Skip to main content

Advertisement

Log in

Interleukin-6-Mediated Induced Pluripotent Stem Cell (iPSC)-Derived Neural Differentiation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In an aging society with an increasing threat to higher brain cognitive functions due to dementia, it becomes imperative to identify new molecular remedies for supporting adult neurogenesis. Interleukin-6 (IL-6) is a promising cytokine that can support neurogenesis under conditions of neurodegeneration, and neuron replacement is eventually possible due to its agonistic acting soluble receptor sIL-6R. Here, we report that activation of the IL-6–signal transducer and activator of transcription 3 (STAT3) axis is neurogenic and has potential therapeutic applications for the treatment of neurodegenerative diseases such as Parkinson’s disease (PD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AKT:

AKT (mouse Ak strain thymoma) serine/threonine kinase, protein kinase B (PKB)

ALP:

Alkaline phosphatase

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AP:

Action potential

APC:

Allophycocyanin

BDNF:

Brain-derived neurotrophic factor

bFGF:

Basic fibroblast growth factor

BMP:

Bone morphogenetic protein

BSA:

Bovine serum albumin

CD15:

Cluster of differentiation 15, 3-fucosyl-N-acetyl-lactosamine, SSEA-1 (stage-specific embryonic antigen 1)

CD24:

Cluster of differentiation 24 or heat-stable antigen CD24 (HSA)

CD44:

Cluster of differentiation 44, HCAM (homing cell adhesion molecule), Pgp-1 (phagocytic glycoprotein-1)

CD184:

Cluster of differentiation 184, C-X-C chemokine receptor type 4 (CXCR-4)

CD271:

Cluster of differentiation 271, LNGFR (low-affinity nerve growth factor receptor) or p75NTR (neurotrophin receptor p75)

CH3:

Methyl-, methylation

CNS:

Central nervous system

CNTF:

Ciliary neurotrophic factor

CREB:

cAMP-responsive element binding protein

Cy:

Cyanine

DAPI:

4′,6-Diamidino-2-phenylindole

DMEM:

Dulbecco’s modified Eagle medium

EDTA:

Ethylenediaminetetraacetic acid

EGF:

Epidermal growth factor

ERK:

Extracellular-regulated microtubule-associated protein kinase

FACS:

Fluorescence-activated cell sorting

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

FM:

Fibroblast media

FOS:

Finkel-Biskis-Jinkins (FBJ) osteosarcoma (Fos) proto-oncogene, activator protein 1 (AP-1) transcription factor subunit

GAB1:

GRB2-associated-binding protein 1

GABA:

Gamma-aminobutyric acid

GABAA-R:

Gamma-aminobutyric acid-A receptor

GF:

Growth factor

GFAP:

Glial fibrillary acidic protein

i-Glu-R:

Ionotropic glutamate receptor

gp130:

Glycoprotein 130

GRB2:

Growth factor receptor bound protein 2

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

ICC:

Immunocytochemistry

IL-6:

Interleukin-6

IL-6R:

Interleukin-6 receptor

IL6ST:

Interleukin-6 signal transducing receptor subunit (gp130)

iPSCs:

Induced pluripotent stem cells

JAK:

Janus kinase

JNK:

c-Jun N-terminal kinase

JUN:

Jun proto-oncogene, activator protein 1 (AP-1) transcription factor subunit

Klf4:

Kruppel-like factor 4

Lif:

Leukemia inhibitory factor

Lin28:

Lin-28 homolog

L-Myc:

v-Myc avian myelocytomatosis viral oncogene lung carcinoma-derived homolog

MAP2:

Microtubule-associated protein 2

MAPK:

Microtubule-associated protein kinase

MAPT:

Microtubule-associated protein tau

MKI67:

Marker of proliferation Ki-67

MYC:

Myelocytomatosis viral oncogene

NB:

Neurobasal media

NEUN:

Neuronal nuclei, RNA binding protein fox-1 homolog 3 (RBFOX3)

NEAA:

Non-essential amino acids

NHDF:

Normal human dermal fibroblast cells

NMDA:

N-Methyl-d-aspartate

NSC:

Neural stem cell

OCT4:

POU class 5 homeobox 1 (POU5F1)

P:

Passages

p53:

Tumor protein 53

PBS:

Phosphate buffer saline

PD:

Parkinson’s disease

PE:

Phycoerythrin cyanine

PerCP:

Peridinin chlorophyll protein complex

PFA:

Paraformaldehyde

PI3K:

Phosphatidylinositol 3-kinase, and phosphatidylinositol-4,5-bisphosphate 3-kinase

PODXL:

Podocalyxin-like proteins, also known as TRA-1-60 and TRA-1-81 antigens

P/S:

Penicillin, streptomycin

RAS:

Sarcoma virus oncogene (small G-protein)

RMP:

Resting membrane potential

SFK:

src-family kinase

sgp130:

Soluble glycoprotein 130

SHP1/2:

Protein tyrosine phosphatase, non-receptor type 6, -11 (Ptpn6/11)

shRNA:

Short hairpin RNA

sIL-6R:

Soluble interleukin-6 receptor

SMAD:

Portmanteau of Sma (small) and Mad (mothers against decapentaplegic homolog)

SOCS3:

Suppressor of cytokine signaling 3

SOX2/6:

Sex-determining region Y (SRY)-box 2, -6

SOS:

Son of sevenless protein

SSEA3/4:

Stage-specific embryonic antigen 3, -4

STAT3:

Signal transducer and activator of transcription 3

TF:

Transcription factor

TGFβ:

Transforming growth factor beta

TRA-1-60/81:

Podocalyxin-like proteins (PODXL, TRA-1-60, and TRA-1-81 antigens)

TRKB:

Tropomyosin receptor kinase B, neurotrophic receptor tyrosine kinase 2 (NTRK2)

TRKB.T1:

Truncated TRKB (without kinase domain)

TTX:

Tetrodotoxin

TUBB3:

β-Tubulin isotype III (also TUJ1)

VD:

Vascular dementia

YAP:

Yes-associated protein

Y-P:

Phosphorylated tyrosine

References

  1. Nishikawa S, Goldstein RA, Nierras CR (2008) The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol 9(9):725–729

    Article  CAS  PubMed  Google Scholar 

  2. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M et al (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8(5):409–412

    Article  CAS  PubMed  Google Scholar 

  3. Pramanik S, Sulistio YA, Heese K (2017) Neurotrophin signaling and stem cells—implications for neurodegenerative diseases and stem cell therapy. Mol Neurobiol. doi:10.1007/s12035-016-0214-7

    PubMed  Google Scholar 

  4. Kishimoto T, Akira S, Narazaki M, Taga T (1995) Interleukin-6 family of cytokines and gp130. Blood 86(4):1243–1254

    CAS  PubMed  Google Scholar 

  5. Taga T, Kishimoto T (1997) Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol 15:797–819

    Article  CAS  PubMed  Google Scholar 

  6. Erta M, Quintana A, Hidalgo J (2012) Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 8(9):1254–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feng Q, Wang YI, Yang Y (2015) Neuroprotective effect of interleukin-6 in a rat model of cerebral ischemia. Exp Ther Med 9(5):1695–1701

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang XC, Qiu YH, Peng YP (2007) Interleukin-6 protects cerebellar granule neurons from NMDA-induced neurotoxicity. Sheng Li Xue Bao 59(2):150–156

    CAS  PubMed  Google Scholar 

  9. Cafferty WB, Gardiner NJ, Das P, Qiu J, McMahon SB, Thompson SW (2004) Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice. J Neurosci 24(18):4432–4443

    Article  CAS  PubMed  Google Scholar 

  10. Gruol DL (2015) IL-6 regulation of synaptic function in the CNS. Neuropharmacology 96(Pt A):42–54

    Article  CAS  PubMed  Google Scholar 

  11. Hakkoum D, Stoppini L, Muller D (2007) Interleukin-6 promotes sprouting and functional recovery in lesioned organotypic hippocampal slice cultures. J Neurochem 100(3):747–757

    Article  CAS  PubMed  Google Scholar 

  12. Gadient RA, Otten U (1994) Identification of interleukin-6 (IL-6)-expressing neurons in the cerebellum and hippocampus of normal adult rats. Neurosci Lett 182(2):243–246

    Article  CAS  PubMed  Google Scholar 

  13. Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    Article  CAS  PubMed  Google Scholar 

  14. Thier M, Marz P, Otten U, Weis J, Rose-John S (1999) Interleukin-6 (IL-6) and its soluble receptor support survival of sensory neurons. J Neurosci Res 55(4):411–422

    Article  CAS  PubMed  Google Scholar 

  15. Hirota H, Kiyama H, Kishimoto T, Taga T (1996) Accelerated nerve regeneration in mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma. J Exp Med 183(6):2627–2634

    Article  CAS  PubMed  Google Scholar 

  16. Ihara S, Nakajima K, Fukada T, Hibi M, Nagata S, Hirano T, Fukui Y (1997) Dual control of neurite outgrowth by STAT3 and MAP kinase in PC12 cells stimulated with interleukin-6. EMBO J 16(17):5345–5352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sterneck E, Kaplan DR, Johnson PF (1996) Interleukin-6 induces expression of peripherin and cooperates with Trk receptor signaling to promote neuronal differentiation in PC12 cells. J Neurochem 67(4):1365–1374

    Article  CAS  PubMed  Google Scholar 

  18. Wu YY, Bradshaw RA (1996) Induction of neurite outgrowth by interleukin-6 is accompanied by activation of Stat3 signaling pathway in a variant PC12 cell (E2) line. J Biol Chem 271(22):13023–13032

    Article  CAS  PubMed  Google Scholar 

  19. Marz P, Herget T, Lang E, Otten U, Rose-John S (1997) Activation of gp130 by IL-6/soluble IL-6 receptor induces neuronal differentiation. Eur J Neurosci 9(12):2765–2773

    Article  CAS  PubMed  Google Scholar 

  20. Ihara S, Iwamatsu A, Fujiyoshi T, Komi A, Yamori T, Fukui Y (1996) Identification of interleukin-6 as a factor that induces neurite outgrowth by PC12 cells primed with NGF. J Biochem 120(5):865–868

    Article  CAS  PubMed  Google Scholar 

  21. Abeyama K, Kawano K, Nakajima T, Takasaki I, Kitajima I, Maruyama I (1995) Interleukin 6 mediated differentiation and rescue of cell redox in PC12 cells exposed to ionizing radiation. FEBS Lett 364(3):298–300

    Article  CAS  PubMed  Google Scholar 

  22. Nakafuku M, Satoh T, Kaziro Y (1992) Differentiation factors, including nerve growth factor, fibroblast growth factor, and interleukin-6, induce an accumulation of an active Ras.GTP complex in rat pheochromocytoma PC12 cells. J Biol Chem 267(27):19448–19454

    CAS  PubMed  Google Scholar 

  23. Satoh T, Nakamura S, Taga T, Matsuda T, Hirano T, Kishimoto T, Kaziro Y (1988) Induction of neuronal differentiation in PC12 cells by B-cell stimulatory factor 2/interleukin 6. Mol Cell Biol 8(8):3546–3549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Islam O, Gong X, Rose-John S, Heese K (2009) Interleukin-6 and neural stem cells: more than gliogenesis. Mol Biol Cell 20(1):188–199. doi:10.1091/mbc.E08-05-0463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bowen KK, Dempsey RJ, Vemuganti R (2011) Adult interleukin-6 knockout mice show compromised neurogenesis. Neuroreport 22(3):126–130

    Article  CAS  PubMed  Google Scholar 

  26. Marz P, Otten U, Rose-John S (1999) Neural activities of IL-6-type cytokines often depend on soluble cytokine receptors. Eur J Neurosci 11(9):2995–3004

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  28. Hussein SM, Nagy AA (2012) Progress made in the reprogramming field: new factors, new strategies and a new outlook. Curr Opin Genet Dev 22(5):435–443

    Article  CAS  PubMed  Google Scholar 

  29. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morizane A, Doi D, Kikuchi T, Nishimura K, Takahashi J (2011) Small-molecule inhibitors of bone morphogenic protein and activin/nodal signals promote highly efficient neural induction from human pluripotent stem cells. J Neurosci Res 89(2):117–126

    Article  CAS  PubMed  Google Scholar 

  31. Yuan SH, Martin J, Elia J, Flippin J, Paramban RI, Hefferan MP, Vidal JG, Mu Y et al (2011) Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells. PLoS One 6(3):e17540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mishra M, Akatsu H, Heese K (2011) The novel protein MANI modulates neurogenesis and neurite-cone growth. J Cell Mol Med 15(8):1713–1725. doi:10.1111/j.1582-4934.2010.01134.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mishra M, Heese K (2011) P60TRP interferes with the GPCR/secretase pathway to mediate neuronal survival and synaptogenesis. J Cell Mol Med 15(11):2462–2477. doi:10.1111/j.1582-4934.2010.01248.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guez-Barber D, Fanous S, Harvey BK, Zhang Y, Lehrmann E, Becker KG, Picciotto MR, Hope BT (2012) FACS purification of immunolabeled cell types from adult rat brain. J Neurosci Methods 203(1):10–18

    Article  CAS  PubMed  Google Scholar 

  35. Park SY, Yoon SN, Kang MJ, Lee Y, Jung SJ, Han JS (2017) Hippocalcin promotes neuronal differentiation and inhibits astrocytic differentiation in neural stem cells. Stem Cell Reports 8(1):95–111

    Article  CAS  PubMed  Google Scholar 

  36. Hogg RC, Chipperfield H, Whyte KA, Stafford MR, Hansen MA, Cool SM, Nurcombe V, Adams DJ (2004) Functional maturation of isolated neural progenitor cells from the adult rat hippocampus. Eur J Neurosci 19(9):2410–2420

    Article  PubMed  Google Scholar 

  37. Johnson MA, Weick JP, Pearce RA, Zhang SC (2007) Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. J Neurosci 27(12):3069–3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Toda H, Takahashi J, Mizoguchi A, Koyano K, Hashimoto N (2000) Neurons generated from adult rat hippocampal stem cells form functional glutamatergic and GABAergic synapses in vitro. Exp Neurol 165(1):66–76

    Article  CAS  PubMed  Google Scholar 

  39. Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3(9):715–727

    Article  CAS  PubMed  Google Scholar 

  40. Shen JM, Huguenard JR, Kriegstein AR (1988) Development of GABA responsiveness in embryonic turtle cortical neurons. Neurosci Lett 89(3):335–341

    Article  CAS  PubMed  Google Scholar 

  41. Hennou S, Khalilov I, Diabira D, Ben-Ari Y, Gozlan H (2002) Early sequential formation of functional GABA(A) and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus. Eur J Neurosci 16(2):197–208

    Article  PubMed  Google Scholar 

  42. Lujan R, Shigemoto R, Lopez-Bendito G (2005) Glutamate and GABA receptor signalling in the developing brain. Neuroscience 130(3):567–580

    Article  CAS  PubMed  Google Scholar 

  43. Herlenius E, Lagercrantz H (2004) Development of neurotransmitter systems during critical periods. Exp Neurol 190(Suppl 1):S8–21

    Article  CAS  PubMed  Google Scholar 

  44. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Petri S, Krampfl K, Dengler R, Bufler J, Weindl A, Arzberger T (2002) Human GABA A receptors on dopaminergic neurons in the pars compacta of the substantia nigra. J Comp Neurol 452(4):360–366

    Article  CAS  PubMed  Google Scholar 

  46. Tepper JM, Lee CR (2007) GABAergic control of substantia nigra dopaminergic neurons. Prog Brain Res 160:189–208

    Article  CAS  PubMed  Google Scholar 

  47. Ling ZD, Potter ED, Lipton JW, Carvey PM (1998) Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. Exp Neurol 149(2):411–423

    Article  CAS  PubMed  Google Scholar 

  48. Gomi M, Aoki T, Takagi Y, Nishimura M, Ohsugi Y, Mihara M, Nozaki K, Hashimoto N et al (2011) Single and local blockade of interleukin-6 signaling promotes neuronal differentiation from transplanted embryonic stem cell-derived neural precursor cells. J Neurosci Res 89(9):1388–1399

    Article  CAS  PubMed  Google Scholar 

  49. Oh J, McCloskey MA, Blong CC, Bendickson L, Nilsen-Hamilton M, Sakaguchi DS (2010) Astrocyte-derived interleukin-6 promotes specific neuronal differentiation of neural progenitor cells from adult hippocampus. J Neurosci Res 88(13):2798–2809

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pratt L, Ni L, Ponzio NM, Jonakait GM (2013) Maternal inflammation promotes fetal microglial activation and increased cholinergic expression in the fetal basal forebrain: role of interleukin-6. Pediatr Res 74(4):393–401

    Article  CAS  PubMed  Google Scholar 

  51. Chucair-Elliott AJ, Conrady C, Zheng M, Kroll CM, Lane TE, Carr DJ (2014) Microglia-induced IL-6 protects against neuronal loss following HSV-1 infection of neural progenitor cells. Glia 62(9):1418–1434

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cao F, Hata R, Zhu P, Nakashiro K, Sakanaka M (2010) Conditional deletion of Stat3 promotes neurogenesis and inhibits astrogliogenesis in neural stem cells. Biochem Biophys Res Commun 394(3):843–847

    Article  CAS  PubMed  Google Scholar 

  53. Nakanishi M, Niidome T, Matsuda S, Akaike A, Kihara T, Sugimoto H (2007) Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells. Eur J Neurosci 25(3):649–658

    Article  PubMed  Google Scholar 

  54. Taga T, Fukuda S (2005) Role of IL-6 in the neural stem cell differentiation. Clin Rev Allergy Immunol 28(3):249–256

    Article  CAS  PubMed  Google Scholar 

  55. Vallieres L, Campbell IL, Gage FH, Sawchenko PE (2002) Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci 22(2):486–492

    CAS  PubMed  Google Scholar 

  56. Takizawa T, Yanagisawa M, Ochiai W, Yasukawa K, Ishiguro T, Nakashima K, Taga T (2001) Directly linked soluble IL-6 receptor-IL-6 fusion protein induces astrocyte differentiation from neuroepithelial cells via activation of STAT3. Cytokine 13(5):272–279

    Article  CAS  PubMed  Google Scholar 

  57. Galli R, Pagano SF, Gritti A, Vescovi AL (2000) Regulation of neuronal differentiation in human CNS stem cell progeny by leukemia inhibitory factor. Dev Neurosci 22(1–2):86–95

    Article  CAS  PubMed  Google Scholar 

  58. Foshay KM, Gallicano GI (2008) Regulation of Sox2 by STAT3 initiates commitment to the neural precursor cell fate. Stem Cells Dev 17(2):269–278

    Article  CAS  PubMed  Google Scholar 

  59. Snyder M, Huang XY, Zhang JJ (2011) Stat3 is essential for neuronal differentiation through direct transcriptional regulation of the Sox6 gene. FEBS Lett 585(1):148–152

    Article  CAS  PubMed  Google Scholar 

  60. Cheng X, Jin G, Zhang X, Tian M, Zou L (2011) Stage-dependent STAT3 activation is involved in the differentiation of rat hippocampus neural stem cells. Neurosci Lett 493(1–2):18–23

    Article  CAS  PubMed  Google Scholar 

  61. Ng YP, Cheung ZH, Ip NY (2006) STAT3 as a downstream mediator of Trk signaling and functions. J Biol Chem 281(23):15636–15644

    Article  CAS  PubMed  Google Scholar 

  62. Yang P, Wen H, Ou S, Cui J, Fan D (2012) IL-6 promotes regeneration and functional recovery after cortical spinal tract injury by reactivating intrinsic growth program of neurons and enhancing synapse formation. Exp Neurol 236(1):19–27

    Article  CAS  PubMed  Google Scholar 

  63. Ng DC, Lin BH, Lim CP, Huang G, Zhang T, Poli V, Cao X (2006) Stat3 regulates microtubules by antagonizing the depolymerization activity of stathmin. J Cell Biol 172(2):245–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Galun E, Rose-John S (2013) The regenerative activity of interleukin-6. Methods Mol Biol 982:59–77

    Article  CAS  PubMed  Google Scholar 

  65. Schafer KH, Mestres P, Marz P, Rose-John S (1999) The IL-6/sIL-6R fusion protein hyper-IL-6 promotes neurite outgrowth and neuron survival in cultured enteric neurons. J Interf Cytokine Res 19(5):527–532

    Article  CAS  Google Scholar 

  66. Kikuchi T, Morizane A, Doi D, Okita K, Nakagawa M, Yamakado H, Inoue H, Takahashi R et al (2017) Idiopathic Parkinson’s disease patient-derived induced pluripotent stem cells function as midbrain dopaminergic neurons in rodent brains. J Neurosci Res. doi:10.1002/jnr.24014

    PubMed  Google Scholar 

  67. Xiao B, Ng HH, Takahashi R, Tan EK (2016) Induced pluripotent stem cells in Parkinson’s disease: scientific and clinical challenges. J Neurol Neurosurg Psychiatry 87(7):697–702

    Article  PubMed  PubMed Central  Google Scholar 

  68. Stoker TB, Barker RA (2016) Cell therapies for Parkinson’s disease: how far have we come? Regen Med 11(8):777–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pen AE, Jensen UB (2017) Current status of treating neurodegenerative disease with induced pluripotent stem cells. Acta Neurol Scand 135(1):57–72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Hanyang University by providing a scholarship to Y.A.S. and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A2009178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Heese.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Electronic Supplementary Material

ESM 1

(PDF 3134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulistio, Y.A., Lee, H.K., Jung, S.J. et al. Interleukin-6-Mediated Induced Pluripotent Stem Cell (iPSC)-Derived Neural Differentiation. Mol Neurobiol 55, 3513–3522 (2018). https://doi.org/10.1007/s12035-017-0594-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0594-3

Keywords

Navigation