Neural Stem Cell-Based Regenerative Approaches for the Treatment of Multiple Sclerosis

  • Juan Xiao
  • Rongbing Yang
  • Sangita Biswas
  • Yunhua Zhu
  • Xin Qin
  • Min Zhang
  • Lihong Zhai
  • Yi Luo
  • Xiaoming He
  • Chun Mao
  • Wenbin Deng
Article

Abstract

Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory, and demyelinating disorder of the central nervous system (CNS), which ultimately leads to axonal loss and permanent neurological disability. Current treatments for MS are largely comprised of medications that are either immunomodulatory or immunosuppressive and are aimed at reducing the frequency and intensity of relapses. Neural stem cells (NSCs) in the adult brain can differentiate into oligodendrocytes in a context-specific manner and are shown to be involved in the remyelination in these patients. NSCs may exert their beneficial effects not only through oligodendrocyte replacement but also by providing trophic support and immunomodulation, a phenomenon now known as “therapeutic plasticity.” In this review, we first provided an update on the current knowledge regarding MS pathogenesis and the role of immune cells, microglia, and oligodendrocytes in MS disease progression. Next, we reviewed the current progress on research aimed toward stimulating endogenous NSC proliferation and differentiation to oligodendrocytes in vivo and in animal models of demyelination. In addition, we explored the neuroprotective and immunomodulatory effects of transplanted exogenous NSCs on T cell activation, microglial activation, and endogenous remyelination and their effects on the pathological process and prognosis in animal models of MS. Finally, we examined various protocols to generate genetically engineered NSCs as a potential therapy for MS. Overall, this review highlights the studies involving the immunomodulatory, neurotrophic, and regenerative effects of NSCs and novel methods aiming at stimulating the potential of NSCs for the treatment of MS.

Keywords

Neural stem cell Neural progenitor cell Microglia Oligodendrocyte Multiple sclerosis 

Notes

Acknowledgements

We thank the funding support from the National Natural Science Foundation of China (81601373), Hubei Provincial Natural Science Foundation of China (2016CFB407), Bureau of Xiangyang City Science and Technology projects (No.[2014]6-7), Project for Discipline Groups Construction of Food New-type Industrialization of Hubei University of Arts and Science, National Institutes of Health (R01HD087566), National Multiple Sclerosis Society, and Shriners Hospitals for Children.

Authors’ Contributions

All authors researched the data for the article, provided substantial contributions to discussions of the content, and wrote the article.

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

References

  1. 1.
    Lassmann H (2013) Pathology and disease mechanisms in different stages of multiple sclerosis. J Neurol Sci 333(1–2):1–4. doi: 10.1016/j.jns.2013.05.010 PubMedCrossRefGoogle Scholar
  2. 2.
    Kishore A, Kanaujia A, Nag S, Rostami AM, Kenyon LC, Shindler KS, Das Sarma J (2013) Different mechanisms of inflammation induced in virus and autoimmune-mediated models of multiple sclerosis in C57BL6 mice. Biomed Res Int 2013:589048. doi: 10.1155/2013/589048 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Confavreux C, Vukusic S, Moreau T, Adeleine P (2000) Relapses and progression of disability in multiple sclerosis. N Engl J Med 343(20):1430–1438. doi: 10.1056/NEJM200011163432001 PubMedCrossRefGoogle Scholar
  4. 4.
    Miller DH, Leary SM (2007) Primary-progressive multiple sclerosis. Lancet Neurol 6(10):903–912. doi: 10.1016/S1474-4422(07)70243-0 PubMedCrossRefGoogle Scholar
  5. 5.
    Fugger L, Friese MA, Bell JI (2009) From genes to function: the next challenge to understanding multiple sclerosis. Nat Rev Immunol 9(6):408–417. doi: 10.1038/nri2554 PubMedCrossRefGoogle Scholar
  6. 6.
    Perga S, Montarolo F, Martire S, Berchialla P, Malucchi S, Bertolotto A (2015) Anti-inflammatory genes associated with multiple sclerosis: a gene expression study. J Neuroimmunol 279:75–78. doi: 10.1016/j.jneuroim.2015.01.004 PubMedCrossRefGoogle Scholar
  7. 7.
    Kohm AP, Carpentier PA, Anger HA, Miller SD (2002) Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 169(9):4712–4716PubMedCrossRefGoogle Scholar
  8. 8.
    Eliseeva DD, Zavalishin IA, Karaulov AV, Bykovskaia SN (2012) [The role of regulatory T cells in the development of autoimmune process in multiple sclerosis]. Vestnik Rossiiskoi akademii meditsinskikh nauk / Rossiiskaia akademiia meditsinskikh nauk (3):68–74Google Scholar
  9. 9.
    Peelen E, Damoiseaux J, Smolders J, Knippenberg S, Menheere P, Tervaert JW, Hupperts R, Thewissen M (2011) Th17 expansion in MS patients is counterbalanced by an expanded CD39+ regulatory T cell population during remission but not during relapse. J Neuroimmunol 240-241:97–103. doi: 10.1016/j.jneuroim.2011.09.013 PubMedCrossRefGoogle Scholar
  10. 10.
    Lifshitz GV, Zhdanov DD, Lokhonina AV, Eliseeva DD, Lyssuck EY, Zavalishin IA, Bykovskaia SN (2016) Ex vivo expanded regulatory T cells CD4+CD25+FoxP3+CD127Low develop strong immunosuppressive activity in patients with remitting-relapsing multiple sclerosis. Autoimmunity 49(6):388–396. doi: 10.1080/08916934.2016.1199020 PubMedCrossRefGoogle Scholar
  11. 11.
    Zozulya AL, Wiendl H (2008) The role of regulatory T cells in multiple sclerosis. Nat Clin Pract Neurol 4(7):384–398. doi: 10.1038/ncpneuro0832 PubMedCrossRefGoogle Scholar
  12. 12.
    Koch MW, Metz LM, Agrawal SM, Yong VW (2013) Environmental factors and their regulation of immunity in multiple sclerosis. J Neurol Sci 324(1–2):10–16. doi: 10.1016/j.jns.2012.10.021 PubMedCrossRefGoogle Scholar
  13. 13.
    Munger KL, Zhang SM, O’Reilly E, Hernan MA, Olek MJ, Willett WC, Ascherio A (2004) Vitamin D intake and incidence of multiple sclerosis. Neurology 62(1):60–65PubMedCrossRefGoogle Scholar
  14. 14.
    Haider L (2015) Inflammation, iron, energy failure, and oxidative stress in the pathogenesis of multiple sclerosis. Oxidative Med Cell Longev 2015:725370. doi: 10.1155/2015/725370 CrossRefGoogle Scholar
  15. 15.
    Odoardi F, Sie C, Streyl K, Ulaganathan VK, Schlager C, Lodygin D, Heckelsmiller K, Nietfeld W et al (2012) T cells become licensed in the lung to enter the central nervous system. Nature 488(7413):675–679. doi: 10.1038/nature11337 PubMedCrossRefGoogle Scholar
  16. 16.
    Correale J, Farez MF (2015) Smoking worsens multiple sclerosis prognosis: two different pathways are involved. J Neuroimmunol 281:23–34. doi: 10.1016/j.jneuroim.2015.03.006 PubMedCrossRefGoogle Scholar
  17. 17.
    De Jager PL, Simon KC, Munger KL, Rioux JD, Hafler DA, Ascherio A (2008) Integrating risk factors: HLA-DRB1*1501 and Epstein-Barr virus in multiple sclerosis. Neurology 70(13 Pt 2):1113–1118. doi: 10.1212/01.wnl.0000294325.63006.f8 PubMedCrossRefGoogle Scholar
  18. 18.
    Cepok S, Zhou D, Srivastava R, Nessler S, Stei S, Bussow K, Sommer N, Hemmer B (2005) Identification of Epstein-Barr virus proteins as putative targets of the immune response in multiple sclerosis. J Clin Invest 115(5):1352–1360. doi: 10.1172/JCI23661 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Virtanen JO, Farkkila M, Multanen J, Uotila L, Jaaskelainen AJ, Vaheri A, Koskiniemi M (2007) Evidence for human herpesvirus 6 variant A antibodies in multiple sclerosis: diagnostic and therapeutic implications. J Neurovirol 13(4):347–352. doi: 10.1080/13550280701381332 PubMedCrossRefGoogle Scholar
  20. 20.
