Molecular Neurobiology

, Volume 55, Issue 4, pp 3112–3130 | Cite as

Exercise as a Positive Modulator of Brain Function

  • Karim A. Alkadhi


Various forms of exercise have been shown to prevent, restore, or ameliorate a variety of brain disorders including dementias, Parkinson’s disease, chronic stress, thyroid disorders, and sleep deprivation, some of which are discussed here. In this review, the effects on brain function of various forms of exercise and exercise mimetics in humans and animal experiments are compared and discussed. Possible mechanisms of the beneficial effects of exercise including the role of neurotrophic factors and others are also discussed.


Electrophysiology Long-term potentiation BDNF Human aerobic and anaerobic exercise Animal voluntary and forced exercise Meditation 



This work is supported by various University of Houston internal grants.

Compliance with Ethical Standards

Conflict of Interest

The author declares that he has no conflict of interest.


  1. 1.
    Bohannon RW (1993) Physical rehabilitation in neurologic diseases. Curr Opin Neurol 6:765–772PubMedCrossRefGoogle Scholar
  2. 2.
    Grealy MA, Johnson DA, Rushton SK (1999) Improving cognitive function after brain injury: the use of exercise and virtual reality. Arch Phys Med Rehabil 80:661–667PubMedCrossRefGoogle Scholar
  3. 3.
    Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, Chason J, Vakil E et al (1999) Ageing, fitness and neurocognitive function. Nature 400:418–419PubMedCrossRefGoogle Scholar
  4. 4.
    Cotman CW, Berchtold NC, Christie LA (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30:464–472PubMedCrossRefGoogle Scholar
  5. 5.
    Pedersen BK, Saltin B (2015) Exercise as medicine-evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports 25(Suppl 3):1–72PubMedCrossRefGoogle Scholar
  6. 6.
    Dao AT, Zagaar MA, Alkadhi KA (2015) Moderate treadmill exercise protects synaptic plasticity of the dentate gyrus and related signaling cascade in a rat model of Alzheimer’s disease. Mol Neurobiol 52(3):1067–1076PubMedCrossRefGoogle Scholar
  7. 7.
    Sandroff BM, Motl RW, Scudder MR, DeLuca J (2016) Systematic, evidence-based review of exercise, physical activity, and physical fitness effects on cognition in persons with multiple sclerosis. Neuropsychol Rev 26(3):271–294PubMedCrossRefGoogle Scholar
  8. 8.
    Larun L, Brurberg KG, Odgaard-Jensen J, Price JR (2016) Exercise therapy for chronic fatigue syndrome. Cochrane Database Syst Rev 24(6):CD003200Google Scholar
  9. 9.
    Nichol KE, Parachikova AI, Cotman CW (2007) Three weeks of running wheel exposure improves cognitive performance in the aged Tg2576 mouse. Behav Brain Res 184:124–132PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kim SE, Ko IG, Kim BK, Shin MS, Cho S, Kim CJ, Kim SH, Baek SS et al (2010) Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp Gerontol 45:357–365PubMedCrossRefGoogle Scholar
  11. 11.
    Zagaar M, Alhaider I, Dao A, Levine A, Alkarawi A, Alzubaidy M, Alkadhi K (2012) The beneficial effects of regular exercise on cognition in REM sleep deprivation: behavioral, electrophysiological and molecular evidence. Neurobiol Dis 45(3):1153–1162PubMedCrossRefGoogle Scholar
  12. 12.
    da Silva PG, Domingues DD, de Carvalho LA, Allodi S, Correa CL (2016) Neurotrophic factors in Parkinson’s disease are regulated by exercise: evidence-based practice. J Neurol Sci 363:5–15PubMedCrossRefGoogle Scholar
  13. 13.
    Sofi F, Valecchi D, Bacci D, Abbate R, Gensini GF, Casini A, Macchi C (2011) Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J Intern Med 269:107–117PubMedCrossRefGoogle Scholar
  14. 14.
    Dao AT, Zagaar MA, Salim S, Eriksen JL, Alkadhi KA (2014) Regular exercise prevents non-cognitive disturbances in a rat model of Alzheimer’s disease. Int J Neuropsychopharmacol 17(4):593–602PubMedCrossRefGoogle Scholar
  15. 15.
    Zagaar M, Dao A, Alhaider I, Alkadhi K (2013) Regular treadmill exercise prevents sleep deprivation-induced disruption of synaptic plasticity and associated signaling cascade in the dentate gyrus. Mol Cell Neurosci 56:375–383PubMedCrossRefGoogle Scholar
  16. 16.
    Luo CX, Jiang J, Zhou QG, Zhu XJ, Wang W, Zhang ZJ, Han X, Zhu DY (2007) Voluntary exercise-induced neurogenesis in the postischemic dentate gyrus is associated with spatial memory recovery from stroke. J Neurosci Res 85:1637–1646PubMedCrossRefGoogle Scholar
  17. 17.
    Grace L, Hescham S, Kellaway LA, Bugarith K, Russell VA (2009) Effect of exercise on learning and memory in a rat model of developmental stress. Metab Brain Dis 24:643–657PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Khabour OF, Alzoubi KH, Alomari MA, Alzubi MA (2009) Changes in spatial memory and BDNF expression to concurrent dietary restriction and voluntary exercise. Hippocampus 20:637–645Google Scholar
  19. 19.
