Molecular Neurobiology

, Volume 55, Issue 5, pp 3684–3697 | Cite as

An Immune-Related Six-lncRNA Signature to Improve Prognosis Prediction of Glioblastoma Multiforme

  • Meng Zhou
  • Zhaoyue Zhang
  • Hengqiang Zhao
  • Siqi Bao
  • Liang ChengEmail author
  • Jie SunEmail author


Recent studies have demonstrated the utility and superiority of long non-coding RNAs (lncRNAs) as novel biomarkers for cancer diagnosis, prognosis, and therapy. In the present study, the prognostic value of lncRNAs in glioblastoma multiforme was systematically investigated by performing a genome-wide analysis of lncRNA expression profiles in 419 glioblastoma patients from The Cancer Genome Atlas (TCGA) project. Using survival analysis and Cox regression model, we identified a set of six lncRNAs (AC005013.5, UBE2R2-AS1, ENTPD1-AS1, RP11-89C21.2, AC073115.6, and XLOC_004803) demonstrating an ability to stratify patients into high- and low-risk groups with significantly different survival (median 0.899 vs. 1.611 years, p = 3.87e−09, log-rank test) in the training cohort. The six-lncRNA signature was successfully validated on independent test cohort of 219 patients with glioblastoma, and it revealed superior performance for risk stratification with respect to existing lncRNA-related signatures. Multivariate Cox and stratification analysis indicated that the six-lncRNA signature was an independent prognostic factor after adjusting for other clinical covariates. Further in silico functional analysis suggested that the six-lncRNA signature may be involved in the immune-related biological processes and pathways which are very well known in the context of glioblastoma tumorigenesis. The identified lncRNA signature had important clinical implication for improving outcome prediction and guiding the tailored therapy for glioblastoma patients with further prospective validation.


Long non-coding RNAs Glioblastoma multiforme Signature Prognosis Immune 



This work was supported by the National Natural Science Foundation of China (Grant No. 61602134) and Postdoctoral scientific research developmental fund of Heilongjiang Province (Grant No. LBH-Q16172).

Compliance with Ethical Standards

Disclosure of Potential Conflicts of Interest

The authors declare that they have no potential conflicts of interests.

Supplementary material

12035_2017_572_MOESM1_ESM.xlsx (13 kb)
ESM 1 (XLSX 13 kb)
12035_2017_572_MOESM2_ESM.xls (27 kb)
ESM 2 (XLS 27 kb)