    Pohl D (2009) Epstein-Barr virus and multiple sclerosis. J Neurol Sci 286(1–2):62–64. doi: 10.1016/j.jns.2009.03.028 PubMedCrossRefGoogle Scholar
  21. 21.
    Pender MP, Csurhes PA, Smith C, Beagley L, Hooper KD, Raj M, Coulthard A, Burrows SR et al (2014) Epstein-Barr virus-specific adoptive immunotherapy for progressive multiple sclerosis. Mult Scler 20(11):1541–1544. doi: 10.1177/1352458514521888 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Tsunoda I, Fujinami RS (2002) Inside-out versus outside-in models for virus induced demyelination: axonal damage triggering demyelination. Springer Semin Immunopathol 24(2):105–125. doi: 10.1007/s00281-002-0105-z PubMedCrossRefGoogle Scholar
  23. 23.
    Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129(2):154–169. doi: 10.1111/j.1365-2567.2009.03225.x PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Sato F, Martinez NE, Stewart EC, Omura S, Alexander JS, Tsunoda I (2015) “Microglial nodules” and “newly forming lesions” may be a Janus face of early MS lesions; implications from virus-induced demyelination, the inside-out model. BMC Neurol 15:219. doi: 10.1186/s12883-015-0478-y PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hagemeier K, Bruck W, Kuhlmann T (2012) Multiple sclerosis—remyelination failure as a cause of disease progression. Histol Histopathol 27(3):277–287PubMedGoogle Scholar
  26. 26.
    Stohlman SA, Hinton DR (2001) Viral induced demyelination. Brain Pathol 11(1):92–106PubMedCrossRefGoogle Scholar
  27. 27.
    Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338(5):278–285. doi: 10.1056/NEJM199801293380502 PubMedCrossRefGoogle Scholar
  28. 28.
    Joshi DC, Zhang CL, Lin TM, Gusain A, Harris MG, Tree E, Yin Y, Wu C et al (2015) Deletion of mitochondrial anchoring protects dysmyelinating shiverer: implications for progressive. Ms 35(13):5293–5306. doi: 10.1523/jneurosci.3859-14.2015 Google Scholar
  29. 29.
    Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269. doi: 10.1146/annurev.neuro.30.051606.094313 PubMedCrossRefGoogle Scholar
  30. 30.
    Birgbauer E, Rao TS, Webb M (2004) Lysolecithin induces demyelination in vitro in a cerebellar slice culture system. J Neurosci Res 78(2):157–166. doi: 10.1002/jnr.20248 PubMedCrossRefGoogle Scholar
  31. 31.
    Andrews H, White K, Thomson C, Edgar J, Bates D, Griffiths I, Turnbull D, Nichols P (2006) Increased axonal mitochondrial activity as an adaptation to myelin deficiency in the Shiverer mouse. J Neurosci Res 83(8):1533–1539. doi: 10.1002/jnr.20842 PubMedCrossRefGoogle Scholar
  32. 32.
    Trebst C, Heine S, Lienenklaus S, Lindner M, Baumgartner W, Weiss S, Stangel M (2007) Lack of interferon-beta leads to accelerated remyelination in a toxic model of central nervous system demyelination. Acta Neuropathol 114(6):587–596. doi: 10.1007/s00401-007-0300-z PubMedCrossRefGoogle Scholar
  33. 33.
    Witte ME, Bo L, Rodenburg RJ, Belien JA, Musters R, Hazes T, Wintjes LT, Smeitink JA et al (2009) Enhanced number and activity of mitochondria in multiple sclerosis lesions. J Pathol 219(2):193–204. doi: 10.1002/path.2582 PubMedCrossRefGoogle Scholar
  34. 34.
    Popescu BF, Lucchinetti CF (2012) Pathology of demyelinating diseases. Annu Rev Pathol 7:185–217. doi: 10.1146/annurev-pathol-011811-132443 PubMedCrossRefGoogle Scholar
  35. 35.
    Grade S, Bernardino L, Malva JO (2013) Oligodendrogenesis from neural stem cells: perspectives for remyelinating strategies. Int J Dev Neurosci 31(7):692–700. doi: 10.1016/j.ijdevneu.2013.01.004 PubMedCrossRefGoogle Scholar
  36. 36.
    Prineas JW, Barnard RO, Kwon EE, Sharer LR, Cho ES (1993) Multiple sclerosis: remyelination of nascent lesions. Ann Neurol 33(2):137–151. doi: 10.1002/ana.410330203 PubMedCrossRefGoogle Scholar
  37. 37.
    Fancy SP, Zhao C, Franklin RJ (2004) Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol Cell Neurosci 27(3):247–254. doi: 10.1016/j.mcn.2004.06.015 PubMedCrossRefGoogle Scholar
  38. 38.
    Wilson HC, Scolding NJ, Raine CS (2006) Co-expression of PDGF alpha receptor and NG2 by oligodendrocyte precursors in human CNS and multiple sclerosis lesions. J Neuroimmunol 176(1–2):162–173. doi: 10.1016/j.jneuroim.2006.04.014 PubMedCrossRefGoogle Scholar
  39. 39.
    Cai J, Qi Y, Hu X, Tan M, Liu Z, Zhang J, Li Q, Sander M et al (2005) Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 45(1):41–53. doi: 10.1016/j.neuron.2004.12.028 PubMedCrossRefGoogle Scholar
  40. 40.
    Mecha M, Feliu A, Carrillo-Salinas FJ, Mestre L, Guaza C (2013) Mobilization of progenitors in the subventricular zone to undergo oligodendrogenesis in the Theiler’s virus model of multiple sclerosis: implications for remyelination at lesions sites. Exp Neurol 250:348–352. doi: 10.1016/j.expneurol.2013.10.011 PubMedCrossRefGoogle Scholar
  41. 41.
    Xing YL, Roth PT, Stratton JA, Chuang BH, Danne J, Ellis SL, Ng SW, Kilpatrick TJ et al (2014) Adult neural precursor cells from the subventricular zone contribute significantly to oligodendrocyte regeneration and remyelination. J Neurosci 34(42):14128–14146. doi: 10.1523/jneurosci.3491-13.2014 PubMedCrossRefGoogle Scholar
  42. 42.
    Staugaitis SM, Chang A, Trapp BD (2012) Cortical pathology in multiple sclerosis: experimental approaches to studies on the mechanisms of demyelination and remyelination. Acta Neurol Scand Suppl 195:97–102. doi: 10.1111/ane.12041 CrossRefGoogle Scholar
  43. 43.
    Dulamea AO (2017) Role of oligodendrocyte dysfunction in demyelination, remyelination and neurodegeneration in multiple sclerosis. Adv Exp Med Biol 958:91–127. doi: 10.1007/978-3-319-47861-6_7 PubMedCrossRefGoogle Scholar
  44. 44.
    Mason JL, Toews A, Hostettler JD, Morell P, Suzuki K, Goldman JE, Matsushima GK (2004) Oligodendrocytes and progenitors become progressively depleted within chronically demyelinated lesions. Am J Pathol 164(5):1673–1682. doi: 10.1016/S0002-9440(10)63726-1 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zawadzka M, Rivers LE, Fancy SP, Zhao C, Tripathi R, Jamen F, Young K, Goncharevich A et al (2010) CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6(6):578–590. doi: 10.1016/j.stem.2010.04.002 PubMedCrossRefGoogle Scholar
  46. 46.
    Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD (2000) NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci 20(17):6404–6412PubMedGoogle Scholar
  47. 47.