    Alaei H, Borjeian L, Azizi M, Orian S, Pourshanazari A, Hanninen O (2006) Treadmill running reverses retention deficit induced by morphine. Eur J Pharmacol 536(1–2):138–141PubMedCrossRefGoogle Scholar
  20. 20.
    Albeck DS, Sano K, Prewitt GE, Dalton L (2006) Mild forced treadmill exercise enhances spatial learning in the aged rat. Behav Brain Res 168:345–348PubMedCrossRefGoogle Scholar
  21. 21.
    Radak Z, Toldy A, Szabo Z, Siamilis S, Nyakas C, Silye G, Jakus J, Goto S (2006) The effects of training and detraining on memory, neurotrophins and oxidative stress markers in rat brain. Neurochem Int 49:387–392PubMedCrossRefGoogle Scholar
  22. 22.
    Hopkins ME, Bucci DJ (2010) BDNF expression in perirhinal cortex is associated with exercise-induced improvement in object recognition memory. Neurobiol Learn Mem 94(2):278–284PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Helfer JL, Goodlett CR, Greenough WT, Klintsova AY (2009) The effects of exercise on adolescent hippocampal neurogenesis in a rat model of binge alcohol exposure during the brain growth spurt. Brain Res 1294:1–11PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Reisi P, Babri S, Alaei H, Sharifi MR, Mohaddes G, Noorbakhsh SM, Lashgari R (2010) Treadmill running improves long-term potentiation (LTP) defects in streptozotocin-induced diabetes at dentate gyrus in rats. Pathophysiology 17(1):33–38PubMedCrossRefGoogle Scholar
  25. 25.
    Aguiar AS Jr, Araújo AL, da-Cunha TR, Speck AE, Ignácio ZM, De-Mello N, Prediger RD (2009) Physical exercise improves motor and short-term social memory deficits in reserpinized rats. Brain Res Bull 79(6):452–457PubMedCrossRefGoogle Scholar
  26. 26.
    Leasure JL, Jones M (2008) Forced and voluntary exercise differentially affect brain and behavior. Neuroscience 156:456–465PubMedCrossRefGoogle Scholar
  27. 27.
    Yuede CM, Zimmerman SD, Dong H, Kling MJ, Bero AW, Holtzman DM, Timson BF, Csernansky JG (2009) Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol Dis 35:426–432PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Greenwood BN, Spence KG, Crevling DM, Clark PJ, Craig WC, Fleshner M (2013) Exercise-induced stress resistance is independent of exercise controllability and the medial prefrontal cortex. Eur J Neurosci 37(3):469–478PubMedCrossRefGoogle Scholar
  29. 29.
    Kirchner L, Chen WQ, Afjehi-Sadat L, Viidik A, Skalicky M, Hoger H, Lubec G (2008) Hippocampal metabolic proteins are modulated in voluntary and treadmill exercise rats. Exp Neurol 212:145–151PubMedCrossRefGoogle Scholar
  30. 30.
    Toscano-Silva M, Gomes da Silva S, Scorza FA, Bonvent JJ, Cavalheiro EA, Arida RM (2010) Hippocampal mossy fiber sprouting induced by forced and voluntary physical exercise. Physiol Behav 101:302–308PubMedCrossRefGoogle Scholar
  31. 31.
    Toldy A, Atalay M, Stadler K, Sasvari M, Jakus J, Jung KJ, Chung HY, Nyakas C et al (2009) The beneficial effects of nettle supplementation and exercise on brain lesion and memory in rat. J Nutr Biochem 20:974–981PubMedCrossRefGoogle Scholar
  32. 32.
    Quaney BM, Boyd LA, JM MD, Zahner LH, He J, Mayo MS, Macko RF (2009) Aerobic exercise improves cognition and motor function poststroke. Neurorehabil Neural Repair 23:879–885PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ridgel AL, Vitek JL, Alberts JL (2009) Forced, not voluntary, exercise improves motor function in Parkinson’s disease patients. Neurorehabil Neural Repair 23(6):600–6008PubMedCrossRefGoogle Scholar
  34. 34.
    Ridgel AL, Walter BL, Tatsuoka C, Walter EM, Colón-Zimmermann K, Welter E, Sajatovic M (2016) Enhanced exercise therapy in Parkinson’s disease: a comparative effectiveness trial. J Sci Med Sport 19(1):12–17PubMedCrossRefGoogle Scholar
  35. 35.
    Colcombe S, Dramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14:125–130PubMedCrossRefGoogle Scholar
  36. 36.
    Kluding PM, Tseng BY, Billinger SA (2011) Exercise and executive function in individuals with chronic stroke: a pilot study. J Neurol Phys Ther 35:11–17PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Marzolini S, Oh P, McIlroy W, Brooks D (2013) The effects of an aerobic and resistance exercise training program on cognition following stroke. Neurorehabil Neural Repair 27(5):392–402PubMedCrossRefGoogle Scholar
  38. 38.
    Heyn P, Abreu BC, Ottenbacher KJ (2004) The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil 85:1694–1704PubMedCrossRefGoogle Scholar
  39. 39.
