Skip to main content
Log in

Systemic Inflammation as a Driver of Brain Injury: the Astrocyte as an Emerging Player

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 26 May 2020

This article has been updated

Abstract

Severe systemic inflammation has strong effects on brain functions, promoting permanent neurocognitive dysfunction and high mortality rates. Additionally, hippocampal damage seems to be directly involved in this process and astrocytes play an important role in neuroinflammation and in the neuroimmune response. However, the contribution of the astrocytes to the pathology of acute brain dysfunction is not well understood. Recently, our group established a protocol for obtaining astrocyte cultures from mature brain to allow the characterization of these cells and their functions under pathologic conditions. The present study was designed to characterize astrocyte function after acute systemic inflammation induced by cecal ligation and perforation (CLP). Hippocampal astrocyte cultures from CLP animals presented increased levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-18, and cyclooxygenase-2 and decreased levels of IL-10. This proinflammatory profile was accompanied by an increase in Toll-like receptor (TLR)2 mRNA expression levels and no change either in TLR4 or in vascular endothelial growth factor (VEGF) gene expression. These alterations were associated with increased expressions of p21, nuclear factor kappa B (NFκB), and inducible nitric oxide synthase (iNOS) in astrocytes from CLP animals. The same parameters were also evaluated in whole hippocampal tissue, but differences in this profile were found compared to hippocampal astrocyte cultures from CLP, reflecting an interaction between other central nervous system cell types, which may mask specific astrocytic changes. These results improve our understanding of the mechanisms by which astrocytes react against systemic inflammation, and suggest these cells to be potential targets for therapeutic modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 26 May 2020

    The givenname ���Paola��� of the author Paola Haack Amaral Roppa (Roppa, P.H.A.) should be corrected to read Ricardo Haack Amaral Roppa (Roppa, R.H.A.) as presented above.

References

  1. Fu HQ, Yang T, Xiao W, Fan L, Wu Y, Terrando N, Wang TL (2014) Prolonged neuroinflammation after lipopolysaccharide exposure in aged rats. PLoS One 9(8):e106331. doi:10.1371/journal.pone.0106331

    Article  PubMed  PubMed Central  Google Scholar 

  2. Terrando N, Monaco C, Ma D, Foxwell BM, Feldmann M, Maze M (2010) Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci U S A 107(47):20518–20522. doi:10.1073/pnas.1014557107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Michels M, Steckert AV, Quevedo J, Barichello T, Dal-Pizzol F (2015) Mechanisms of long-term cognitive dysfunction of sepsis: from blood-borne leukocytes to glial cells. Intensive care medicine experimental 3(1):30. doi:10.1186/s40635-015-0066-x

    Article  PubMed  PubMed Central  Google Scholar 

  4. Esper AM, Martin GS (2009) Extending international sepsis epidemiology: the impact of organ dysfunction. Critical care (London, England) 13(1):120. doi:10.1186/cc7704

    Article  Google Scholar 

  5. Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R (2014) Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA 311(13):1308–1316. doi:10.1001/jama.2014.2637

    Article  CAS  PubMed  Google Scholar 

  6. Cotena S, Piazza O (2012) Sepsis-associated encephalopathy. Translational medicine @ UniSa 2:20–27

    PubMed  PubMed Central  Google Scholar 

  7. Mazeraud A, Pascal Q, Verdonk F, Heming N, Chretien F, Sharshar T (2016) Neuroanatomy and physiology of brain dysfunction in sepsis. Clin Chest Med 37(2):333–345. doi:10.1016/j.ccm.2016.01.013

    Article  PubMed  Google Scholar 

  8. Danielski LG, Giustina AD, Badawy M, Barichello T, Quevedo J, Dal-Pizzol F, Petronilho F (2017) Brain barrier breakdown as a cause and consequence of neuroinflammation in sepsis. Mol Neurobiol. doi:10.1007/s12035-016-0356-7

    Google Scholar 

  9. Tsujimoto H, Ono S, Efron PA, Scumpia PO, Moldawer LL, Mochizuki H (2008) Role of Toll-like receptors in the development of sepsis. Shock (Augusta, Ga) 29(3):315–321. doi:10.1097/SHK.0b013e318157ee55

    CAS  Google Scholar 

  10. Gorina R, Font-Nieves M, Marquez-Kisinousky L, Santalucia T, Planas AM (2011) Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFkappaB signaling, MAPK, and Jak1/Stat1 pathways. Glia 59(2):242–255. doi:10.1002/glia.21094