    Armstrong RC, Le TQ, Flint NC, Vana AC, Zhou YX (2006) Endogenous cell repair of chronic demyelination. J Neuropathol Exp Neurol 65(3):245–256. doi: 10.1097/01.jnen.0000205142.08716.7e PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Reynolds R, Dawson M, Papadopoulos D, Polito A, Di Bello IC, Pham-Dinh D, Levine J (2002) The response of NG2-expressing oligodendrocyte progenitors to demyelination in MOG-EAE and MS. J Neurocytol 31(6–7):523–536PubMedCrossRefGoogle Scholar
  49. 49.
    Lassmann H, Bruck W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17(2):210–218. doi: 10.1111/j.1750-3639.2007.00064.x PubMedCrossRefGoogle Scholar
  50. 50.
    Hoftberger R, Aboul-Enein F, Brueck W, Lucchinetti C, Rodriguez M, Schmidbauer M, Jellinger K, Lassmann H (2004) Expression of major histocompatibility complex class I molecules on the different cell types in multiple sclerosis lesions. Brain Pathol 14(1):43–50PubMedCrossRefGoogle Scholar
  51. 51.
    Saxena A, Bauer J, Scheikl T, Zappulla J, Audebert M, Desbois S, Waisman A, Lassmann H et al (2008) Cutting edge: multiple sclerosis-like lesions induced by effector CD8 T cells recognizing a sequestered antigen on oligodendrocytes. J Immunol 181(3):1617–1621PubMedCrossRefGoogle Scholar
  52. 52.
    Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55(4):458–468. doi: 10.1002/ana.20016 PubMedCrossRefGoogle Scholar
  53. 53.
    McTigue DM, Tripathi RB (2008) The life, death, and replacement of oligodendrocytes in the adult CNS. J Neurochem 107(1):1–19. doi: 10.1111/j.1471-4159.2008.05570.x PubMedCrossRefGoogle Scholar
  54. 54.
    Thorburne SK, Juurlink BH (1996) Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J Neurochem 67(3):1014–1022PubMedCrossRefGoogle Scholar
  55. 55.
    Tavazzi E, Rovaris M, La Mantia L (2014) Drug therapy for multiple sclerosis. CMAJ 186(11):833–840. doi: 10.1503/cmaj.130727 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Weiner HL (2009) The challenge of multiple sclerosis: how do we cure a chronic heterogeneous disease? Ann Neurol 65(3):239–248. doi: 10.1002/ana.21640 PubMedCrossRefGoogle Scholar
  57. 57.
    Fitzner D, Simons M (2010) Chronic progressive multiple sclerosis—pathogenesis of neurodegeneration and therapeutic strategies. Curr Neuropharmacol 8(3):305–315. doi: 10.2174/157015910792246218 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Steinman L, Zamvil SS (2006) How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann Neurol 60(1):12–21. doi: 10.1002/ana.20913 PubMedCrossRefGoogle Scholar
  59. 59.
    Stys PK, Zamponi GW, van Minnen J, Geurts JJ (2012) Will the real multiple sclerosis please stand up? Nat Rev Neurosci 13(7):507–514. doi: 10.1038/nrn3275 PubMedCrossRefGoogle Scholar
  60. 60.
    Sato F, Tanaka H, Hasanovic F, Tsunoda I (2011) Theiler’s virus infection: pathophysiology of demyelination and neurodegeneration. Pathophysiology 18(1):31–41. doi: 10.1016/j.pathophys.2010.04.011 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Oikonen M, Laaksonen M, Aalto V, Ilonen J, Salonen R, Eralinna JP, Panelius M, Salmi A (2011) Temporal relationship between environmental influenza A and Epstein-Barr viral infections and high multiple sclerosis relapse occurrence. Mult Scler 17(6):672–680. doi: 10.1177/1352458510394397 PubMedCrossRefGoogle Scholar
  62. 62.
    Procaccini C, De Rosa V, Pucino V, Formisano L, Matarese G (2015) Animal models of multiple sclerosis. Eur J Pharmacol 759:182–191. doi: 10.1016/j.ejphar.2015.03.042 PubMedCrossRefGoogle Scholar
  63. 63.
    von Herrath MG, Fujinami RS, Whitton JL (2003) Microorganisms and autoimmunity: making the barren field fertile? Nat Rev Microbiol 1(2):151–157. doi: 10.1038/nrmicro754 CrossRefGoogle Scholar
  64. 64.
    Keough MB, Jensen SK, Yong VW (2015) Experimental demyelination and remyelination of murine spinal cord by focal injection of lysolecithin. J Vis Exp 97. doi: 10.3791/52679
  65. 65.
    Baxi EG, DeBruin J (2015) Transfer of myelin-reactive th17 cells impairs endogenous remyelination in the central nervous system of cuprizone-fed mice. J Neurosci 35(22):8626–8639. doi: 10.1523/jneurosci.3817-14.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Cristofanilli M, Rosenthal H, Cymring B, Gratch D, Pagano B, Xie B, Sadiq SA (2014) Progressive multiple sclerosis cerebrospinal fluid induces inflammatory demyelination, axonal loss, and astrogliosis in mice. Exp Neurol 261:620–632. doi: 10.1016/j.expneurol.2014.07.020 PubMedCrossRefGoogle Scholar
  67. 67.
    Alvarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41(5):683–686PubMedCrossRefGoogle Scholar
  68. 68.
    Nunes MC, Roy NS, Keyoung HM, Goodman RR, McKhann G 2nd, Jiang L, Kang J, Nedergaard M et al (2003) Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 9(4):439–447. doi: 10.1038/nm837 PubMedCrossRefGoogle Scholar
  69. 69.
    Luo Y, Coskun V, Liang A, Yu J, Cheng L, Ge W, Shi Z, Zhang K et al (2015) Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell 161(5):1175–1186. doi: 10.1016/j.cell.2015.04.001 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Andressen C (2013) Neural stem cells: from neurobiology to clinical applications. Curr Pharm Biotechnol 14(1):20–28PubMedGoogle Scholar
  71. 71.
    Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702. doi: 10.1016/j.neuron.2011.05.001 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Nait-Oumesmar B, Decker L, Lachapelle F, Avellana-Adalid V, Bachelin C, Baron-Van Evercooren A (1999) Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur J Neurosci 11(12):4357–4366PubMedCrossRefGoogle Scholar
  73. 73.
    Jablonska A, Kozlowska H, Markiewicz I, Domanska-Janik K, Lukomska B (2010) Transplantation of neural stem cells derived from human cord blood to the brain of adult and neonatal rats. Acta Neurobiol Exp 70(4):337–350Google Scholar
  74. 74.
    Picard-Riera N, Decker L, Delarasse C, Goude K, Nait-Oumesmar B, Liblau R, Pham-Dinh D, Baron-Van Evercooren A (2002) Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci U S A 99(20):13211–13216. doi: 10.1073/pnas.192314199 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Jessberger S, Toni N, Clemenson GD Jr, Ray J, Gage FH (2008) Directed differentiation of hippocampal stem/progenitor cells in the adult brain. Nat Neurosci 11(8):888–893. doi: 10.1038/nn.2148 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Tramontin AD, Garcia-Verdugo JM, Lim DA, Alvarez-Buylla A (2003) Postnatal development of radial glia and the ventricular zone (VZ): a continuum of the neural stem cell compartment. Cereb Cortex 13(6):580–587PubMedCrossRefGoogle Scholar
  77. 77.
    Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26(30):7907–7918. doi: 10.1523/JNEUROSCI.1299-06.2006 PubMedCrossRefGoogle Scholar
  78. 78.
    Capilla-Gonzalez V, Herranz-Perez V, Garcia-Verdugo JM (2015) The aged brain: genesis and fate of residual progenitor cells in the subventricular zone. Front Cell Neurosci 9:365. doi: 10.3389/fncel.2015.00365 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Conover JC, Shook BA (2011) Aging of the subventricular zone neural stem cell niche. Aging Dis 2(1):49–63PubMedPubMedCentralGoogle Scholar
  80. 80.
