR, Fauth MG, Dias RD, Bogo MR, Bonan CD (2003) ATP and ADP hydrolysis in brain membranes of zebrafish (Danio rerio). Life Sci 73:2071–2082. doi: 10.1016/S0024-3205(03)00596-4 CrossRefPubMedGoogle Scholar
  52. 52.
    Rosemberg DB, Rico EP, Langoni AS, Spinelli JT, Pereira TC, Dias RD, Souza DO, Bonan CD et al (2010) NTPDase family in zebrafish: nucleotide hydrolysis, molecular identification and gene expression profiles in brain, liver and heart. Comp Biochem Physiol B Biochem Mol Biol 155:230–240. doi: 10.1016/j.cbpb.2009.11.005
  53. 53.
    Senger MR, Rico EP, Dias RD, Bogo MR, Bonan CD (2004) Ecto-5′-nucleotidase activity in brain membranes of zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 139:203–207. doi: 10.1016/j.cbpc.2004.07.011 CrossRefPubMedGoogle Scholar
  54. 54.
    Rosemberg DB, Rico EP, Senger MR, Dias RD, Bogo MR, Bonan CD, Souza DO (2008) Kinetic characterization of adenosine deaminase activity in zebrafish (Danio rerio) brain. Comp Biochem Physiol B Biochem Mol Biol 151:96–101. doi: 10.1016/j.cbpb.2008.06.001 CrossRefPubMedGoogle Scholar
  55. 55.
    Altenhofen S, Wiprich MT, Nery LR, Leite CE, Vianna MR, Bonan CD (2017) Manganese(II) chloride alters behavioral and neurochemical parameters in larvae and adult zebrafish. Aquat Toxicol 182:172–183. doi: 10.1016/j.aquatox.2016.11.013 CrossRefPubMedGoogle Scholar
  56. 56.
    Westerfield M (2000). The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). Eugene: University of Oregon Press.Google Scholar
  57. 57.
    Matthews M, Varga ZM (2012) Anesthesia and euthanasia in zebrafish. ILAR J 53:192–204. doi: 10.1093/ilar.53.2.192 CrossRefPubMedGoogle Scholar
  58. 58.
    Wilson JM, Bunte RM, Carty AJ (2009) Evaluation of rapid cooling and tricaine methanesulfonate (MS222) as methods of euthanasia in zebrafish (Danio rerio). J Amer Assoc Lab Animal Sci 48:785–789Google Scholar
  59. 59.
    Barnes JM, Murphy PA, Kirkham D, Henley J (1993) Interaction of guanine nucleotides with [3H] kainate and 6-[3H]cyano-7-nitroquinoxaline-2,3-dione binding in goldfish brain. J Neurochem 61:1685–1691. doi: 10.1111/j.1471-4159.1993.tb09804.x CrossRefPubMedGoogle Scholar
  60. 60.
    Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:218–254. doi: 10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  61. 61.
    Chan K, Delfret D, Junges K (1986) A direct colorimetric assay for Ca2+ ATPase activity. Anal Biochem 157:375–380. doi: 10.1016/0003-2697(86)90640-8 CrossRefPubMedGoogle Scholar
  62. 62.
    Weisman MI, Caiolfa VR, Parola AH (1988) Adenosine deaminase-complexing protein from bovine kidney. Isolation of two distinct subunits J Biol Chem 263:5266–5270PubMedGoogle Scholar
  63. 63.
    Zimmermann FF, Gaspary KV, Siebel AM, Leite CE, Kist LW, Bogo MR, Bonan CD (2016) Analysis of extracellular nucleotide metabolism in adult zebrafish after embryological exposure to valproic acid. Mol Neurobiol. doi: 10.1007/s12035-016-9917-z
  64. 64.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. doi: 10.1373/clinchem.2008.112797
  65. 65.
    Bustin SA, Benes V, Garson J et al (2013) The need for transparency and good practices in the qPCR literature. Nat Methods 10:1063–1067. doi: 10.1038/nmeth.2697 CrossRefPubMedGoogle Scholar
  66. 66.
    Voelter W, Zech K, Arnold P, Ludwig G (1980) Determination of selected pyrimidines, purines and their metabolites in serum and urine by reversed-phase ion-pair chromatography. J Chromatogr 199:345–354. doi: 10.1016/S0021-9673(01)91386-X CrossRefPubMedGoogle Scholar
  67. 67.
    Aschner M, Shanker G, Erikson K, Yang J, Mutkus LA (2002) The uptake of manganese in brain endothelial cultures. Neurotoxicology 23:165–168. doi: 10.1016/S0161-813X(02)00056-6 CrossRefPubMedGoogle Scholar
  68. 68.