    Rolland Y, van Abellan Kan G, Vellas B (2010) Healthy brain aging: role of exercise and physical activity. Clin Geriatr Med 26:75–87PubMedCrossRefGoogle Scholar
  40. 40.
    Kamijo K, Nishihira Y, Higashiura T, Kuroiwa K (2007) The interactive effect of exercise intensity and task difficulty on human cognitive processing. Int J Psychophysiol 65:114–121PubMedCrossRefGoogle Scholar
  41. 41.
    Kennard JA, Woodruff-Pak DS (2012) A comparison of low- and high-impact forced exercise: effects of training paradigm on learning and memory. Physiol Behav 106(4):423–427PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ploughman M (2008) Exercise is brain food: the effects of physical activity on cognitive function. Dev Neurorehabil 11(3):236–240PubMedCrossRefGoogle Scholar
  43. 43.
    Cotman C, Engesser-Cesar C (2002) Exercise enhances and protects brain function. Exercise Sport Sci Rev 30(2):75–79CrossRefGoogle Scholar
  44. 44.
    Dishman RK, Berthoud HR, Booth FW, Cotman CW, Edgerton VR, Fleshner MR, Gandevia SC, Gomez-Pinilla F et al (2006) Neurobiology of exercise. Obesity (Silver Spring) 14(3):345–356CrossRefGoogle Scholar
  45. 45.
    Camiletti-Moiron D, Aparicio VA, Aranda P, Radak Z (2013) Does exercise reduce brain oxidative stress? A systematic review. Scand J Med Sci Sports 23(4):e202–e212PubMedCrossRefGoogle Scholar
  46. 46.
    Kohman RA, Kohman RA, Bhattacharya TK, Wojcik E, Rhodes JS (2013) Exercise reduces activation of microglia isolated from hippocampus and brain of aged mice. J Neuroinflammation 10:114PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Barrientos RM, Frank MG, Crysdale NY, Chapman TR, Ahrendsen JT, Day HE, Campeau S, Watkins LR et al (2011) Little exercise, big effects: reversing aging and infection induced memory deficits, and underlying processes. J Neurosci 31(32):11578–11586PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kjaer M, Secher NH, Bangsbo J, Perko G, Horn A, Mohr T, Galbo H (1985) Hormonal and metabolic responses to electrically induced cycling during epidural anesthesia in humans. J Appl Physiol 80(6):2156–2162CrossRefGoogle Scholar
  49. 49.
    Mohr T, Andersen JL, Biering-Sørensen F, Galbo H, Bangsbo J, Wagner A, Kjaer M (1997) Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals. Spinal Cord 35(1):1–16PubMedCrossRefGoogle Scholar
  50. 50.
    Lista I, Sorrentino G (2010) Biological mechanisms of physical activity in preventing cognitive decline. Cell Mol Neurobiol 30(4):493–503PubMedCrossRefGoogle Scholar
  51. 51.
    Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465PubMedCrossRefGoogle Scholar
  52. 52.
    Krabbe KS, Nielsen AR, Krogh-Madsen R, Plomgaard P, Rasmussen P, Erikstrup C, Fischer CP, Lindegaard B et al (2007) Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 50(2):431–438PubMedCrossRefGoogle Scholar
  53. 53.
    Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, Secher NH, Pedersen BK et al (2009) Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol 94(10):1062–1069PubMedCrossRefGoogle Scholar
  54. 54.
    Zoladz JA, Pilc A (2010) The effect of physical activity on the brain derived neurotrophic factor: from animal to human studies. J Physiol Pharmacol 61(5):533–541PubMedGoogle Scholar
  55. 55.
    Matthews VB, Aström MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, Akerström T, Yfanti C et al (2009) Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52(7):1409–1418PubMedCrossRefGoogle Scholar
  56. 56.
    Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle derived interleukin6. Physiol Rev 88:1379–1406PubMedCrossRefGoogle Scholar
  57. 57.
    Fujimura H, Altar CA, Chen R, Nakamura T, Nakahashi T, Kambayashi J, Sun B, Tandon NN (2002) Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb Haemost 87(4):728–734PubMedGoogle Scholar
  58. 58.
    Chacón-Fernández P, Säuberli K, Colzani M, Moreau T, Ghevaert C, Barde YA (2016) Brain-derived neurotrophic factor in megakaryocytes. J Biol Chem 291(19):9872–9881PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Cho HC, Kim J, Kim S, Son YH, Lee N, Jung SH (2012) The concentrations of serum, plasma and platelet BDNF are all increased by treadmill VO2max performance in healthy college men. Neurosci Lett 519(1):78–83PubMedCrossRefGoogle Scholar
  60. 60.
    Arakawa K, Hosono A, Shibata K, Ghadimi R, Fuku M, Goto C, Imaeda N, Tokudome Y et al (2016) Changes in blood biochemical markers before, during, and after a 2-day ultramarathon. Open Access J Sports Med 7:43–50PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Banks WA, Kastin AJ, Gutierrez EG (1994) Penetration of interleukin6 across the murine blood brain barrier. Neurosci Lett 179:53–56PubMedCrossRefGoogle Scholar
  62. 62.