    Article  PubMed  Google Scholar 

  11. Lloberas J, Celada A (2009) p21(waf1/CIP1), a CDK inhibitor and a negative feedback system that controls macrophage activation. Eur J Immunol 39(3):691–694. doi:10.1002/eji.200939262

    Article  CAS  PubMed  Google Scholar 

  12. Yang QH, Liu DW, Wang XT, Yang RL, Shi Y, Long Y, Liu HZ, He HW et al (2011) G1 cell cycle arrest signaling in hepatic injury after intraperitoneal sepsis in rats. Inflammation research: official journal of the European Histamine Research Society [et al] 60(8):783–789. doi:10.1007/s00011-011-0334-5

    Article  CAS  Google Scholar 

  13. Balomenos D, Martin-Caballero J, Garcia MI, Prieto I, Flores JM, Serrano M, Martinez AC (2000) The cell cycle inhibitor p21 controls T-cell proliferation and sex-linked lupus development. Nat Med 6(2):171–176. doi:10.1038/72272

    Article  CAS  PubMed  Google Scholar 

  14. Rackov G, Hernandez-Jimenez E, Shokri R, Carmona-Rodriguez L, Manes S, Alvarez-Mon M, Lopez-Collazo E, Martinez AC et al (2016) p21 mediates macrophage reprogramming through regulation of p50-p50 NF-kappaB and IFN-beta. J Clin Invest 126(8):3089–3103. doi:10.1172/jci83404

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chapouly C, Tadesse Argaw A, Horng S, Castro K, Zhang J, Asp L, Loo H, Laitman BM et al (2015) Astrocytic TYMP and VEGFA drive blood-brain barrier opening in inflammatory central nervous system lesions. Brain: a journal of neurology 138(Pt 6):1548–1567. doi:10.1093/brain/awv077

    Article  Google Scholar 

  16. Mayo L, Quintana FJ, Weiner HL (2012) The innate immune system in demyelinating disease. Immunol Rev 248(1):170–187. doi:10.1111/j.1600-065X.2012.01135.x

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2016) Hippocampal astrocyte cultures from adult and aged rats reproduce changes in glial functionality observed in the aging brain. Mol Neurobiol. doi:10.1007/s12035-016-9880-8

    Google Scholar 

  18. Souza DG, Bellaver B, Souza DO, Quincozes-Santos A (2013) Characterization of adult rat astrocyte cultures. PLoS One 8:E60282. doi:10.1371/journal.pone.0060282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zimmer ER, Parent MJ, Souza DG, Leuzy A, Lecrux C, Kim HI, Gauthier S, Pellerin L et al (2017) [18F]FDG PET signal is driven by astroglial glutamate transport. Nat Neurosc. doi:10.1038/nn.4492

    Google Scholar 

  20. Petronilho F, Perico SR, Vuolo F, Mina F, Constantino L, Comim CM, Quevedo J, Souza DO et al (2012) Protective effects of guanosine against sepsis-induced damage in rat brain and cognitive impairment. Brain Behav Immun 26(6):904–910. doi:10.1016/j.bbi.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods (San Diego, Calif) 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  22. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85. doi:10.1016/0003-2697(85)90442-7

    Article  CAS  PubMed  Google Scholar 

  23. Widmann CN, Heneka MT (2014) Long-term cerebral consequences of sepsis. Lancet Neurol 13(6):630–636. doi:10.1016/s1474-4422(14)70017-1

    Article  PubMed  Google Scholar 

  24. Dejager L, Pinheiro I, Dejonckheere E, Libert C (2011) Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol 19(4):198–208. doi:10.1016/j.tim.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  25. Neves FS, Marques PT, Barros-Aragao F, Nunes JB, Venancio AM, Cozachenco D, Frozza RL, Passos GF et al (2016) Brain-defective insulin signaling is associated to late cognitive impairment in post-septic mice. Mol Neurobiol. doi:10.1007/s12035-016-0307-3