  1. 1.
    Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA et al (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro-Oncology 16(7):896–913. doi: 10.1093/neuonc/nou087 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21(21):2683–2710. doi: 10.1101/gad.1596707 PubMedCrossRefGoogle Scholar
  3. 3.
    Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN (2007) Molecularly targeted therapy for malignant glioma. Cancer 110(1):13–24. doi: 10.1002/cncr.22741 PubMedCrossRefGoogle Scholar
  4. 4.
    Walid MS (2008) Prognostic factors for long-term survival after glioblastoma. Perm J 12(4):45–48PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Carlsson SK, Brothers SP, Wahlestedt C (2014) Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med 6(11):1359–1370. doi: 10.15252/emmm.201302627 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Ma L, Bajic VB, Zhang Z (2013) On the classification of long non-coding RNAs. RNA Biol 10(6):925–933. doi: 10.4161/rna.24604 PubMedCrossRefGoogle Scholar
  7. 7.
    Kornienko AE, Guenzl PM, Barlow DP, Pauler FM (2013) Gene regulation by the act of long non-coding RNA transcription. BMC Biol 11:59. doi: 10.1186/1741-7007-11-59 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20(3):300–307. doi: 10.1038/nsmb.2480 PubMedCrossRefGoogle Scholar
  9. 9.
    Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641. doi: 10.1016/j.cell.2009.02.006 PubMedCrossRefGoogle Scholar
  10. 10.
    Zhou M, Wang X, Li J, Hao D, Wang Z, Shi H, Han L, Zhou H et al (2015) Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network. Mol BioSyst 11(3):760–769. doi: 10.1039/c4mb00511b PubMedCrossRefGoogle Scholar
  11. 11.
    Sun J, Shi H, Wang Z, Zhang C, Liu L, Wang L, He W, Hao D et al (2014) Inferring novel lncRNA-disease associations based on a random walk model of a lncRNA functional similarity network. Mol BioSyst 10(8):2074–2081. doi: 10.1039/c3mb70608g PubMedCrossRefGoogle Scholar
  12. 12.
    Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3):199–208. doi: 10.1038/ng.3192 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Zhou M, Zhao H, Xu W, Bao S, Cheng L, Sun J (2017) Discovery and validation of immune-associated long non-coding RNA biomarkers associated with clinically molecular subtype and prognosis in diffuse large B cell lymphoma. Mol Cancer 16(1):16. doi: 10.1186/s12943-017-0580-4 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Hajjari M, Salavaty A (2015) HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol Med 12(1):1–9. doi: 10.7497/j.issn.2095-3941.2015.0006 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Johnsson P, Morris KV (2014) Expanding the functional role of long noncoding RNAs. Cell Res 24(11):1284–1285. doi: 10.1038/cr.2014.104 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Raveh E, Matouk IJ, Gilon M, Hochberg A (2015) The H19 long non-coding RNA in cancer initiation, progression and metastasis - a proposed unifying theory. Mol Cancer 14:184. doi: 10.1186/s12943-015-0458-2 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Gutschner T, Hammerle M, Diederichs S (2013) MALAT1—a paradigm for long noncoding RNA function in cancer. J Mol Med (Berl) 91(7):791–801. doi: 10.1007/s00109-013-1028-y CrossRefGoogle Scholar
  18. 18.
    Zhou Y, Zhang X, Klibanski A (2012) MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 48(3):R45–R53. doi: 10.1530/JME-12-0008 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Pickard MR, Williams GT (2015) Molecular and cellular mechanisms of action of tumour suppressor GAS5 LncRNA. Genes (Basel) 6(3):484–499. doi: 10.3390/genes6030484 CrossRefGoogle Scholar
  20. 20.
    Nana-Sinkam SP, Croce CM (2011) Non-coding RNAs in cancer initiation and progression and as novel biomarkers. Mol Oncol 5(6):483–491. doi: 10.1016/j.molonc.2011.10.003 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Zhou M, Guo M, He D, Wang X, Cui Y, Yang H, Hao D, Sun J (2015) A potential signature of eight long non-coding RNAs predicts survival in patients with non-small cell lung cancer. J Transl Med 13:231. doi: 10.1186/s12967-015-0556-3 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Zhou M, Zhao H, Wang Z, Cheng L, Yang L, Shi H, Yang H, Sun J (2015) Identification and validation of potential prognostic lncRNA biomarkers for predicting survival in patients with multiple myeloma. J Exp Clin Cancer Res 34:102. doi: 10.1186/s13046-015-0219-5 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhou M, Xu W, Yue X, Zhao H, Wang Z, Shi H, Cheng L, Sun J (2016) Relapse-related long non-coding RNA signature to improve prognosis prediction of lung adenocarcinoma. Oncotarget 7(20):29720–29738. doi: 10.18632/oncotarget.8825 PubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhou M, Sun Y, Sun Y, Xu W, Zhang Z, Zhao H, Zhong Z, Sun J (2016) Comprehensive analysis of lncRNA expression profiles reveals a novel lncRNA signature to discriminate nonequivalent outcomes in patients with ovarian cancer. Oncotarget 7(22):32433–32448. doi: 10.18632/oncotarget.8653 PubMedPubMedCentralGoogle Scholar
  25. 25.
    Sun J, Cheng L, Shi H, Zhang Z, Zhao H, Wang Z, Zhou M (2016) A potential panel of six-long non-coding RNA signature to improve survival prediction of diffuse large-B-cell lymphoma. Sci Rep 6:27842. doi: 10.1038/srep27842 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Pastori C, Kapranov P, Penas C, Peschansky V, Volmar CH, Sarkaria JN, Bregy A, Komotar R et al (2015) The Bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential for glioblastoma proliferation. Proc Natl Acad Sci U S A 112(27):8326–8331. doi: 10.1073/pnas.1424220112 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Vassallo I, Zinn P, Lai M, Rajakannu P, Hamou MF, Hegi ME (2016) WIF1 re-expression in glioblastoma inhibits migration through attenuation of non-canonical WNT signaling by downregulating the lncRNA MALAT1. Oncogene 35(1):12–21. doi: 10.1038/onc.2015.61 PubMedCrossRefGoogle Scholar
  28. 28.