    Pan W, Kastin AJ (2007) Adipokines and the blood brain barrier. Peptides 28:1317–1330PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Morichi S, Kashiwagi Y, Takekuma K, Hoshika A, Kawashima H (2013) Expressions of brain-derived neurotrophic factor (BDNF) in cerebrospinal fluid and plasma of children with meningitis and encephalitis/encephalopathy. Int J Neurosci 123(1):17–23PubMedCrossRefGoogle Scholar
  64. 64.
    Morichi S, Yamanaka G, Ishida Y, Oana S, Kashiwagi Y, Kawashima H (2014) Brain-derived neurotrophic factor and interleukin-6 levels in the serum and cerebrospinal fluid of children with viral infection-induced encephalopathy. Neurochem Res 39(11):2143–2149PubMedCrossRefGoogle Scholar
  65. 65.
    Kleim JA, Cooper NR, PM VB (2002) Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Res 934:1–6PubMedCrossRefGoogle Scholar
  66. 66.
    Trejo JL, Carro E, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21:1628–1634PubMedGoogle Scholar
  67. 67.
    Ding Q, Vaynman S, Souda P, Whitelegge JP, Gomez-Pinilla F (2006) Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis. Eur J Neurosci 24:1265–1276PubMedCrossRefGoogle Scholar
  68. 68.
    Ding YH, Luan XD, Li J, Rafols JA, Guthinkonda M, Diaz FG, Ding Y (2004) Exercise-induced overexpression of angiogenic factors and reduction of ischemia/reperfusion injury in stroke. Curr Neurovasc Res 1:411–420PubMedCrossRefGoogle Scholar
  69. 69.
    Al-Jarrah M, Jamous M, Al Zailaey K, Bweir SO (2010) Endurance exercise training promotes angiogenesis in the brain of chronic/progressive mouse model of Parkinson’s disease. NeuroRehabilitation 26(4):369–373PubMedGoogle Scholar
  70. 70.
    Tang K, Xia FC, Wagner PD, Breen EC (2010) Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respir Physiol Neurobiol 170:16–22PubMedCrossRefGoogle Scholar
  71. 71.
    Swain RA, Harris AB, Wiener EC, Dutka MV, Morris HD, Theien BE, Konda S, Engberg K et al (2003) Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 117:1037–1046PubMedCrossRefGoogle Scholar
  72. 72.
    Rhyu IJ, Bytheway JA, Kohler SJ, Lange H, Lee KJ, Boklewski J, McCormick K, Williams NI et al (2010) Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. Neuroscience 167(4):1239–1248PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Smith JC, Paulson ES, Cook DB, Verber MD, Tian Q (2010) Detecting changes in human cerebral blood flow after acute exercise using arterial spin labeling: implications for fMRI. J Neurosci Methods 191:258–262PubMedCrossRefGoogle Scholar
  74. 74.
    Bullitt E, Rahman FN, Smith JK, Kim E, Zeng D, Katz LM, Marks BL (2009) The effect of exercise on the cerebral vasculature of healthy aged subjects as visualized by MR angiography. AJNR Am J Neuroradiol 30(10):1857–1863PubMedCrossRefGoogle Scholar
  75. 75.
    Van der Borght K, Kobor-Nyakas DE, Klauke K, Eggen BJ, Nyakas C, Van der Zee EA, Meerlo P (2009) Physical exercise leads to rapid adaptations in hippocampal vasculature: temporal dynamics and relationship to cell proliferation and neurogenesis. Hippocampus 19:928–936PubMedCrossRefGoogle Scholar
  76. 76.
    Janelidze S, Lindqvist D, Francardo V, Hall S, Zetterberg H, Blennow K, Adler CH, Beach TG et al (2015) Increased CSF biomarkers of angiogenesis in Parkinson disease. Neurology 85(21):1834–1842PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Paillard T, Rolland Y, de Souto Barreto P (2015) Protective effects of physical exercise in Alzheimer’s disease and Parkinson’s disease: a narrative review. J Clin Neurol 11(3):212–219PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Dietrich A, McDaniel WF (2004) Endocannabinoids and exercise. Br J Sports Med 38(5):536–541PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Eadie BD, Redila VA, Christie BR (2005) Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. J Comp Neurol 486(1):39–47PubMedCrossRefGoogle Scholar
  80. 80.
    Redila VA, Christie BR (2006) Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience 137(4):1299–1307PubMedCrossRefGoogle Scholar
  81. 81.
    Stranahan AM, Lee K, Martin B, Maudsley S, Golden E, Cutler RG, Mattson MP (2009) Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus 19:951–961PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Muzio L, Brambilla V, Calcaterra L, D’Adamo, P, Martino G, Benedetti F (2016) Increased neuroplasticity and hippocampal microglia activation in a mice model of rapid antidepressant treatment. Behav Brain ResGoogle Scholar
  83. 83.
    Stranahan AM, Khalil D, Gould E (2007) Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus 17(11):1017–1022PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Siette J, Westbrook RF, Cotman C, Sidhu K, Zhu W, Sachdev P, Valenzuela MJ (2013) Age-specific effects of voluntary exercise on memory and the older brain. Biol Psychiatry 73(5):435–442PubMedCrossRefGoogle Scholar
  85. 85.
    Opendak M, Gould E (2015) Adult neurogenesis: a substrate for experience-dependent change. Trends Cogn Sci 19(3):151–161PubMedCrossRefGoogle Scholar
  86. 86.
