Molecular Neurobiology

, Volume 55, Issue 4, pp 2959–2966 | Cite as

Muscle Microdialysis to Investigate Inflammatory Biomarkers in Facioscapulohumeral Muscular Dystrophy

  • Giorgio TascaEmail author
  • Mauro Monforte
  • Maddalena Corbi
  • Giuseppe Granata
  • Donatella Lucchetti
  • Alessandro Sgambato
  • Enzo Ricci


Recent progresses in the understanding of facioscapulohumeral muscular dystrophy (FSHD) genetics opened the way to the development of targeted therapies. However, knowledge about pathophysiology of muscle damage is still limited and there is increasing need to identify biomarkers of disease activity in the perspective of clinical trial readiness.

We analyzed inflammatory mediators in the interstitial fluid of muscles with different MRI signal in FSHD patients, comparing muscles displaying early lesions on short-tau inversion recovery (STIR) sequences with normal ones. Patients with one T1-weighted normal and STIR hyperintense (STIR+) and contralateral T1-weighted and STIR normal (STIR-) lower limb muscle were asked to enter the study. Twelve consecutive patients, five controls, and one non-penetrant gene carrier underwent prolonged muscle microdialysis with high cut-off membranes. Microdialysates were analyzed using xMAP technology with a wide panel for cytokines, chemokines, and growth factors. A small number of inflammatory mediators were dysregulated in STIR+ versus STIR- and control muscles: CXCL13, upregulated in STIR+ muscles compared with controls (p < 0.01); CXCL5, downregulated in STIR+ compared with STIR- muscles (p < 0.05); and G-CSF, downregulated in STIR+ muscles compared with controls (p < 0.05). CXCL13 was also upregulated in the STIR+ muscles compared with the contralateral STIR- muscles of the same patient (p < 0.01).

These results support the evidence of a selective inflammatory process taking place in STIR+ FSHD muscles. The application of microdialysis could provide insights on novel mechanisms involved in muscle damage in FSHD and in other myopathies. Further studies are needed to validate these investigated molecules as tissue and circulating biomarkers.


Facioscapulohumeral muscular dystrophy FSHD Microdialysis CXCL13 Cytokines Biomarkers 



The authors gratefully acknowledge the FSHD Italia ONLUS Association.

Compliance with Ethical Standards

This protocol is in agreement with the Declaration of Helsinki and was approved by the Ethics Committee of our Institution. All involved subjects gave their written informed consent.


This study was supported by a grant from the FSH Society (FSHS-82013-05) and fundings from the Don Carlo Gnocchi ONLUS Foundation, Ricerca corrente 2014, to GT.

Conflict of Interest

Pursuant to the terms of a Master Academic Services Agreement with the Catholic University of the Sacred Heart, M. Monforte and E. Ricci have provided central reading services for MRI scans generated in aTyr’s clinical trials of Resolaris (ATYR1940). E. Ricci is the site principal investigator for some of such trials. The other authors report no disclosures.

Supplementary material

12035_2017_563_MOESM1_ESM.pdf (1021 kb)
ESM. 1 (PDF 1021 kb)
12035_2017_563_MOESM2_ESM.pdf (338 kb)
ESM. 2 (PDF 338 kb)
12035_2017_563_MOESM3_ESM.pdf (361 kb)
ESM. 3 (PDF 360 kb)
12035_2017_563_MOESM4_ESM.wmv (9.8 mb)
ESM. 4 (WMV 10033 kb)