    Capilla-Gonzalez V, Cebrian-Silla A, Guerrero-Cazares H, Garcia-Verdugo JM, Quinones-Hinojosa A (2014) Age-related changes in astrocytic and ependymal cells of the subventricular zone. Glia 62(5):790–803. doi: 10.1002/glia.22642 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Encinas JM, Michurina TV, Peunova N, Park JH, Tordo J, Peterson DA, Fishell G, Koulakov A et al (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8(5):566–579. doi: 10.1016/j.stem.2011.03.010 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Samanta J, Grund EM, Silva HM, Lafaille JJ, Fishell G, Salzer JL (2015) Inhibition of Gli1 mobilizes endogenous neural stem cells for remyelination. Nature 526(7573):448–452. doi: 10.1038/nature14957 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Klingener M, Chavali M, Singh J, McMillan N, Coomes A, Dempsey PJ, Chen EI, Aguirre A (2014) N-cadherin promotes recruitment and migration of neural progenitor cells from the SVZ neural stem cell niche into demyelinated lesions. J Neurosci 34(29):9590–9606. doi: 10.1523/JNEUROSCI.3699-13.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Brousse B, Magalon K, Durbec P, Cayre M (2015) Region and dynamic specificities of adult neural stem cells and oligodendrocyte precursors in myelin regeneration in the mouse brain. Biol Open 4(8):980–992. doi: 10.1242/bio.012773 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Calzolari F, Michel J, Baumgart EV, Theis F, Gotz M, Ninkovic J (2015) Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. Nat Neurosci 18(4):490–492. doi: 10.1038/nn.3963 PubMedCrossRefGoogle Scholar
  86. 86.
    Lee Y, Oh SB, Park HR, Kim HS, Kim MS, Lee J (2013) Selective impairment on the proliferation of neural progenitor cells by oxidative phosphorylation disruption. Neurosci Lett 535:134–139. doi: 10.1016/j.neulet.2012.12.050 PubMedCrossRefGoogle Scholar
  87. 87.
    Zilkha-Falb R, Kaushansky N, Kawakami N, Ben-Nun A (2016) Post-CNS-inflammation expression of CXCL12 promotes the endogenous myelin/neuronal repair capacity following spontaneous recovery from multiple sclerosis-like disease. J Neuroinflammation 13:7. doi: 10.1186/s12974-015-0468-4 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kaneko N, Kako E, Sawamoto K (2011) Prospects and limitations of using endogenous neural stem cells for brain regeneration. Genes 2(1):107–130. doi: 10.3390/genes2010107 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Shirazi HA, Rasouli J, Ciric B, Rostami A, Zhang GX (2015) 1,25-Dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation. Exp Mol Pathol 98(2):240–245. doi: 10.1016/j.yexmp.2015.02.004 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Goudarzvand M, Javan M, Mirnajafi-Zadeh J, Mozafari S, Tiraihi T (2010) Vitamins E and D3 attenuate demyelination and potentiate remyelination processes of hippocampal formation of rats following local injection of ethidium bromide. Cell Mol Neurobiol 30(2):289–299. doi: 10.1007/s10571-009-9451-x PubMedCrossRefGoogle Scholar
  91. 91.
    Penna G, Roncari A, Amuchastegui S, Daniel KC, Berti E, Colonna M, Adorini L (2005) Expression of the inhibitory receptor ILT3 on dendritic cells is dispensable for induction of CD4+Foxp3+ regulatory T cells by 1,25-dihydroxyvitamin D3. Blood 106(10):3490–3497. doi: 10.1182/blood-2005-05-2044 PubMedCrossRefGoogle Scholar
  92. 92.
    Toghianifar N, Ashtari F, Zarkesh-Esfahani SH, Mansourian M (2015) Effect of high dose vitamin D intake on interleukin-17 levels in multiple sclerosis: a randomized, double-blind, placebo-controlled clinical trial. J Neuroimmunol 285:125–128. doi: 10.1016/j.jneuroim.2015.05.022 PubMedCrossRefGoogle Scholar
  93. 93.
    Cantarella C, Cayre M, Magalon K, Durbec P (2008) Intranasal HB-EGF administration favors adult SVZ cell mobilization to demyelinated lesions in mouse corpus callosum. Dev Neurobiol 68(2):223–236. doi: 10.1002/dneu.20588 PubMedCrossRefGoogle Scholar
  94. 94.
    Holley JE, Gveric D, Newcombe J, Cuzner ML, Gutowski NJ (2003) Astrocyte characterization in the multiple sclerosis glial scar. Neuropathol Appl Neurobiol 29(5):434–444PubMedCrossRefGoogle Scholar
  95. 95.
    Amir-Levy Y, Mausner-Fainberg K, Karni A (2014) Treatment with anti-EGF ab ameliorates experimental autoimmune encephalomyelitis via induction of neurogenesis and oligodendrogenesis. Mult Scler Int 2014:926134. doi: 10.1155/2014/926134 PubMedPubMedCentralGoogle Scholar
  96. 96.
    Cate HS, Sabo JK, Merlo D, Kemper D, Aumann TD, Robinson J, Merson TD, Emery B et al (2010) Modulation of bone morphogenic protein signalling alters numbers of astrocytes and oligodendroglia in the subventricular zone during cuprizone-induced demyelination. J Neurochem 115(1):11–22. doi: 10.1111/j.1471-4159.2010.06660.x PubMedCrossRefGoogle Scholar
  97. 97.
    Totoiu MO, Nistor GI, Lane TE, Keirstead HS (2004) Remyelination, axonal sparing, and locomotor recovery following transplantation of glial-committed progenitor cells into the MHV model of multiple sclerosis. Exp Neurol 187(2):254–265. doi: 10.1016/j.expneurol.2004.01.028 PubMedCrossRefGoogle Scholar
  98. 98.
    Hardison JL, Nistor G, Gonzalez R, Keirstead HS, Lane TE (2006) Transplantation of glial-committed progenitor cells into a viral model of multiple sclerosis induces remyelination in the absence of an attenuated inflammatory response. Exp Neurol 197(2):420–429. doi: 10.1016/j.expneurol.2005.10.016 PubMedCrossRefGoogle Scholar
  99. 99.
    Blanc CA, Grist JJ, Rosen H, Sears-Kraxberger I, Steward O, Lane TE (2015) Sphingosine-1-phosphate receptor antagonism enhances proliferation and migration of engrafted neural progenitor cells in a model of viral-induced demyelination. Am J Pathol 185(10):2819–2832. doi: 10.1016/j.ajpath.2015.06.009 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Guan Y, Jiang Z, Ciric B, Rostami AM, Zhang GX (2008) Upregulation of chemokine receptor expression by IL-10/IL-4 in adult neural stem cells. Exp Mol Pathol 85(3):232–236. doi: 10.1016/j.yexmp.2008.07.003 PubMedCrossRefGoogle Scholar
  101. 101.
    Harry GJ, Kraft AD (2012) Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology 33(2):191–206. doi: 10.1016/j.neuro.2012.01.012 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Suzumura A (2013) Microglia in pathophysiology of neuroimmunological disorders. Nihon rinsho Jpn J Clin Med 71(5):801–806Google Scholar
  103. 103.
    van Horssen J, Singh S, van der Pol S, Kipp M, Lim JL, Peferoen L, Gerritsen W, Kooi EJ et al (2012) Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. J Neuroinflammation 9:156. doi: 10.1186/1742-2094-9-156 PubMedPubMedCentralGoogle Scholar
  104. 104.
    Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201. doi: 10.1038/nrneurol.2010.17 PubMedCrossRefGoogle Scholar
  105. 105.
    Al-Shamsi M, Shahin A, Ibrahim MF, Tareq S, Souid AK, Mensah-Brown EP (2015) Bioenergetics of the spinal cord in experimental autoimmune encephalitis of rats. BMC Neurosci 16:37. doi: 10.1186/s12868-015-0175-1 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Lampron A, Larochelle A, Laflamme N, Prefontaine P, Plante MM, Sanchez MG, Yong VW, Stys PK et al (2015) Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J Exp Med 212(4):481–495. doi: 10.1084/jem.20141656 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Ramesh G, Benge S, Pahar B, Philipp MT (2012) A possible role for inflammation in mediating apoptosis of oligodendrocytes as induced by the Lyme disease spirochete Borrelia burgdorferi. J Neuroinflammation 9:72. doi: 10.1186/1742-2094-9-72 PubMedPubMedCentralGoogle Scholar
  108. 108.
    Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S (2014) Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 141(3):302–313. doi: 10.1111/imm.12163 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Prineas JW, Kwon EE, Cho ES, Sharer LR, Barnett MH, Oleszak EL, Hoffman B, Morgan BP (2001) Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol 50(5):646–657PubMedCrossRefGoogle Scholar
  110. 110.
    Marin-Teva JL, Cuadros MA, Martin-Oliva D, Navascues J (2011) Microglia and neuronal cell death. Neuron Glia Biol 7(1):25–40. doi: 10.1017/S1740925X12000014 PubMedCrossRefGoogle Scholar
  111. 111.
    Raivich G, Banati R (2004) Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res Brain Res Rev 46(3):261–281. doi: 10.1016/j.brainresrev.2004.06.006 PubMedCrossRefGoogle Scholar
  112. 112.
    Derkow K, Kruger C, Dembny P, Lehnardt S (2015) Microglia induce neurotoxic IL-17+ gammadelta T cells dependent on TLR2, TLR4, and TLR9 activation. PLoS One 10(8):e0135898. doi: 10.1371/journal.pone.0135898 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Almolda B, Gonzalez B, Castellano B (2015) Are microglial cells the regulators of lymphocyte responses in the CNS? Front Cell Neurosci 9:440. doi: 10.3389/fncel.2015.00440 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, Waisman A, Rulicke T et al (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11(2):146–152. doi: 10.1038/nm1177 PubMedCrossRefGoogle Scholar
  115. 115.
    Zhou J, Cai W, Jin M, Xu J, Wang Y, Xiao Y, Hao L, Wang B et al (2015) 18Beta-glycyrrhetinic acid suppresses experimental autoimmune encephalomyelitis through inhibition of microglia activation and promotion of remyelination. Sci Rep 5:13713. doi: 10.1038/srep13713 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Muja N, Cohen ME, Zhang J, Kim H, Gilad AA, Walczak P, Ben-Hur T, Bulte JW (2011) Neural precursors exhibit distinctly different patterns of cell migration upon transplantation during either the acute or chronic phase of EAE: a serial MR imaging study. Magn Reson Med 65(6):1738–1749. doi: 10.1002/mrm.22757 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Aarum J, Sandberg K, Haeberlein SL, Persson MA (2003) Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci U S A 100(26):15983–15988. doi: 10.1073/pnas.2237050100 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Cohen ME, Fainstein N, Lavon I, Ben-Hur T (2014) Signaling through three chemokine receptors triggers the migration of transplanted neural precursor cells in a model of multiple sclerosis. Stem Cell Res 13(2):227–239. doi: 10.1016/j.scr.2014.06.001 PubMedCrossRefGoogle Scholar
  119. 119.
    Liu J, Hjorth E, Zhu M, Calzarossa C, Samuelsson EB, Schultzberg M, Akesson E (2013) Interplay between human microglia and neural stem/progenitor cells in an allogeneic co-culture model. J Cell Mol Med 17(11):1434–1443. doi: 10.1111/jcmm.12123 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M (2006) Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31(1):149–160. doi: 10.1016/j.mcn.2005.10.006 PubMedCrossRefGoogle Scholar
  121. 121.
    Guadagno J, Xu X, Karajgikar M, Brown A, Cregan SP (2013) Microglia-derived TNFalpha induces apoptosis in neural precursor cells via transcriptional activation of the Bcl-2 family member Puma. Cell Death Dis 4:e538. doi: 10.1038/cddis.2013.59 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Wu HM, Zhang LF, Ding PS, Liu YJ, Wu X, Zhou JN (2014) Microglial activation mediates host neuronal survival induced by neural stem cells. J Cell Mol Med 18(7):1300–1312. doi: 10.1111/jcmm.12281 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924. doi: 10.1038/nn1715 PubMedCrossRefGoogle Scholar
  124. 124.
    Takahashi K, Rochford CD, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201(4):647–657. doi: 10.1084/jem.20041611 PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Mosher KI, Andres RH, Fukuhara T, Bieri G, Hasegawa-Moriyama M, He Y, Guzman R, Wyss-Coray T (2012) Neural progenitor cells regulate microglia functions and activity. Nat Neurosci 15(11):1485–1487. doi: 10.1038/nn.3233 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Sakata H, Niizuma K, Yoshioka H, Kim GS, Jung JE, Katsu M, Narasimhan P, Maier CM et al (2012) Minocycline-preconditioned neural stem cells enhance neuroprotection after ischemic stroke in rats. J Neurosci 32(10):3462–3473. doi: 10.1523/jneurosci.5686-11.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Rasmussen S, Imitola J, Ayuso-Sacido A, Wang Y, Starossom SC, Kivisakk P, Zhu B, Meyer M et al (2011) Reversible neural stem cell niche dysfunction in a model of multiple sclerosis. Ann Neurol 69(5):878–891. doi: 10.1002/ana.22299 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, Ben-Hur T (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19(12):1134–1140. doi: 10.1038/nbt1201-1134 PubMedCrossRefGoogle Scholar
  129. 129.
    Nait-Oumesmar B, Picard-Riera N, Kerninon C, Baron-Van Evercooren A (2008) The role of SVZ-derived neural precursors in demyelinating diseases: from animal models to multiple sclerosis. J Neurol Sci 265(1–2):26–31. doi: 10.1016/j.jns.2007.09.032 PubMedCrossRefGoogle Scholar
  130. 130.
    Hermann A, Gastl R, Liebau S, Popa MO, Fiedler J, Boehm BO, Maisel M, Lerche H et al (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117(Pt 19):4411–4422. doi: 10.1242/jcs.01307 PubMedCrossRefGoogle Scholar
  131. 131.
    Yang J, Yan Y, Ciric B, Yu S, Guan Y, Xu H, Rostami A, Zhang GX (2010) Evaluation of bone marrow- and brain-derived neural stem cells in therapy of central nervous system autoimmunity. Am J Pathol 177(4):1989–2001. doi: 10.2353/ajpath.2010.091203 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Hew M, O’Connor K, Edel MJ, Lucas M (2015) The possible future roles for iPSC-derived therapy for autoimmune diseases. J Clin Med 4(6):1193–1206. doi: 10.3390/jcm4061193 PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Liu J (2013) Induced pluripotent stem cell-derived neural stem cells: new hope for stroke? Stem Cell Res Ther 4(5):115. doi: 10.1186/scrt326 PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Yan Y, Shin S, Jha BS, Liu Q, Sheng J, Li F, Zhan M, Davis J et al (2013) Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells. Stem Cells Transl Med 2(11):862–870. doi: 10.5966/sctm.2013-0080 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Wang T, Choi E, Monaco MC, Campanac E, Medynets M, Do T, Rao P, Johnson KR et al (2013) Derivation of neural stem cells from human adult peripheral CD34+ cells for an autologous model of neuroinflammation. PLoS One 8(11):e81720. doi: 10.1371/journal.pone.0081720 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Mozafari S, Laterza C, Roussel D, Bachelin C, Marteyn A, Deboux C, Martino G, Baron-Van Evercooren A (2015) Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice. J Clin Invest 125(9):3642–3656. doi: 10.1172/JCI80437 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Tao GZ, Lehwald N, Jang KY, Baek J, Xu B, Omary MB, Sylvester KG (2013) Wnt/beta-catenin signaling protects mouse liver against oxidative stress-induced apoptosis through the inhibition of forkhead transcription factor FoxO3. J Biol Chem 288(24):17214–17224. doi: 10.1074/jbc.M112.445965 PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Nicaise AM, Banda E, Guzzo RM, Russomanno K, Castro-Borrero W, Willis CM, Johnson KM, Lo AC et al (2016) iPS-derived neural progenitor cells from PPMS patients reveal defect in myelin injury response. Exp Neurol 288:114–121. doi: 10.1016/j.expneurol.2016.11.012 PubMedCrossRefGoogle Scholar
  139. 139.