    Duzel E, van Praag H, Sendtner M (2016) Can physical exercise in old age improve memory and hippocampal function? Brain 139(Pt 3):662–673PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Hescham S, Grace L, Kellaway LA, Bugarith K, Russell VA (2009) Effect of exercise on synaptophysin and calcium/calmodulin-dependent protein kinase levels in prefrontal cortex and hippocampus of a rat model of developmental stress. Metab Brain Dis 24(4):701–709PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Eyre MD, Richter-Levin G, Avital A, Stewart MG (2003) Morphological changes in hippocampal dentate gyrus synapses following spatial learning in rats are transient. Eur J Neurosci 17(9):1973–1980PubMedCrossRefGoogle Scholar
  89. 89.
    Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Boström E, Westerlund I et al (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153(6):1219–1227PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Bergmann O, Spalding KL, Frisén J (2015) Adult neurogenesis in humans. Cold Spring Harb Perspect Biol 7(7):a018994. doi: 10.1101/cshperspect.a018994 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Shangold MM (1990) Exercise in the menopausal woman. Obstet Gynecol 75:53S–58SPubMedGoogle Scholar
  92. 92.
    Aiello EJ, Yasui Y, Tworoger SS, Ulrich CM, Irwin ML, Bowen D, Schwartz RS, Kumai C et al (2004) Effect of a yearlong, moderate-intensity exercise intervention on the occurrence and severity of menopause symptoms in postmenopausal women. Menopause 11:382–388PubMedCrossRefGoogle Scholar
  93. 93.
    Jin J, Kang HM, Park C (2010) Voluntary exercise enhances survival and migration of neural progenitor cells after intracerebral haemorrhage in mice. Brain Inj 24:533–540PubMedCrossRefGoogle Scholar
  94. 94.
    Leasure JL, Nixon K (2010) Exercise neuroprotection in a rat model of binge alcohol consumption. Alcohol Clin Exp Res 34(3):404–414PubMedCrossRefGoogle Scholar
  95. 95.
    Nakajima S, Ohsawa I, Ohta S, Ohno M, Mikami T (2010) Regular voluntary exercise cures stress-induced impairment of cognitive function and cell proliferation accompanied by increases in cerebral IGF-1 and GST activity in mice. Behav Brain Res 211:178–184PubMedCrossRefGoogle Scholar
  96. 96.
    Kannangara TS, Lucero MJ, Gil-Mohapel J, Drapala RJ, Simpson JM, Christie BR, van Praag H (2011) Running reduces stress and enhances cell genesis in aged mice. Neurobiol Aging 32(12):2279–2286PubMedCrossRefGoogle Scholar
  97. 97.
    Jin J, Jing H, Choi G, Oh MS, Ryu JH, Jeong JW, Huh Y, Park C (2008) Voluntary exercise increases the new cell formation in the hippocampus of ovariectomized mice. Neurosci Lett 439:260–263PubMedCrossRefGoogle Scholar
  98. 98.
    van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270PubMedCrossRefGoogle Scholar
  99. 99.
    Wu CW, Chang YT, Yu L, Chen HI, Jen CJ, Wu SY, Lo CP, Kuo YM (2008) Exercise enhances the proliferation of neural stem cells and neurite growth and survival of neuronal progenitor cells in dentate gyrus of middle-aged mice. J Appl Physiol 105:1585–1594PubMedCrossRefGoogle Scholar
  100. 100.
    Snyder JS, Glover LR, Sanzone KM, Kamhi JF, Cameron HA (2009) The effects of exercise and stress on the survival and maturation of adult-generated granule cells. Hippocampus 19:898–906PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Kim H, Lee SH, Kim SS, Yoo JH, Kim CJ (2007) The influence of maternal treadmill running during pregnancy on short-term memory and hippocampal cell survival in rat pups. Int J Dev Neurosci 25:243–249PubMedCrossRefGoogle Scholar
  102. 102.
    Krityakiarana W, Espinosa-Jeffrey A, Ghiani CA, Zhao PM, Topaldjikian N, Gomez-Pinilla F, Yamaguchi M, Kotchabhakdi N et al (2010) Voluntary exercise increases oligodendrogenesis in spinal cord. Int J Neurosci 120(4):280–290PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ge S, Sailor KA, Ming GL, Song H (2008) Synaptic integration and plasticity of new neurons in the adult hippocampus. J Physiol 586:3759–3765PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Oscai LB, Holloszy JO (1971) Biochemical adaptations in muscle. II. Response of mitochondrial adenosine triphosphatase, creatine phosphokinase, and adenylate kinase activities in skeletal muscle to exercise. J Biol Chem 246:6968–6972PubMedGoogle Scholar
  105. 105.
    Spina RJ, Chi MM, Hopkins MG, Nemeth PM, Lowry OH, Holloszy JO (1996) Mitochondrial enzymes increase in muscle in response to 7–10 days of cycle exercise. J Appl Physiol 80:2250–2254PubMedCrossRefGoogle Scholar
  106. 106.
    Craig DM, Ashcroft SP, Belew MY, Stocks B, Currell K, Baar K, Philp A (2015) Utilizing small nutrient compounds as enhancers of exercise-induced mitochondrial biogenesis. Front Physiol 6:296PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27:6407–6418PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Grimm S (2012) The ER-mitochondria interface: the social network of cell death. Biochim Biophys Acta 1823:327–334PubMedCrossRefGoogle Scholar
  109. 109.