  1. 1.
    Tasca G, Monforte M, Ottaviani P, Pelliccioni M, Frusciante R, Laschena F et al (2016) Magnetic resonance imaging in a large cohort of facioscapulohumeral muscular dystrophy patients: pattern refinement and implications for clinical trials. Ann Neurol. doi: 10.1002/ana.24640 PubMedGoogle Scholar
  2. 2.
    Tasca G, Monforte M, Iannaccone E, Laschena F, Ottaviani P, Leoncini E et al (2014) Upper girdle imaging in facioscapulohumeral muscular dystrophy. PLoS One 9:e100292CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kan HE, Scheenen TW, Wohlgemuth M, Klomp DW, van Loosbroek-Wagenmans I, Padberg GW et al (2009) Quantitative MR imaging of individual muscle involvement in facioscapulohumeral muscular dystrophy. Neuromuscul Disord 19:357–362CrossRefPubMedGoogle Scholar
  4. 4.
    Friedman SD, Poliachik SL, Carter GT, Budech CB, Bird TD, Shaw DW (2012) The magnetic resonance imaging spectrum of facioscapulohumeral muscular dystrophy. Muscle Nerve 45:500–506CrossRefPubMedGoogle Scholar
  5. 5.
    Frisullo G, Frusciante R, Nociti V, Tasca G, Renna R, Iorio R et al (2011) CD8(+) T cells in facioscapulohumeral muscular dystrophy patients with inflammatory features at muscle MRI. J Clin Immunol 31:155–166CrossRefPubMedGoogle Scholar
  6. 6.
    Hauerslev S, Ørngreen MC, Hertz JM, Vissing J, Krag TO (2013) Muscle regeneration and inflammation in patients with facioscapulohumeral muscular dystrophy. Acta Neurol Scand 128:194–201CrossRefPubMedGoogle Scholar
  7. 7.
    Tasca G, Pescatori M, Monforte M, Mirabella M, Iannaccone E, Frusciante R et al (2012) Different molecular signatures in magnetic resonance imaging-staged facioscapulohumeral muscular dystrophy muscles. PLoS One 7:e38779CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rooyackers O, Thorell A, Nygren J, Ljungqvist O (2004) Microdialysis methods for measuring human metabolism. Curr Opin Clin Nutr Metab Care 7:515–521CrossRefPubMedGoogle Scholar
  9. 9.
    Winter CD, Pringle AK, Clough GF, Church MK (2004) Raised parenchymal interleukin-6 levels correlate with improved outcome after traumatic brain injury. Brain 127:315–320CrossRefPubMedGoogle Scholar
  10. 10.
    Clough GF (2005) Microdialysis of large molecules. AAPS J 7:E686–E692CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tawil R, Padberg GW, Shaw DW, van der Maarel SM, Tapscott SJ, FSHD WP (2016) Clinical trial preparedness in facioscapulohumeral muscular dystrophy: clinical, tissue, and imaging outcome measures 29-30 May 2015, Rochester, New York. Neuromuscul Disord 26:181–186CrossRefPubMedGoogle Scholar
  12. 12.
    Khan IH, Krishnan VV, Ziman M, Janatpour K, Wun T, Luciw PA et al (2009) A comparison of multiplex suspension array large-panel kits for profiling cytokines and chemokines in rheumatoid arthritis patients. Cytometry B Clin Cytom 76:159–168CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fu Q, Zhu J, Van Eyk JE (2010) Comparison of multiplex immunoassay platforms. Clin Chem 56:314–318CrossRefPubMedGoogle Scholar
  14. 14.
    Gabriëls J, Beckers MC, Ding H, De Vriese A, Plaisance S, van der Maarel SM et al (1999) Nucleotide sequence of the partially deleted D4Z4 locus in a patient with FSHD identifies a putative gene within each 3.3 kb element. Gene 236:25–32CrossRefPubMedGoogle Scholar
  15. 15.
    Dixit M, Ansseau E, Tassin A, Winokur S, Shi R, Qian H et al (2007) DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1. Proc Natl Acad Sci U S A 104:18157–18162CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lemmers RJ, van der Vliet PJ, Klooster R, Sacconi S, Camano P, Dauwerse JG et al (2010) A unifying genetic model for facioscapulohumeral muscular dystrophy. Science 329:1650–1653CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Snider L, Geng LN, Lemmers RJ, Kyba M, Ware CB, Nelson AM et al (2010) Facioscapulohumeral dystrophy: incomplete suppression of a retrotransposed gene. PLoS Genet 6:e1001181CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Geng LN, Yao Z, Snider L, Fong AP, Cech JN, Young JM et al (2012) DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy. Dev Cell 22:38–51CrossRefPubMedGoogle Scholar
  19. 19.
    Munsat TL, Piper D, Cancilla P, Mednick J (1972) Inflammatory myopathy with facioscapulohumeral distribution. Neurology 22:335–347CrossRefPubMedGoogle Scholar
  20. 20.
    Figarella-Branger D, Pellissier JF, Serratrice G, Pouget J, Bianco N (1989) Immunocytochemical study of the inflammatory forms of facioscapulohumeral myopathies and correlation with other types of myositis. Ann Pathol 9:100–108PubMedGoogle Scholar
  21. 21.
    Arahata K, Ishihara T, Fukunaga H, Orimo S, Lee JH, Goto K et al (1995) Inflammatory response in facioscapulohumeral muscular dystrophy (FSHD): immunocytochemical and genetic analyses. Muscle Nerve 2:S56–S66CrossRefPubMedGoogle Scholar
  22. 22.