    Lee ST, Chu K, Jung KH, Song YM, Jeon D, Kim SU, Kim M, Lee SK et al (2011) Direct generation of neurosphere-like cells from human dermal fibroblasts. PLoS One 6(7):e21801. doi: 10.1371/journal.pone.0021801 PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Capetian P, Azmitia L, Pauly MG, Krajka V, Stengel F, Bernhardi EM, Klett M, Meier B et al (2016) Plasmid-based generation of induced neural stem cells from adult human fibroblasts. Front Cell Neurosci 10:245. doi: 10.3389/fncel.2016.00245 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Thier M, Worsdorfer P, Lakes YB, Gorris R, Herms S, Opitz T, Seiferling D, Quandel T et al (2012) Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10(4):473–479. doi: 10.1016/j.stem.2012.03.003 PubMedCrossRefGoogle Scholar
  142. 142.
    Mirakhori F, Zeynali B, Rassouli H, Shahbazi E, Hashemizadeh S, Kiani S, Salekdeh GH, Baharvand H (2015) Induction of neural progenitor-like cells from human fibroblasts via a genetic material-free approach. PLoS One 10(8):e0135479. doi: 10.1371/journal.pone.0135479 PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Miura T, Sugawara T, Fukuda A, Tamoto R, Kawasaki T, Umezawa A, Akutsu H (2015) Generation of primitive neural stem cells from human fibroblasts using a defined set of factors. Biol Open 4(11):1595–1607. doi: 10.1242/bio.013151 PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Lujan E, Chanda S, Ahlenius H, Sudhof TC, Wernig M (2012) Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci U S A 109(7):2527–2532. doi: 10.1073/pnas.1121003109 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Plaisted WC, Zavala A, Hingco E, Tran H, Coleman R, Lane TE, Loring JF, Walsh CM (2016) Remyelination is correlated with regulatory T cell induction following human embryoid body-derived neural precursor cell transplantation in a viral model of multiple sclerosis. PLoS One 11(6):e0157620. doi: 10.1371/journal.pone.0157620 PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Hawryluk GW, Mothe AJ, Chamankhah M, Wang J, Tator C, Fehlings MG (2012) In vitro characterization of trophic factor expression in neural precursor cells. Stem Cells Dev 21(3):432–447. doi: 10.1089/scd.2011.0242 PubMedCrossRefGoogle Scholar
  147. 147.
    Fainstein N, Einstein O, Cohen ME, Brill L, Lavon I, Ben-Hur T (2013) Time limited immunomodulatory functions of transplanted neural precursor cells. Glia 61(2):140–149. doi: 10.1002/glia.22420 PubMedCrossRefGoogle Scholar
  148. 148.
    Martino G, Franklin RJ, Baron Van Evercooren A, Kerr DA, Stem Cells in Multiple Sclerosis Consensus G (2010) Stem cell transplantation in multiple sclerosis: current status and future prospects. Nat Rev Neurol 6(5):247–255. doi: 10.1038/nrneurol.2010.35 PubMedCrossRefGoogle Scholar
  149. 149.
    Einstein O, Fainstein N, Vaknin I, Mizrachi-Kol R, Reihartz E, Grigoriadis N, Lavon I, Baniyash M et al (2007) Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Ann Neurol 61(3):209–218. doi: 10.1002/ana.21033 PubMedCrossRefGoogle Scholar
  150. 150.
    Pluchino S, Zanotti L, Brambilla E, Rovere-Querini P, Capobianco A, Alfaro-Cervello C, Salani G, Cossetti C et al (2009) Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PLoS One 4(6):e5959. doi: 10.1371/journal.pone.0005959 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164(4):1079–1106. doi: 10.1111/j.1476-5381.2011.01302.x PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Donega M, Giusto E, Cossetti C, Schaeffer J, Pluchino S (2014) Systemic injection of neural stem/progenitor cells in mice with chronic EAE. J Vis Exp 86. doi: 10.3791/51154
  153. 153.
    Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, Galli R, Del Carro U et al (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422(6933):688–694. doi: 10.1038/nature01552 PubMedCrossRefGoogle Scholar
  154. 154.
    Ben-Hur T, Einstein O, Mizrachi-Kol R, Ben-Menachem O, Reinhartz E, Karussis D, Abramsky O (2003) Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia 41(1):73–80. doi: 10.1002/glia.10159 PubMedCrossRefGoogle Scholar
  155. 155.
    Wu S, Li K, Yan Y, Gran B, Han Y, Zhou F, Guan YT, Rostami A et al (2013) Intranasal delivery of neural stem cells: a CNS-specific, non-invasive cell-based therapy for experimental autoimmune encephalomyelitis. J Clin Cell Immunol 4(3). doi: 10.4172/2155-9899.1000142
  156. 156.
    Guzman R, De Los AA, Cheshier S, Choi R, Hoang S, Liauw J, Schaar B, Steinberg G (2008) Intracarotid injection of fluorescence activated cell-sorted CD49d-positive neural stem cells improves targeted cell delivery and behavior after stroke in a mouse stroke model. Stroke 39(4):1300–1306. doi: 10.1161/STROKEAHA.107.500470 PubMedCrossRefGoogle Scholar
  157. 157.
    Kokaia Z, Martino G, Schwartz M, Lindvall O (2012) Cross-talk between neural stem cells and immune cells: the key to better brain repair? Nat Neurosci 15(8):1078–1087. doi: 10.1038/nn.3163 PubMedCrossRefGoogle Scholar
  158. 158.
    Martino G, Pluchino S (2006) The therapeutic potential of neural stem cells. Nat Rev Neurosci 7(5):395–406. doi: 10.1038/nrn1908 PubMedCrossRefGoogle Scholar
  159. 159.
    Harris VK, Faroqui R, Vyshkina T, Sadiq SA (2012) Characterization of autologous mesenchymal stem cell-derived neural progenitors as a feasible source of stem cells for central nervous system applications in multiple sclerosis. Stem Cells Transl Med 1(7):536–547. doi: 10.5966/sctm.2012-0015 PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Chen L, Coleman R, Leang R, Tran H, Kopf A, Walsh CM, Sears-Kraxberger I, Steward O et al (2014) Human neural precursor cells promote neurologic recovery in a viral model of multiple sclerosis. Stem Cell Reports 2(6):825–837. doi: 10.1016/j.stemcr.2014.04.005 PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Di Ruscio A, Patti F, Welner RS, Tenen DG, Amabile G (2015) Multiple sclerosis: getting personal with induced pluripotent stem cells. Cell Death Dis 6:e1806. doi: 10.1038/cddis.2015.179 PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Ravanidis S, Poulatsidou KN, Lagoudaki R, Touloumi O, Polyzoidou E, Lourbopoulos A, Nousiopoulou E, Theotokis P et al (2015) Subcutaneous transplantation of neural precursor cells in experimental autoimmune encephalomyelitis reduces chemotactic signals in the central nervous system. Stem Cells Transl Med 4(12):1450–1462. doi: 10.5966/sctm.2015-0068 PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, Martinello M, Cattalini A et al (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436(7048):266–271. doi: 10.1038/nature03889 PubMedCrossRefGoogle Scholar
  164. 164.
    Einstein O, Karussis D, Grigoriadis N, Mizrachi-Kol R, Reinhartz E, Abramsky O, Ben-Hur T (2003) Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol Cell Neurosci 24(4):1074–1082PubMedCrossRefGoogle Scholar
  165. 165.
    Whitman LM, Blanc CA, Schaumburg CS, Rowitch DH, Lane TE (2012) Olig1 function is required for remyelination potential of transplanted neural progenitor cells in a model of viral-induced demyelination. Exp Neurol 235(1):380–387. doi: 10.1016/j.expneurol.2012.03.003 PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Einstein O, Friedman-Levi Y, Grigoriadis N, Ben-Hur T (2009) Transplanted neural precursors enhance host brain-derived myelin regeneration. J Neurosci 29(50):15694–15702. doi: 10.1523/JNEUROSCI.3364-09.2009 PubMedCrossRefGoogle Scholar
  167. 167.