    Schlagowski AI, Isner-Horobeti ME, Dufour SP, Rasseneur L, Enache I, Lonsdorfer-Wolf E, Doutreleau S, Charloux A et al (2016) Mitochondrial function following downhill and/or uphill exercise training in rats. Muscle Nerve 54(5):925–935PubMedCrossRefGoogle Scholar
  110. 110.
    Marques-Aleixo I, Santos-Alves E, Balça MM, Rizo-Roca D, Moreira PI, Oliveira PJ, Magalhães J, Ascensão A (2015) Physical exercise improves brain cortex and cerebellum mitochondrial bioenergetics and alters apoptotic, dynamic and auto(mito)phagy markers. Neuroscience 301:480–495PubMedCrossRefGoogle Scholar
  111. 111.
    Bangsbo J, Krustrup P, González-Alonso J, Saltin B (2001) ATP production and efficiency of human skeletal muscle during intense exercise: effect of previous exercise. Am J Physiol Endocrinol Metab 280(6):E956–E964PubMedCrossRefGoogle Scholar
  112. 112.
    Campbell-O’Sullivan SP, Constantin-Teodosiu D, Peirce N, Greenhaff PL (2002) Low intensity exercise in humans accelerates mitochondrial ATP production and pulmonary oxygen kinetics during subsequent more intense exercise. J Physiol 538(Pt 3):931–939PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Wang L, Mascher H, Psilander N, Blomstrand E, Sahlin K (2011) Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle. J Appl Physiol 111:1335–1344PubMedCrossRefGoogle Scholar
  114. 114.
    Bartlett JD, Louhelainen J, Iqbal Z, Cochran AJ, Gibala MJ, Gregson W, Close GL, Drust B et al (2013) Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: implications for mitochondrial biogenesis. Am J Physiol Regul Integr Comp Physiol 304:R450–R458PubMedCrossRefGoogle Scholar
  115. 115.
    Steiner JL, Murphy EA, JL MC, Carmichael MD, Davis JM (2011) Exercise training increases mitochondrial biogenesis in the brain. J Appl Physiol 111:1066–1071PubMedCrossRefGoogle Scholar
  116. 116.
    Farmer J, Zhao X, van Praag H, Wodtke K, Gage F, Christie BR (2004) Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124:71–79PubMedCrossRefGoogle Scholar
  117. 117.
    Vaynman S, Ying Z, Gomez-Pinilla F (2004) Exercise induces BDNF and synapsin I to specific hippocampal subfields. J Neurosci Res 76:356–362PubMedCrossRefGoogle Scholar
  118. 118.
    Berchtold NC, Chinn G, Chou M, Kesslak JP, Cotman CW (2005) Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience 133:853–861PubMedCrossRefGoogle Scholar
  119. 119.
    Berchtold NC, Castello N, Cotman CW (2010) Exercise and time-dependent benefits to learning and memory. Neuroscience 167(3):588–597PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125PubMedCrossRefGoogle Scholar
  121. 121.
    Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Komulainen P, Pedersen M, Hänninen T, Bruunsgaard H, Lakka TA, Kivipelto M, Hassinen M, Rauramaa TH et al (2008) BDNF is a novel marker of cognitive function in ageing women: the DR’s EXTRA study. Neurobiol Learn Mem 90(4):596–603PubMedCrossRefGoogle Scholar
  123. 123.
    Mattson MP, Maudsley S, Martin B (2004) BDNF and 5HT: a dynamic duo in age related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 27:589–594PubMedCrossRefGoogle Scholar
  124. 124.
    Zuccato C, Cattaneo E (2009) Brain derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5:311–322PubMedCrossRefGoogle Scholar
  125. 125.
    Rossi C, Angelucci A, Costantin L, Braschi C, Mazzantini M, Babbini F, Fabbri ME, Tessarollo L et al (2006) Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci 24:1850–1856PubMedCrossRefGoogle Scholar
  126. 126.
    Tyler WJ, Zhang XL, Hartman K, Winterer J, Muller W, Stanton PK, Pozzo-Miller L (2006) BDNF increases release probability and the size of a rapidly recycling vesicle pool within rat hippocampal excitatory synapses. J Physiol 574:787–803PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64:238–258PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Nagahara AH, Tuszynski MH (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10:209–219PubMedCrossRefGoogle Scholar
  129. 129.
    Leal G, Comprido D, Duarte CB (2014) BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology 76(Pt C):639–656PubMedCrossRefGoogle Scholar
  130. 130.
    Mariga A, Mitre M, Chao MV (2017) Consequences of brain-derived neurotrophic factor withdrawal in CNS neurons and implications in disease. Neurobiol Dis 97(Pt B):73–79PubMedCrossRefGoogle Scholar
  131. 131.
    Akaneya Y, Tsumoto T, Kinoshita S, Hatanaka H (1997) Brain-derived neurotrophic factor enhances long-term potentiation in rat visual cortex. J Neurosci 17:6707–6716PubMedGoogle Scholar
  132. 132.
    Kiprianova I, Sandkuhler J, Schwab S, Hoyer S, Spranger M (1999) Brain-derived neurotrophic factor improves long-term potentiation and cognitive functions after transient forebrain ischemia in the rat. Exp Neurol 159:511–519PubMedCrossRefGoogle Scholar
  133. 133.
    Alonso M, Vianna MR, Depino AM, Mello e Souza T, Pereira P, Szapiro G, Viola H, Pitossi F et al (2002) BDNF-triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus 12:551–560PubMedCrossRefGoogle Scholar
  134. 134.
    Spencer TK, Mellado W, Filbin MT (2008) BDNF activates CaMKIV and PKA in parallel to block MAG-mediated inhibition of neurite outgrowth. Mol Cell Neurosci 38:110–116PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Williams CM, El Mohsen MA, Vauzour D, Rendeiro C, Butler LT, Ellis JA, Whiteman M, Spencer JP (2008) Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med 45:295–305PubMedCrossRefGoogle Scholar
  136. 136.
    Cassilhas RC, Lee KS, Fernandes J, Oliveira MG, Tufik S, Meeusen R, de Mello MT (2012) Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience 202:309–317PubMedCrossRefGoogle Scholar
  137. 137.
    Barde YA (1994) Neurotrophins: a family of proteins supporting the survival of neurons. Prog Clin Biol Res 390:45–56PubMedGoogle Scholar
  138. 138.
    Vaynman S, Ying Z, Gomez-Pinilla F (2007) The select action of hippocampal calcium calmodulin protein kinase II in mediating exercise-enhanced cognitive function. Neuroscience 144:825–833PubMedCrossRefGoogle Scholar
  139. 139.
    Vasuta C, Caunt C, James R, Samadi S, Schibuk E, Kannangara T, Titterness AK, Christie BR (2007) Effects of exercise on NMDA receptor subunit contributions to bidirectional synaptic plasticity in the mouse dentate gyrus. Hippocampus 17:1201–1208PubMedCrossRefGoogle Scholar
  140. 140.
    Thomas K, Davies A (2005) Neurotrophins: a ticket to ride for BDNF. Curr Biol 15:R262–R264PubMedCrossRefGoogle Scholar
  141. 141.
    Greenberg ME, Xu B, Lu B, Hempstead BL (2009) New insights in the biology of BDNF synthesis and release: implications in CNS function. J Neurosci 29:12764–12767PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Ang ET, Gomez-Pinilla F (2007) Potential therapeutic effects of exercise to the brain. Curr Med Chem 14:2564–2571PubMedCrossRefGoogle Scholar
  143. 143.
    Vaynman S, Ying Z, Gomez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20:2580–2590PubMedCrossRefGoogle Scholar
  144. 144.
    Sleiman SF, Henry J, Al-Haddad R, El Hayek L, Abou Haidar E, Stringer T, Ulja D, Karuppagounder SS et al (2016) Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. elife 5:e15092PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Falkenberg T, Mohammed AK, Henriksson B, Persson H, Winblad B, Lindefors N (1992) Increased expression of brain-derived neurotrophic factor mRNA in rat hippocampus is associated with improved spatial memory and enriched environment. Neurosci Lett 138:153–156PubMedCrossRefGoogle Scholar
  146. 146.
    Hall J, Thomas KL, Everitt BJ (2000) Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nat Neurosci 3:533–535PubMedCrossRefGoogle Scholar
  147. 147.
    Zagaar MA, Dao AT, Alhaider IA, Alkadhi KA (2016) Prevention by regular exercise of acute sleep deprivation-induced impairment of late phase LTP and related signaling molecules in the dentate gyrus. Mol Neurobiol 53(5):2900–2910PubMedCrossRefGoogle Scholar
  148. 148.
    Blanquet PR, Lamour Y (1997) Brain-derived neurotrophic factor increases Ca2+/calmodulin-dependent protein kinase 2 activity in hippocampus. J Biol Chem 272:24133–24136PubMedCrossRefGoogle Scholar
  149. 149.
    Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME (1997) CREB: a major mediator of neuronal neurotrophin responses. Neuron 19:1031–1047PubMedCrossRefGoogle Scholar
  150. 150.
    Minichiello L, Calella AM, Medina DL, Bonhoeffer T, Klein R, Korte M (2002) Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 36:121–137PubMedCrossRefGoogle Scholar
  151. 151.
    Shen H, Tong L, Balazs R, Cotman CW (2001) Physical activity elicits sustained activation of the cyclic AMP response element-binding protein and mitogen-activated protein kinase in the rat hippocampus. Neuroscience 107:219–229PubMedCrossRefGoogle Scholar
  152. 152.
    Oliff HS, Berchtold NC, Isackson P, Cotman CW (1998) Exercise induced regulation of brain derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain Res Mol Brain Res 61:147–153PubMedCrossRefGoogle Scholar
  153. 153.
    Saadati H, Sheibani V, Esmaeili-Mahani S, Darvishzadeh-Mahani F, Mazhari S (2014) Prior regular exercise reverses the decreased effects of sleep deprivation on brain-derived neurotrophic factor levels in the hippocampus of ovariectomized female rats. Regul Pept 194-195:11–15PubMedCrossRefGoogle Scholar
  154. 154.