    Mineo M, Ricklefs F, Rooj AK, Lyons SM, Ivanov P, Ansari KI, Nakano I, Chiocca EA et al (2016) The long non-coding RNA HIF1A-AS2 facilitates the maintenance of mesenchymal glioblastoma stem-like cells in hypoxic niches. Cell Rep 15(11):2500–2509. doi: 10.1016/j.celrep.2016.05.018 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Du Z, Fei T, Verhaak RG, Su Z, Zhang Y, Brown M, Chen Y, Liu XS (2013) Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol 20(7):908–913. doi: 10.1038/nsmb.2591 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, Morozova O, Newton Y et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164(3):550–563. doi: 10.1016/j.cell.2015.12.028 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13. doi: 10.1093/nar/gkn923 PubMedCrossRefGoogle Scholar
  32. 32.
    Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi: 10.1038/nprot.2008.211 PubMedCrossRefGoogle Scholar
  33. 33.
    Merico D, Isserlin R, Stueker O, Emili A, Bader GD (2010) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5(11):e13984. doi: 10.1371/journal.pone.0013984 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Cao Y, Wang P, Ning S, Xiao W, Xiao B, Li X (2016) Identification of prognostic biomarkers in glioblastoma using a long non-coding RNA-mediated, competitive endogenous RNA network. Oncotarget 7(27):41737–41747. doi: 10.18632/oncotarget.9569 PubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhang XQ, Sun S, Lam KF, Kiang KM, Pu JK, Ho AS, Lui WM, Fung CF et al (2013) A long non-coding RNA signature in glioblastoma multiforme predicts survival. Neurobiol Dis 58:123–131. doi: 10.1016/j.nbd.2013.05.011 PubMedCrossRefGoogle Scholar
  36. 36.
    Cancer Genome Atlas Research N (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068. doi: 10.1038/nature07385 CrossRefGoogle Scholar
  37. 37.
    Huarte M (2015) The emerging role of lncRNAs in cancer. Nat Med 21(11):1253–1261. doi: 10.1038/nm.3981 PubMedCrossRefGoogle Scholar
  38. 38.
    Qi P, Du X (2013) The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol 26(2):155–165. doi: 10.1038/modpathol.2012.160 PubMedCrossRefGoogle Scholar
  39. 39.
    Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10:38. doi: 10.1186/1476-4598-10-38 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Hauptman N, Glavac D (2013) Long non-coding RNA in cancer. Int J Mol Sci 14(3):4655–4669. doi: 10.3390/ijms14034655 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM, Buck CR, Denk H et al (2007) Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132(1):330–342. doi: 10.1053/j.gastro.2006.08.026 PubMedCrossRefGoogle Scholar
  42. 42.
    Mohankumar S, Patel T (2016) Extracellular vesicle long noncoding RNA as potential biomarkers of liver cancer. Brief Funct Genomics 15(3):249–256. doi: 10.1093/bfgp/elv058 PubMedCrossRefGoogle Scholar
  43. 43.
    Qi P, Zhou XY, Du X (2016) Circulating long non-coding RNAs in cancer: current status and future perspectives. Mol Cancer 15(1):39. doi: 10.1186/s12943-016-0524-4 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Wu Y, Wang YQ, Weng WW, Zhang QY, Yang XQ, Gan HL, Yang YS, Zhang PP et al (2016) A serum-circulating long noncoding RNA signature can discriminate between patients with clear cell renal cell carcinoma and healthy controls. Oncogene 5:e192. doi: 10.1038/oncsis.2015.48 CrossRefGoogle Scholar
  45. 45.
    Zhu X, Tian X, Yu C, Shen C, Yan T, Hong J, Wang Z, Fang JY et al (2016) A long non-coding RNA signature to improve prognosis prediction of gastric cancer. Mol Cancer 15(1):60. doi: 10.1186/s12943-016-0544-0 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hu Y, Chen HY, Yu CY, Xu J, Wang JL, Qian J, Zhang X, Fang JY (2014) A long non-coding RNA signature to improve prognosis prediction of colorectal cancer. Oncotarget 5(8):2230–2242 10.18632/oncotarget.1895 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Zhou M, Wang X, Shi H, Cheng L, Wang Z, Zhao H, Yang L, Sun J (2016) Characterization of long non-coding RNA-associated ceRNA network to reveal potential prognostic lncRNA biomarkers in human ovarian cancer. Oncotarget 7(11):12598–12611. doi: 10.18632/oncotarget.7181 PubMedPubMedCentralGoogle Scholar
  48. 48.
    Zhou M, Diao Z, Yue X, Chen Y, Zhao H, Cheng L, Sun J (2016) Construction and analysis of dysregulated lncRNA-associated ceRNA network identified novel lncRNA biomarkers for early diagnosis of human pancreatic cancer. Oncotarget 7(35):56383–56394. doi: 10.18632/oncotarget.10891
  49. 49.
    Li J, Chen Z, Tian L, Zhou C, He MY, Gao Y, Wang S, Zhou F et al (2014) LncRNA profile study reveals a three-lncRNA signature associated with the survival of patients with oesophageal squamous cell carcinoma. Gut 63(11):1700–1710. doi: 10.1136/gutjnl-2013-305806 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110. doi: 10.1016/j.ccr.2009.12.020 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Vauleon E, Tony A, Hamlat A, Etcheverry A, Chiforeanu DC, Menei P, Mosser J, Quillien V et al (2012) Immune genes are associated with human glioblastoma pathology and patient survival. BMC Med Genet 5:41. doi: 10.1186/1755-8794-5-41 Google Scholar
  52. 52.
    Zhou M, Wiemels JL, Bracci PM, Wrensch MR, McCoy LS, Rice T, Sison JD, Patoka JS et al (2010) Circulating levels of the innate and humoral immune regulators CD14 and CD23 are associated with adult glioma. Cancer Res 70(19):7534–7542. doi: 10.1158/0008-5472.CAN-10-0815 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190):1396–1401. doi: 10.1126/science.1254257 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Chifman J, Pullikuth A, Chou JW, Bedognetti D, Miller LD (2016) Conservation of immune gene signatures in solid tumors and prognostic implications. BMC Cancer 16(1):911. doi: 10.1186/s12885-016-2948-z PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Arimappamagan A, Somasundaram K, Thennarasu K, Peddagangannagari S, Srinivasan H, Shailaja BC, Samuel C, Patric IR et al (2013) A fourteen gene GBM prognostic signature identifies association of immune response pathway and mesenchymal subtype with high risk group. PLoS One 8(4):e62042. doi: 10.1371/journal.pone.0062042 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbinPeople’s Republic of China

Personalised recommendations