    PubMed  Google Scholar 

  26. Comim CM, Freiberger V, Ventura L, Mina F, Ferreira GK, Michels M, Generoso JS, Streck EL et al (2017) Inhibition of indoleamine 2,3-dioxygenase 1/2 prevented cognitive impairment and energetic metabolism changes in the hippocampus of adult rats subjected to polymicrobial sepsis. J Neuroimmunol 305:167–171. doi:10.1016/j.jneuroim.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  27. Srinivasan K, Friedman BA, Larson JL, Lauffer BE, Goldstein LD, Appling LL, Borneo J, Poon C et al (2016) Untangling the brain’s neuroinflammatory and neurodegenerative transcriptional responses. Nat Commun 7:11295. doi:10.1038/ncomms11295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Souza DG, Bellaver B, Bobermin LD, Souza DO, Quincozes-Santos A (2016) Anti-aging effects of guanosine in glial cells. Purinergic Signal. doi:10.1007/s11302-016-9533-4

    PubMed Central  Google Scholar 

  29. Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2014) Resveratrol increases antioxidant defenses and deceases proinflammatory cytokines in hippocampal astrocyte cultures from newborn, adult and aged Wistar rats. Toxicol in Vitro 28:479–484. doi:10.1016/j.tiv.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  30. Dal-Pizzol F, Rojas HA, dos Santos EM, Vuolo F, Constantino L, Feier G, Pasquali M, Comim CM et al (2013) Matrix metalloproteinase-2 and metalloproteinase-9 activities are associated with blood-brain barrier dysfunction in an animal model of severe sepsis. Mol Neurobiol 48(1):62–70. doi:10.1007/s12035-013-8433-7

    Article  CAS  PubMed  Google Scholar 

  31. Comim CM, Vilela MC, Constantino LS, Petronilho F, Vuolo F, Lacerda-Queiroz N, Rodrigues DH, da Rocha JL et al (2011) Traffic of leukocytes and cytokine up-regulation in the central nervous system in sepsis. Intensive Care Med 37(4):711–718. doi:10.1007/s00134-011-2151-2

    Article  CAS  PubMed  Google Scholar 

  32. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ et al (2012) Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest 122(7):2454–2468. doi:10.1172/jci60842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang X, Kang K, Wang S, Yao J, Zhang X (2016) Focal cerebral ischemic tolerance and change in blood-brain barrier permeability after repetitive pure oxygen exposure preconditioning in a rodent model. J Neurosurg 125(4):943–952. doi:10.3171/2015.7.jns142220

    Article  PubMed  Google Scholar 

  34. Ma Y, Zechariah A, Qu Y, Hermann DM (2012) Effects of vascular endothelial growth factor in ischemic stroke. J Neurosci Res 90(10):1873–1882. doi:10.1002/jnr.23088

    Article  CAS  PubMed  Google Scholar 

  35. Hanke ML, Kielian T (2011) Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clinical science (London, England: 1979) 121(9):367–387. doi:10.1042/cs20110164

    Article  CAS  Google Scholar 

  36. Brightbill HD, Modlin RL (2000) Toll-like receptors: molecular mechanisms of the mammalian immune response. Immunology 101(1):1–10. doi:10.1046/j.1365-2567.2000.00093.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hanzelmann D, Joo HS, Franz-Wachtel M, Hertlein T, Stevanovic S, Macek B, Wolz C, Gotz F et al (2016) Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants. Nat Commun 7:12304. doi:10.1038/ncomms12304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Laflamme N, Soucy G, Rivest S (2001) Circulating cell wall components derived from gram-negative, not gram-positive, bacteria cause a profound induction of the gene-encoding Toll-like receptor 2 in the CNS. J Neurochem 79(3):648–657. doi:10.1046/j.1471-4159.2001.00603.x

    Article  CAS  PubMed  Google Scholar 

  39. Wiersinga WJ, Wieland CW, Dessing MC, Chantratita N, Cheng AC, Limmathurotsakul D, Chierakul W, Leendertse M et al (2007) Toll-like receptor 2 impairs host defense in gram-negative sepsis caused by Burkholderia pseudomallei (Melioidosis). PLoS Med 4(7):e248. doi:10.1371/journal.pmed.0040248

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kielian T (2006) Toll-like receptors in central nervous system glial inflammation and homeostasis. J Neurosci Res 83(5):711–730. doi:10.1002/jnr.20767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD (2005) Differential activation of astrocytes by innate and adaptive immune stimuli. Glia 49(3):360–374. doi:10.1002/glia.20117

    Article  PubMed  Google Scholar 

  42. Troutman TD, Bazan JF, Pasare C (2012) Toll-like receptors, signaling adapters and regulation of the pro-inflammatory response by PI3K. Cell cycle (Georgetown, Tex) 11(19):3559–3567. doi:10.4161/cc.21572