    Honda H, Mano Y, Takahashi A (1987) Inflammatory changes in affected muscles of facioscapulohumeral dystrophy. J Neurol 234:408–411CrossRefPubMedGoogle Scholar
  23. 23.
    Fitzsimons RB (1994) Facioscapulohumeral dystrophy: the role of inflammation. Lancet 344:902–903CrossRefPubMedGoogle Scholar
  24. 24.
    Macaione V, Aguennouz M, Rodolico C, Mazzeo A, Patti A, Cannistraci E et al (2007) RAGE-NF-kappaB pathway activation in response to oxidative stress in facioscapulohumeral muscular dystrophy. Acta Neurol Scand 115:115–121CrossRefPubMedGoogle Scholar
  25. 25.
    Olausson P, Gerdle B, Ghafouri N, Larsson B, Ghafouri B (2012) Identification of proteins from interstitium of trapezius muscle in women with chronic myalgia using microdialysis in combination with proteomics. PLoS One 7:e52560CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Li Z-W, Zhao L, Han Q-C, Zhu X (2016) CXCL13 inhibits microRNA-23a through PI3K/AKT signaling pathway in adipose tissue derived-mesenchymal stem cells. Biomed Pharmacother 83:876–880CrossRefPubMedGoogle Scholar
  27. 27.
    Dmitriev P, Kiseleva E, Kharchenko O, Ivashkin E, Pichugin A, Dessen P et al (2016) Dux4 controls migration of mesenchymal stem cells through the Cxcr4-Sdf1 axis. Oncotarget 7:65090–65108CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Legler DF, Loetscher M, Roos RS, Clark-Lewis I, Baggiolini M, Moser B (1998) B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med 187:655–660CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    De Paepe B, Creus KK, De Bleecker JL (2009) Role of cytokines and chemokines in idiopathic inflammatory myopathies. Curr Opin Rheumatol 21:610–616CrossRefPubMedGoogle Scholar
  30. 30.
    Housley WJ, Pitt D, Hafler DA (2015) Biomarkers in multiple sclerosis. Clin Immunol 161:51–58CrossRefPubMedGoogle Scholar
  31. 31.
    Pícha D, Moravcová L, Smíšková D (2016) Prospective study on the chemokine CXCL13 in neuroborreliosis and other aseptic neuroinfections. J Neurol Sci 368:214–220CrossRefPubMedGoogle Scholar
  32. 32.
    Schiffer L, Worthmann K, Haller H, Schiffer M (2015) CXCL13 as a new biomarker of systemic lupus erythematosus and lupus nephritis - from bench to bedside. Clin Exp Immunol 179:85–89CrossRefPubMedGoogle Scholar
  33. 33.
    Jones JD, Hamilton BJ, Challener GJ, de Brum-Fernandes AJ, Cossette P, Liang P et al (2014) Serum C-X-C motif chemokine 13 is elevated in early and established rheumatoid arthritis and correlates with rheumatoid factor levels. Arthritis Res Ther 16:R103CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nishikawa A, Suzuki K, Kassai Y, Gotou Y, Takiguchi M, Miyazaki T et al (2016) Identification of definitive serum biomarkers associated with disease activity in primary Sjögren’s syndrome. Arthritis Res Ther 18:106CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Monach PA (2014) Biomarkers in vasculitis. Curr Opin Rheumatol 26:24–30CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhang Q, Cao DL, Zhang ZJ, Jiang BC, Gao YJ (2016) Chemokine CXCL13 mediates orofacial neuropathic pain via CXCR5/ERK pathway in the trigeminal ganglion of mice. J Neuroinflammation 13:183CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Huber AK, Irani DN (2015) Targeting CXCL13 during neuroinflammation. Adv Neuroimmune Biol 6:1–8CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Müller G, Lipp M (2003) Concerted action of the chemokine and lymphotoxin system in secondary lymphoid-organ development. Curr Opin Immunol 15:217–224CrossRefPubMedGoogle Scholar
  39. 39.
    Yang T, Wang S, Zheng Q, Wang L, Li Q, Wei M et al (2016) Increased plasma levels of epithelial neutrophil-activating peptide 78/CXCL5 during the remission of neuromyelitis optica. BMC Neurol 16:96CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhao Y, Zhang H (2016) Update on the mechanisms of homing of adipose tissue-derived stem cells. Cytotherapy 18:816–827CrossRefPubMedGoogle Scholar
  41. 41.
    Rando A, Gasco S, de la Torre M, García-Redondo A, Zaragoza P, Toivonen JM et al (2017) Granulocyte colony-stimulating factor ameliorates skeletal muscle dysfunction in amyotrophic lateral sclerosis mice and improves proliferation of SOD1-G93A myoblasts in vitro. Neurodegener Dis 17:1–13CrossRefPubMedGoogle Scholar
  42. 42.
    Hayashiji N, Yuasa S, Miyagoe-Suzuki Y, Hara M, Ito N, Hashimoto H et al (2015) G-CSF supports long-term muscle regeneration in mouse models of muscular dystrophy. Nat Commun 6:6745CrossRefPubMedGoogle Scholar
  43. 43.
    Statland J, Donlin-Smith CM, Tapscott SJ, van der Maarel S, Tawil R (2014) Multiplex screen of serum biomarkers in facioscapulohumeral muscular dystrophy. J Neuromuscul Dis 1:181–190PubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Istituto di Neurologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli”RomeItaly
  2. 2.Istituto di Patologia Generale, Università Cattolica del Sacro CuoreRomeItaly

Personalised recommendations