    Harris VK, Yan OJ, Vyshkina T, Sahabi S, Liu X, Sadiq SA (2012) Clinical and pathological effects of intrathecal injection of mesenchymal stem cell-derived neural progenitors in an experimental model of multiple sclerosis. J Neurol Sci 313(1–2):167–177. doi: 10.1016/j.jns.2011.08.036 PubMedCrossRefGoogle Scholar
  168. 168.
    Laterza C, Merlini A, De Feo D, Ruffini F, Menon R, Onorati M, Fredrickx E, Muzio L et al (2013) iPSC-derived neural precursors exert a neuroprotective role in immune-mediated demyelination via the secretion of LIF. Nat Commun 4:2597. doi: 10.1038/ncomms3597 PubMedCrossRefGoogle Scholar
  169. 169.
    Reekmans K, Praet J, De Vocht N, Daans J, Van der Linden A, Berneman Z, Ponsaerts P (2012) Stem cell therapy for multiple sclerosis: preclinical evidence beyond all doubt? Regen Med 7(2):245–259. doi: 10.2217/rme.12.5 PubMedCrossRefGoogle Scholar
  170. 170.
    Ricci-Vitiani L, Lombardi DG, Signore M, Biffoni M, Pallini R, Parati E, Peschle C, De Maria R (2007) Human neural progenitor cells display limited cytotoxicity and increased oligodendrogenesis during inflammation. Cell Death Differ 14(4):876–878. doi: 10.1038/sj.cdd.4402078 PubMedCrossRefGoogle Scholar
  171. 171.
    Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9(11):839–855. doi: 10.1038/nrn2480 PubMedCrossRefGoogle Scholar
  172. 172.
    Walker MR, Patel KK, Stappenbeck TS (2009) The stem cell niche. J Pathol 217(2):169–180. doi: 10.1002/path.2474 PubMedCrossRefGoogle Scholar
  173. 173.
    Ben-Hur T, Ben-Menachem O, Furer V, Einstein O, Mizrachi-Kol R, Grigoriadis N (2003) Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol Cell Neurosci 24(3):623–631PubMedCrossRefGoogle Scholar
  174. 174.
    Foote AK, Blakemore WF (2005) Inflammation stimulates remyelination in areas of chronic demyelination. Brain 128(Pt 3):528–539. doi: 10.1093/brain/awh417 PubMedCrossRefGoogle Scholar
  175. 175.
    Molina-Holgado E, Vela JM, Arevalo-Martin A, Guaza C (2001) LPS/IFN-gamma cytotoxicity in oligodendroglial cells: role of nitric oxide and protection by the anti-inflammatory cytokine IL-10. Eur J Neurosci 13(3):493–502PubMedCrossRefGoogle Scholar
  176. 176.
    Perez-Asensio FJ, Perpina U, Planas AM, Pozas E (2013) Interleukin-10 regulates progenitor differentiation and modulates neurogenesis in adult brain. J Cell Sci 126(Pt 18):4208–4219. doi: 10.1242/jcs.127803 PubMedCrossRefGoogle Scholar
  177. 177.
    Kulkarni A, Scully TJ, O’Donnell LA (2016) The antiviral cytokine interferon-gamma restricts neural stem/progenitor cell proliferation through activation of STAT1 and modulation of retinoblastoma protein phosphorylation. J Neurosci Res. doi: 10.1002/jnr.23987 PubMedGoogle Scholar
  178. 178.
    Kizil C, Kyritsis N, Brand M (2015) Effects of inflammation on stem cells: together they strive? EMBO Rep 16(4):416–426. doi: 10.15252/embr.201439702 PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Liu Q, Sanai N, Jin WN, La Cava A, Van Kaer L, Shi FD (2016) Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation. Nat Neurosci 19(2):243–252. doi: 10.1038/nn.4211 PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Giannakopoulou A, Grigoriadis N, Polyzoidou E, Lourbopoulos A, Michaloudi E, Papadopoulos GC (2011) Time-dependent fate of transplanted neural precursor cells in experimental autoimmune encephalomyelitis mice. Exp Neurol 230(1):16–26. doi: 10.1016/j.expneurol.2010.04.011 PubMedCrossRefGoogle Scholar
  181. 181.
    Mueller FJ, Serobyan N, Schraufstatter IU, DiScipio R, Wakeman D, Loring JF, Snyder EY, Khaldoyanidi SK (2006) Adhesive interactions between human neural stem cells and inflamed human vascular endothelium are mediated by integrins. Stem Cells 24(11):2367–2372. doi: 10.1634/stemcells.2005-0568 PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J et al (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 101(52):18117–18122. doi: 10.1073/pnas.0408258102 PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Carbajal KS, Schaumburg C, Strieter R, Kane J, Lane TE (2010) Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis. Proc Natl Acad Sci U S A 107(24):11068–11073. doi: 10.1073/pnas.1006375107 PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Nait-Oumesmar B, Picard-Riera N, Kerninon C, Decker L, Seilhean D, Hoglinger GU, Hirsch EC, Reynolds R et al (2007) Activation of the subventricular zone in multiple sclerosis: evidence for early glial progenitors. Proc Natl Acad Sci U S A 104(11):4694–4699. doi: 10.1073/pnas.0606835104 PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Abdanipour A, Sagha M, Noori-Zadeh A, Pakzad I, Tiraihi T (2015) In vitro study of the long-term cortisol treatment effects on the growth rate and proliferation of the neural stem/precursor cells. Neurol Res 37(2):117–124. doi: 10.1179/1743132814y.0000000431 PubMedCrossRefGoogle Scholar
  186. 186.
    Pluchino S, Muzio L, Imitola J, Deleidi M, Alfaro-Cervello C, Salani G, Porcheri C, Brambilla E et al (2008) Persistent inflammation alters the function of the endogenous brain stem cell compartment. Brain 131(Pt 10):2564–2578. doi: 10.1093/brain/awn198 PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Dooley D, Vidal P, Hendrix S (2014) Immunopharmacological intervention for successful neural stem cell therapy: new perspectives in CNS neurogenesis and repair. Pharmacol Ther 141(1):21–31. doi: 10.1016/j.pharmthera.2013.08.001 PubMedCrossRefGoogle Scholar
  188. 188.
    Girard C, Bemelmans AP, Dufour N, Mallet J, Bachelin C, Nait-Oumesmar B, Baron-Van Evercooren A, Lachapelle F (2005) Grafts of brain-derived neurotrophic factor and neurotrophin 3-transduced primate Schwann cells lead to functional recovery of the demyelinated mouse spinal cord. J Neurosci 25(35):7924–7933. doi: 10.1523/JNEUROSCI.4890-04.2005 PubMedCrossRefGoogle Scholar
  189. 189.
    Neri M, Maderna C, Ferrari D, Cavazzin C, Vescovi AL, Gritti A (2010) Robust generation of oligodendrocyte progenitors from human neural stem cells and engraftment in experimental demyelination models in mice. PLoS One 5(4):e10145. doi: 10.1371/journal.pone.0010145 PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Yang J, Yan Y, Xia Y, Kang T, Li X, Ciric B, Xu H, Rostami A et al (2014) Neurotrophin 3 transduction augments remyelinating and immunomodulatory capacity of neural stem cells. Mol Ther 22(2):440–450. doi: 10.1038/mt.2013.241 PubMedCrossRefGoogle Scholar
  191. 191.
    Gao X, Deng L, Wang Y, Yin L, Yang C, Du J, Yuan Q (2016) GDNF enhances therapeutic efficiency of neural stem cells-based therapy in chronic experimental allergic encephalomyelitis in rat. Stem Cells Int 2016:1431349. doi: 10.1155/2016/1431349 PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Linker RA, Lee DH, Demir S, Wiese S, Kruse N, Siglienti I, Gerhardt E, Neumann H et al (2010) Functional role of brain-derived neurotrophic factor in neuroprotective autoimmunity: therapeutic implications in a model of multiple sclerosis. Brain 133(Pt 8):2248–2263. doi: 10.1093/brain/awq179 PubMedCrossRefGoogle Scholar
  193. 193.
    Cao W, Yang Y, Wang Z, Liu A, Fang L, Wu F, Hong J, Shi Y et al (2011) Leukemia inhibitory factor inhibits T helper 17 cell differentiation and confers treatment effects of neural progenitor cell therapy in autoimmune disease. Immunity 35(2):273–284. doi: 10.1016/j.immuni.2011.06.011 PubMedCrossRefGoogle Scholar
  194. 194.
    Ma H, Yu B, Kong L, Zhang Y, Shi Y (2012) Neural stem cells over-expressing brain-derived neurotrophic factor (BDNF) stimulate synaptic protein expression and promote functional recovery following transplantation in rat model of traumatic brain injury. Neurochem Res 37(1):69–83. doi: 10.1007/s11064-011-0584-1 PubMedCrossRefGoogle Scholar
  195. 195.
    Chang DJ, Lee N, Choi C, Jeon I, Oh SH, Shin DA, Hwang TS, Lee HJ et al (2013) Therapeutic effect of BDNF-overexpressing human neural stem cells (HB1.F3.BDNF) in a rodent model of middle cerebral artery occlusion. Cell Transplant 22(8):1441–1452. doi: 10.3727/096368912X657323 PubMedCrossRefGoogle Scholar
  196. 196.
    Kandalam S, Sindji L, Delcroix GJ, Violet F, Garric X, Andre EM, Schiller PC, Venier-Julienne MC (2016) Pharmacologically active microcarriers delivering BDNF within a hydrogel: novel strategy for human bone marrow-derived stem cells neural/neuronal differentiation guidance and therapeutic secretome enhancement. Acta Biomater. doi: 10.1016/j.actbio.2016.11.030 PubMedGoogle Scholar
  197. 197.
    Klose J, Schmidt NO, Melms A, Dohi M, Miyazaki J, Bischof F, Greve B (2013) Suppression of experimental autoimmune encephalomyelitis by interleukin-10 transduced neural stem/progenitor cells. J Neuroinflammation 10:117. doi: 10.1186/1742-2094-10-117 PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Yang J, Jiang Z, Fitzgerald DC, Ma C, Yu S, Li H, Zhao Z, Li Y et al (2009) Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis. J Clin Invest 119(12):3678–3691. doi: 10.1172/JCI37914 PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Gudi V, Skuljec J, Yildiz O, Frichert K, Skripuletz T, Moharregh-Khiabani D, Voss E, Wissel K et al (2011) Spatial and temporal profiles of growth factor expression during CNS demyelination reveal the dynamics of repair priming. PLoS One 6(7):e22623. doi: 10.1371/journal.pone.0022623 PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Mason JL, Ye P, Suzuki K, D’Ercole AJ, Matsushima GK (2000) Insulin-like growth factor-1 inhibits mature oligodendrocyte apoptosis during primary demyelination. J Neurosci 20(15):5703–5708PubMedGoogle Scholar
  201. 201.
    Sabo JK, Aumann TD, Kilpatrick TJ, Cate HS (2013) Investigation of sequential growth factor delivery during cuprizone challenge in mice aimed to enhance oligodendrogliogenesis and myelin repair. PLoS One 8(5):e63415. doi: 10.1371/journal.pone.0063415 PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Shi B, Ding J, Liu Y, Zhuang X, Zhuang X, Chen X, Fu C (2014) ERK1/2 pathway-mediated differentiation of IGF-1-transfected spinal cord-derived neural stem cells into oligodendrocytes. PLoS One 9(8):e106038. doi: 10.1371/journal.pone.0106038 PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Lee YE, An J, Lee KH, Kim SS, Song HJ, Pyeon H, Nam H, Kang K et al (2016) Correction: The synergistic local immunosuppressive effects of neural stem cells expressing Indoleamine 2,3-dioxygenase (IDO) in an experimental autoimmune encephalomyelitis (EAE) animal model. PLoS One 11(2):e0148720. doi: 10.1371/journal.pone.0148720 PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Sher F, Amor S, Gerritsen W, Baker D, Jackson SL, Boddeke E, Copray S (2012) Intraventricularly injected Olig2-NSCs attenuate established relapsing-remitting EAE in mice. Cell Transplant 21(9):1883–1897. doi: 10.3727/096368911X637443 PubMedCrossRefGoogle Scholar
  205. 205.
    Zhou Q, Anderson DJ (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109(1):61–73PubMedCrossRefGoogle Scholar
  206. 206.
    Geurts JJ, Bo L, Roosendaal SD, Hazes T, Daniels R, Barkhof F, Witter MP, Huitinga I et al (2007) Extensive hippocampal demyelination in multiple sclerosis. J Neuropathol Exp Neurol 66(9):819–827. doi: 10.1097/nen.0b013e3181461f54 PubMedCrossRefGoogle Scholar
  207. 207.
    Braun SM, Pilz GA, Machado RA, Moss J, Becher B, Toni N, Jessberger S (2015) Programming hippocampal neural stem/progenitor cells into oligodendrocytes enhances remyelination in the adult brain after injury. Cell Rep 11(11):1679–1685. doi: 10.1016/j.celrep.2015.05.024 PubMedCrossRefGoogle Scholar
  208. 208.
    Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N et al (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7(3):221–228. doi: 10.1038/nn1188 PubMedCrossRefGoogle Scholar
  209. 209.
    Li X, Zhang Y, Yan Y, Ciric B, Ma CG, Gran B, Curtis M, Rostami A et al (2016) Neural stem cells engineered to express three therapeutic factors mediate recovery from chronic stage CNS autoimmunity. Mol Ther 24(8):1456–1469. doi: 10.1038/mt.2016.104 PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepko CL (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68(1):33–51PubMedCrossRefGoogle Scholar
  211. 211.
    Kim SU (2007) Genetically engineered human neural stem cells for brain repair in neurological diseases. Brain Dev 29(4):193–201. doi: 10.1016/j.braindev.2006.07.012 PubMedCrossRefGoogle Scholar
  212. 212.
    Hackett C, Knight J, Mao-Draayer Y (2014) Transplantation of Fas-deficient or wild-type neural stem/progenitor cells (NPCs) is equally efficient in treating experimental autoimmune encephalomyelitis (EAE). Am J Transl Res 6(2):119–128PubMedPubMedCentralGoogle Scholar
  213. 213.
    Glass JD, Hertzberg VS, Boulis NM, Riley J, Federici T, Polak M, Bordeau J, Fournier C et al (2016) Transplantation of spinal cord-derived neural stem cells for ALS: analysis of phase 1 and 2 trials. Neurology 87(4):392–400. doi: 10.1212/WNL.0000000000002889 PubMedCrossRefGoogle Scholar
  214. 214.
    Harris VK, Vyshkina T, Sadiq SA (2016) Clinical safety of intrathecal administration of mesenchymal stromal cell-derived neural progenitors in multiple sclerosis. Cytotherapy 18(12):1476–1482. doi: 10.1016/j.jcyt.2016.08.007 PubMedCrossRefGoogle Scholar
  215. 215.
    Gupta N, Henry RG, Strober J, Kang SM, Lim DA, Bucci M, Caverzasi E, Gaetano L et al (2012) Neural stem cell engraftment and myelination in the human brain. Sci Transl Med 4(155):155ra137. doi: 10.1126/scitranslmed.3004373 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Juan Xiao
    • 1
    • 2
  • Rongbing Yang
    • 2
  • Sangita Biswas
    • 3
    • 4
  • Yunhua Zhu
    • 1
  • Xin Qin
    • 1
  • Min Zhang
    • 1
  • Lihong Zhai
    • 1
  • Yi Luo
    • 1
  • Xiaoming He
    • 1
  • Chun Mao
    • 1
  • Wenbin Deng
    • 3
    • 4
  1. 1.Department of Neurology, Xiang Yang Central HospitalMedical College of Hubei University of Arts and ScienceXiangyangChina
  2. 2.Department of Biological TreatmentHandan Central HospitalHandanChina
  3. 3.School of Pharmaceutical SciencesSun Yat-sen UniversityShenzhenChina
  4. 4.Department of Biochemistry and Molecular Medicine, School of MedicineUniversity of California, DavisSacramentoUSA

Personalised recommendations