    Article  CAS  Google Scholar 

  43. Marinelli C, Di Liddo R, Facci L, Bertalot T, Conconi MT, Zusso M, Skaper SD, Giusti P (2015) Ligand engagement of Toll-like receptors regulates their expression in cortical microglia and astrocytes. J Neuroinflammation 12:244. doi:10.1186/s12974-015-0458-6

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wakabayashi N, Slocum SL, Skoko JJ, Shin S, Kensler TW (2010) When NRF2 talks, who’s listening? Antioxid Redox Signal. doi:10.1089/ars.2010.3216

    Google Scholar 

  45. Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41(2–3):242–247. doi:10.1007/s12035-010-8105-9

    Article  CAS  PubMed  Google Scholar 

  46. Aruoma OI, Grootveld M, Bahorun T (2006) Free radicals in biology and medicine: from inflammation to biotechnology. BioFactors (Oxford, England) 27(1–4):1–3. doi:10.1002/biof.5520270101

    Article  CAS  Google Scholar 

  47. Ueda A, Okuda K, Ohno S, Shirai A, Igarashi T, Matsunaga K, Fukushima J, Kawamoto S et al (1994) NF-kappa B and Sp1 regulate transcription of the human monocyte chemoattractant protein-1 gene. J Immunol 153(5):2052–2063

    CAS  PubMed  Google Scholar 

  48. Dranse HJ, Muruganandan S, Fawcett JP, Sinal CJ (2016) Adipocyte-secreted chemerin is processed to a variety of isoforms and influences MMP3 and chemokine secretion through an NFkB-dependent mechanism. Mol Cell Endocrinol 436:114–129. doi:10.1016/j.mce.2016.07.017

    Article  CAS  PubMed  Google Scholar 

  49. Scatizzi JC, Mavers M, Hutcheson J, Young B, Shi B, Pope RM, Ruderman EM, Samways DS et al (2009) The CDK domain of p21 is a suppressor of IL-1beta-mediated inflammation in activated macrophages. Eur J Immunol 39(3):820–825. doi:10.1002/eji.200838683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Montes M, Lund AH (2016) Emerging roles of lncRNAs in senescence. FEBS J 283(13):2414–2426. doi:10.1111/febs.13679

    Article  CAS  PubMed  Google Scholar 

  51. Zonis S, Pechnick RN, Ljubimov VA, Mahgerefteh M, Wawrowsky K, Michelsen KS, Chesnokova V (2015) Chronic intestinal inflammation alters hippocampal neurogenesis. J Neuroinflammation 12:65. doi:10.1186/s12974-015-0281-0

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tusell JM, Saura J, Serratosa J (2005) Absence of the cell cycle inhibitor p21Cip1 reduces LPS-induced NO release and activation of the transcription factor NF-kappaB in mixed glial cultures. Glia 49(1):52–58. doi:10.1002/glia.20095

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Federal University of Rio Grande do Sul (UFRGS), and Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteção (INCTEN/CNPq).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruna Bellaver or André Quincozes-Santos.

Ethics declarations

All animal experiments were performed in accordance with the National Institute of Health (NIH) Guide for the Care and Use of Laboratory Animals and the Brazilian Society for Neuroscience and Behavior’s recommendations for animal care. The experimental protocols were approved by the Federal University of Rio Grande do Sul Animal Care and Use Committee (process number 29180).

Conflict of Interest

The authors declare there are no conflicts of interest.

Electronic supplementary material

Supplementary Fig. 1

Inflammatory profile in the whole hippocampus. (A) TNF-α, (B) IL-1β and (G) COX-2 mRNA expression levels. (C) TNF-α, (D) IL-1β, (E) IL-6, (F) IL-18 and MCP-1 levels. Data represent the means + S.E.M. of groups (n= 6-8). *P <0.05, **P <0.01 and ***P <0.001 (t test), compared to the sham group. (TIFF 2874 kb)

High Resolution Image (GIF 54 kb)

Supplementary Fig. 2

CLP promoted increases in mRNA expression levels of (A) NFκB and (B) iNOS in hippocampal tissue. Data represent the means + S.E.M. of groups (n= 6). **P <0.01 (t test), compared to the sham group. (TIFF 1300 kb)

High Resolution Image (GIF 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellaver, B., dos Santos, J.P., Leffa, D.T. et al. Systemic Inflammation as a Driver of Brain Injury: the Astrocyte as an Emerging Player. Mol Neurobiol 55, 2685–2695 (2018). https://doi.org/10.1007/s12035-017-0526-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0526-2

Keywords

Navigation