    Erikson KM, Syversen T, Aschner JL, Aschner M (2005) Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environ Toxicol Pharmacol 19:415–421. doi: 10.1016/j.etap.2004.12.053 CrossRefPubMedGoogle Scholar
  69. 69.
    Normandin L, Ann Beaupré L, Salehi F, St-Pierre A, Kennedy G, Mergler D, Butterworth RF, Philippe S et al (2004) Manganese distribution in the brain and neurobehavioral changes following inhalation exposure of rats to three chemical forms of manganese. Neurotoxicology 25:433–441. doi: 10.1016/j.neuro.2003.10.001
  70. 70.
    Seth PK, Chandra SV (1984) Neurotransmitters and neurotransmitter receptors in developing and adult rats during manganese poisoning. Neurotoxicology 5:67–76PubMedGoogle Scholar
  71. 71.
    Aschner M, Erikson KM, Dorman DC (2005) Manganese dosimetry: species differences and implications for neurotoxicity. Crit Rev Toxicol 35:1–32. doi: 10.1080/10408440590905920 CrossRefPubMedGoogle Scholar
  72. 72.
    Morello M, Canini A, Mattioli P, Sorge RP, Alimonti A, Bocca B, Forte G, Martorana A et al (2008) Sub-cellular localization of manganese in the basal ganglia of normal and manganese-treated rats: an electron spectroscopy imaging and electron energy-loss spectroscopy study. Neurotoxicology 29:60–72. doi: 10.1016/j.neuro.2007.09.001
  73. 73.
    Rathbone MP, Middlemiss PJ, Gysbers JW, Andrew C, Herman MA, Reed JK, Ciccarelli R, Di Iorio P et al (1999) Trophic effects of purines in neurons and glial cells. Prog Neurobiol 59:663–690. doi: 10.1016/S0301-0082(99)00017-9
  74. 74.
    Casadó-Anguera V, Bonaventura J, Moreno E, Navarro G, Cortés A, Ferré S, Casadó V (2016) Evidence for the heterotetrameric structure of the adenosine A2A-dopamine D2 receptor complex. Biochem Soc Trans 44:595–600. doi: 10.1042/BST20150276 CrossRefPubMedGoogle Scholar
  75. 75.
    Ferré S, Bonaventura J, Tomasi D, Navarro G, Moreno E, Cortés A, Lluís C, Casadó V et al (2016) Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer. Neuropharmacology 104:154–160. doi: 10.1016/j.neuropharm.2015.05.028
  76. 76.
    Senger MR, Rico EP, de Bem AM, Frazzon AP, Dias RD, Bogo MR, Bonan CD (2006) Exposure to Hg2+ and Pb2+ changes NTPDase and ecto-5′-nucleotidase activities in central nervous system of zebrafish (Danio rerio). Toxicology 226:229–237. doi: 10.1016/j.tox.2006.07.012 CrossRefPubMedGoogle Scholar
  77. 77.
    Rosemberg DB, Rico EP, Senger MR, de Arizi M, B, Dias RD, Bogo MR, Bonan CD (2007) Acute and subchronic copper treatments alter extracellular nucleotide hydrolysis in zebrafish brain membranes. Toxicology 236:132–139. doi: 10.1016/j.tox.2007.04.006
  78. 78.
    Leite CE, Maboni LO, Cruz FF, Rosemberg DB, Zimmermann FF, Pereira TC, Bogo MR, Bonan CD et al (2013) Involvement of purinergic system in inflammation and toxicity induced by copper in zebrafish larvae. Toxicol Appl Pharmacol 272:681–689. doi: 10.1016/j.taap.2013.08.001
  79. 79.
    Oliveira Rda L, Seibt KJ, Rico EP, Bogo MR, Bonan CD (2011) Inhibitory effect of lithium on nucleotide hydrolysis and acetylcholinesterase activity in zebrafish (Danio rerio) brain. Neurotoxicol Teratol 33:651–657. doi: 10.1016/j.ntt.2011.05.005 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Stefani Altenhofen
    • 1
  • Débora Dreher Nabinger
    • 1
  • Talita Carneiro Brandão Pereira
    • 2
  • Carlos Eduardo Leite
    • 3
  • Maurício Reis Bogo
    • 2
  • Carla Denise Bonan
    • 1
    • 4
  1. 1.Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e PsicofarmacologiaPUCRSPorto AlegreBrazil
  2. 2.Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Biologia Genômica e MolecularPUCRSPorto AlegreBrazil
  3. 3.Instituto de Toxicologia e FarmacologiaPUCRSPorto AlegreBrazil
  4. 4.Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de BiociênciasPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations