Molecular Neurobiology

, Volume 55, Issue 5, pp 4051–4067 | Cite as

A BRCA1-Dependent DNA Damage Response in the Regenerating Adult Peripheral Nerve Milieu

  • Anand Krishnan
  • Kaylynn Purdy
  • Ambika Chandrasekhar
  • Jose Martinez
  • Chu Cheng
  • Douglas W. Zochodne


It is not generally appreciated that DNA repair machinery has a critical role in the remodeling of neurons that adopt a regenerative phenotype. We identified that breast cancer 1 (BRCA1)-dependent DNA activity, previously well known to repair cancer cells, is active in adult peripheral neurons and Schwann cells during their injury and regeneration response. Temporary or partial loss of BRCA1 or blockade of its intraneuronal nuclear entry impaired outgrowth in neurons in vitro and impacted nerve regeneration and functional recovery in vivo. We found that distal axonal injury triggered a BRCA1-dependent DNA damage response (DDR) signal in neuronal soma. BRCA1 also supported an enabling transcriptional program of injured neurons and supporting Schwann cells. Our findings indicate that BRCA1 offers prominent functional roles in neurons and glial cells including key support for their physical and molecular integrity. Since BRCA1 mutations are common in humans, this function of BRCA1 in peripheral neurons and their glial partners warrants attention.


BRCA1 Neuron DRG Schwann cells Peripheral nerve Regeneration 



The work was supported by operating grants from the Canadian Institutes of Health Research (CIHR; FRN15686 and 184584) and the Canadian Diabetes Association (CDA; OG-3-12-3669) as well as support from the University of Alberta Hospital Foundation, the Department of Medicine and the Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta. AK was supported by an Alberta Innovates Health Solutions (AI-HS) postdoctoral fellowship. The authors thank Dr. Jan Van Minnen for the gift of SCs used in this work. BRCA1-floxed mice breeder pairs were obtained from the National Cancer Institute (NCI) mouse repository.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

12035_2017_574_Fig12_ESM.gif (52 kb)
Fig. S1

BRCA1 expression in satellite glial cells and primary sensory neurons. A&B) wider field view of BRCA1 immunostaining (green) in injury-conditioned DRGs shows its expression in perineuronal satellite cells (yellow arrows) and neuronal nuclei (white arrows) (A; scale bar, 50 μm, B; scale bar, 200 μm). C) Nuclear accumulation of BRCA1 in primary sensory neurons coincides with enhanced neurite outgrowth. The neuron enlarged in a’ has comparatively less nuclear BRCA1 content (yellow arrow) compared to the neuron in b’ while the latter has comparatively higher outgrowth (scale bar 50 μm). The corresponding original neurons are shown using white arrows. (GIF 51 kb)

12035_2017_574_MOESM1_ESM.tif (2.5 mb)
High resolution image (TIFF 2512 kb)
12035_2017_574_Fig13_ESM.gif (80 kb)
Fig. S2

Validation of the impact of BRCA1NLS-TAT on nuclear clustering of BRCA1. Immunostaining of BRCA1 in primary sensory neurons treated with cisplatin shows nuclear clustering of BRCA1 (white arrows in upper panel). 24 h pretreatment with 10 μM BRCA1NLS-TAT reduces the nuclear clustering (white arrows in lower panel) (scale bar 50 μm). Quantification of the data from corresponding single culture wells is given in the graph. (GIF 79 kb)

12035_2017_574_MOESM2_ESM.tif (12.5 mb)
High resolution image (TIFF 12786 kb)
12035_2017_574_Fig14_ESM.gif (17 kb)
Fig. S3

Neurite outgrowth in floxed-BRCA1 sensory neurons treated with either Ad-GFP or Ad-GFP-2A-iCre. The figures show a merged view of NF200 (red), GFP (green) and DAPI (blue). Expression of GFP in Ad-GFP-2A-iCre treated neurons indicates successful viral particle infection and BRCA1 knockdown efficiency. (GIF 17 kb)

12035_2017_574_MOESM3_ESM.tif (2 mb)
High resolution image (TIFF 2006 kb)
12035_2017_574_Fig15_ESM.jpg (42 kb)
Fig. S4

BRCA1 deficiency alters transcription in sensory neurons and SCs. Pie charts generated from altered list of mRNAs after BRCA1 knockdown in sensory neurons (A) and SCs (B) show classification of altered molecules based on their participating functions. The results indicate that BRCA1 deficiency mainly altered the expression of molecules involved with DNA repair, neurite outgrowth and apoptosis in sensory neurons and molecules involved with cell cycle, DNA repair and apoptosis in SCs [see Table S2 for fold change and ‘p’ values]. (JPG 41.7 kb)

12035_2017_574_MOESM4_ESM.tif (1.8 mb)
High resolution image (TIFF 1.78 mb)
12035_2017_574_MOESM5_ESM.docx (16 kb)
Table S1 (DOCX 16 kb)
12035_2017_574_MOESM6_ESM.doc (192 kb)
Table S2 (DOC 192 kb)


  1. 1.
    Subba Rao K (2007) Mechanisms of disease: DNA repair defects and neurological disease. Nat Clin Pract Neurol 3(3):162–172CrossRefPubMedGoogle Scholar
  2. 2.
    Krishnan A, Duraikannu A, Zochodne DW (2016) Releasing ‘brakes’ to nerve regeneration: intrinsic molecular targets. Eur J Neurosci 43(3):297–308CrossRefPubMedGoogle Scholar
  3. 3.
    Starita LM, Parvin JD (2003) The multiple nuclear functions of BRCA1: transcription, ubiquitination and DNA repair. Curr Opin Cell Biol 15(3):345–350CrossRefPubMedGoogle Scholar
  4. 4.
    Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, Nederlof PM, Gage FH, Verma IM (2011) BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 477(7363):179–184CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pao GM, Zhu Q, Perez-Garcia CG, Chou SJ, Suh H, Gage FH, O’Leary DD, Verma IM (2014) Role of BRCA1 in brain development. Proc Natl Acad Sci U S A 111(13):E1240–E1248CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bromberg KD, Ma’ayan A, Neves SR, Iyengar R (2008) Design logic of a cannabinoid receptor signaling network that triggers neurite outgrowth. Science 320(5878):903–909CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Keimpema E, Tortoriello G, Alpár A, Capsoni S, Arisi I, Calvigioni D, Hu SS, Cattaneo A et al (2013) Nerve growth factor scales endocannabinoid signaling by regulating monoacylglycerol lipase turnover in developing cholinergic neurons. Proc Natl Acad Sci U S A 110(5):1935–1940CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Suberbielle E, Djukic B, Evans M, Kim DH, Taneja P, Wang X, Finucane M, Knox J et al (2015) DNA repair factor BRCA1 depletion occurs in Alzheimer brains and impairs cognitive function in mice. Nat Commun 6:8897CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jeon GS, Kim KY, Hwang YJ, Jung MK, An S, Ouchi M, Ouchi T, Kowall N et al (2012) Deregulation of BRCA1 leads to impaired spatiotemporal dynamics of γ-H2AX and DNA damage responses in Huntington’s disease. Mol Neurobiol 45(3):550–563CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Christie KJ, Krishnan A, Martinez JA, Purdy K, Singh B, Eaton S, Zochodne D (2014) Enhancing adult nerve regeneration through the knockdown of retinoblastoma protein. Nat Commun 5:3670CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rishal I, Golani O, Rajman M, Costa B, Ben-Yaakov K, Schoenmann Z, Yaron A, Basri R et al (2013) WIS-NeuroMath enables versatile high throughput analyses of neuronal processes. Dev Neurobiol 73(3):247–256CrossRefPubMedGoogle Scholar
  12. 12.
    Singh B, Singh V, Krishnan A, Koshy K, Martinez JA, Cheng C, Almquist C, Zochodne DW (2014) Regeneration of diabetic axons is enhanced by selective knockdown of the PTEN gene. Brain 137(Pt4):1051–1067CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    McDonald DS, Zochodne DW (2003) An injectable nerve regeneration chamber for studies of unstable soluble growth factors. J Neurosci Methods 122(2):171–178CrossRefPubMedGoogle Scholar
  14. 14.
    Bennett LM, Brownlee HA, Hagavik S, Wiseman RW (1999) Sequence analysis of the rat Brca1 homolog and its promoter region. Mamm Genome 10(1):19–25CrossRefPubMedGoogle Scholar
  15. 15.
    Mathon NF, Malcolm DS, Harrisingh MC, Cheng L, Lloyd AC (2001) Lack of replicative senescence in normal rodent glia. Science 291(5505):872–875CrossRefPubMedGoogle Scholar
  16. 16.
    Sordet O, Redon CE, Guirouilh-Barbat J, Smith S, Solier S, Douarre C, Conti C, Nakamura AJ et al (2009) Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks. EMBO Rep 10(8):887–893CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Löbrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, Barton O, Jeggo PA (2010) gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle 9(4):662–669CrossRefPubMedGoogle Scholar
  18. 18.
    Kruman II, Wersto RP, Cardozo-Pelaez F, Smilenov L, Chan SL, Chrest FJ, Emokpae R Jr, Gorospe M et al (2004) Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41(4):549–561CrossRefPubMedGoogle Scholar
  19. 19.
    Daley JM, Sung P (2014) 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks. Mol Cell Biol 34(8):1380–1388CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18(1):134–147CrossRefPubMedGoogle Scholar
  21. 21.
    Shukla PC, Singh KK, Quan A, Al-Omran M, Teoh H, Lovren F, Cao L, Rovira II et al (2011) BRCA1 is an essential regulator of heart function and survival following myocardial infarction. Nat Commun 2:593CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Titus S, Li F, Stobezki R, Akula K, Unsal E, Jeong K, Dickler M, Robson M et al (2013) Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med 5(172):172ra21CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Panier S, Durocher D (2013) Push back to respond better: regulatory inhibition of the DNA double-strand break response. Nat Rev Mol Cell Biol 14(10):661–672CrossRefPubMedGoogle Scholar
  24. 24.
    Herrup K, Li J, Chen J (2013) The role of ATM and DNA damage in neurons: upstream and downstream connections. DNA Repair (Amst) 12(8):600–604CrossRefGoogle Scholar
  25. 25.
    Kwak YD, Wang B, Li JJ, Wang R, Deng Q, Diao S, Chen Y, Xu R et al (2012) Upregulation of the E3 ligase NEDD4-1 by oxidative stress degrades IGF-1 receptor protein in neurodegeneration. J Neurosci 32(32):10971–10981CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Song Y, Sretavan D, Salegio EA, Berg J, Huang X, Cheng T, Xiong X, Meltzer S et al (2015) Regulation of axon regeneration by the RNA repair and splicing pathway. Nat Neurosci 18(6):817–825CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lu Y, Belin S, He Z (2014) Signaling regulations of neuronal regenerative ability. Curr Opin Neurobiol 27:135–142CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cueno ME, Kamio N, Seki K, Kurita-Ochiai T, Ochiai K (2015) High butyric acid amounts induce oxidative stress, alter calcium homeostasis, and cause neurite retraction in nerve growth factor-treated PC12 cells. Cell Stress Chaperones 20(4):709–713CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cao L, Li W, Kim S, Brodie SG, Deng CX (2003) Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev 17(2):201–203CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Suberbielle E, Sanchez PE, Kravitz AV, Wang X, Ho K, Eilertson K, Devidze N, Kreitzer AC et al (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat Neurosci 16(5):613–621CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Li Z, Yang J, Huang H (2006) Oxidative stress induces H2AX phosphorylation in human spermatozoa. FEBS Lett 580(26):6161–6168CrossRefPubMedGoogle Scholar
  32. 32.
    Hakem R (2008) DNA-damage repair; the good, the bad, and the ugly. EMBO J 27(4):589–605CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Martin LJ, Liu Z (2002) Injury-induced spinal motor neuron apoptosis is preceded by DNA single-strand breaks and is p53- and Bax-dependent. J Neurobiol 50(3):181–197CrossRefPubMedGoogle Scholar
  34. 34.
    Lin CR, Yang CH, Huang CE, Wu CH, Chen YS, Sheen-Chen SM, Huang HW, Chen KH (2011) GADD45A protects against cell death in dorsal root ganglion neurons following peripheral nerve injury. J Neurosci Res 89(5):689–699CrossRefPubMedGoogle Scholar
  35. 35.
    Eccles D, Bunyan D, Barker S, Castle B (2005) BRCA1 mutation and neuronal migration defect: implications for chemoprevention. J Med Genet 42(7):e42CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Anand Krishnan
    • 1
    • 2
    • 3
    • 4
  • Kaylynn Purdy
    • 1
    • 2
    • 3
    • 4
  • Ambika Chandrasekhar
    • 1
    • 2
    • 3
  • Jose Martinez
    • 4
  • Chu Cheng
    • 4
  • Douglas W. Zochodne
    • 1
    • 2
    • 3
    • 4
  1. 1.Division of Neurology, Department of MedicineUniversity of AlbertaEdmontonCanada
  2. 2.Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonCanada
  3. 3.Alberta Diabetes InstituteUniversity of AlbertaEdmontonCanada
  4. 4.Hotchkiss Brain InstituteUniversity of CalgaryCalgaryCanada

Personalised recommendations