    Gold SM, Schulz KH, Hartmann S, Mladek M, Lang UE, Hellweg R, Reer R, Braumann KM et al (2003) Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. J Neuroimmunol 138(1–2):99–105PubMedCrossRefGoogle Scholar
  155. 155.
    Rojas Vega S, Strüder HK, Vera Wahrmann B, Schmidt A, Bloch W, Hollmann W (2006) Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Res 1121(1):59–65PubMedCrossRefGoogle Scholar
  156. 156.
    Ferris LT, Williams JS, Shen CL (2007) The effect of acute exercise on serum brain derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc 39:728–734PubMedCrossRefGoogle Scholar
  157. 157.
    Choi DH, Lee KH, Lee J (2016) Effect of exercise-induced neurogenesis on cognitive function deficit. Mol Med Rep 13(4):2981–2990PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Boulanger LM, Poo MM (1999) Presynaptic depolarization facilitates neurotrophin-induced synaptic potentiation. Nat Neurosci 2:346–351PubMedCrossRefGoogle Scholar
  159. 159.
    Griffin EW, Bechara RG, Birch AM, Kelly AM (2009) Exercise enhances hippocampal-dependent learning in the rat: evidence for a BDNF-related mechanism. Hippocampus 19:973–980PubMedCrossRefGoogle Scholar
  160. 160.
    Molteni R, Ying Z, Gomez-Pinilla F (2002) Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur J Neurosci 16:1107–1116PubMedCrossRefGoogle Scholar
  161. 161.
    Soya H, Nakamura T, Deocaris CC, Kimpara A, Iimura M, Fujikawa T, Chang H, McEwen BS et al (2007) BDNF induction with mild exercise in the rat hippocampus. Biochem Biophys Res Commun 358:961–967PubMedCrossRefGoogle Scholar
  162. 162.
    Chae CH, Jung SL, An SH, Park BY, Wang SW, Cho IH, Cho JY, Kim HT (2009) Treadmill exercise improves cognitive function and facilitates nerve growth factor signaling by activating mitogen-activated protein kinase/extracellular signal-regulated kinase1/2 in the streptozotocin-induced diabetic rat hippocampus. Neuroscience 164:1665–1673PubMedCrossRefGoogle Scholar
  163. 163.
    Vaynman SS, Ying Z, Yin D, Gomez-Pinilla F (2006) Exercise differentially regulates synaptic proteins associated to the function of BDNF. Brain Res 1070:124–130PubMedCrossRefGoogle Scholar
  164. 164.
    Yamamoto H, Gurney ME (1990) Human platelets contain brain-derived neurotrophic factor. J Neurosci 10(11):3469–3478PubMedGoogle Scholar
  165. 165.
    Rosenfeld RD, Zeni L, Haniu M, Talvenheimo J, Radka SF, Bennett L, Miller JA, Welcher AA (1995) Purification and identification of brain-derived neurotrophic factor from human serum. Protein Expr Purif 6(4):465–471PubMedCrossRefGoogle Scholar
  166. 166.
    Pliego-Rivero FB, Bayatti N, Giannakoulopoulos X, Glover V, Bradford HF, Stern G, Sandler M (1997) Brain-derived neurotrophic factor in human platelets. Biochem Pharmacol 54(1):207–209PubMedCrossRefGoogle Scholar
  167. 167.
    Tsai CL, Pan CY, Chen FC, Wang CH, Chou FY (2016) The effects of acute aerobic exercise on a task-switching paradigm and BDNF levels in young adults with different levels of cardiorespiratory fitness. Exp Physiol 101(7):836–850PubMedCrossRefGoogle Scholar
  168. 168.
    Chung JY, Kim MW, Bang MS, Kim M (2010) The effect of exercise on trkA in the contralateral hemisphere of the ischemic rat brain. Brain Res 1353:187–193PubMedCrossRefGoogle Scholar
  169. 169.
    Capsoni S, Tiveron C, Vignone D, Amato G, Cattaneo A (2010) Dissecting the involvement of tropomyosin-related kinase A and p75 neurotrophin receptor signaling in NGF deficit-induced neurodegeneration. Proc Natl Acad Sci U S A 107(27):12299–12304PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Matsuda H, Koyama H, Oikawa M, Yoshihara T, Kaneko M (1991) Nerve growth factor-like activity detected in equine peripheral blood after running exercise. Zentralblatt fur Veterinarmedizin Reihe A 38:557–559PubMedCrossRefGoogle Scholar
  171. 171.
    Neeper SA, Gómez-Pinilla F, Choi J, Cotman CW (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726(1–2):49–56PubMedCrossRefGoogle Scholar
  172. 172.
    Chae CH, Kim HT (2009) Forced, moderate-intensity treadmill exercise suppresses apoptosis by increasing the level of NGF and stimulating phosphatidylinositol 3-kinase signaling in the hippocampus of induced aging rats. Neurochem Int 55(4):208–213PubMedCrossRefGoogle Scholar
  173. 173.
    O’Callaghan RM, Ohle R, Kelly AM (2007) The effects of forced exercise on hippocampal plasticity in the rat: a comparison of LTP, spatial- and non-spatial learning. Behav Brain Res 176:362–366PubMedCrossRefGoogle Scholar
  174. 174.
    O’Callaghan RM, Griffin EW, Kelly AM (2009) Long-term treadmill exposure protects against age-related neurodegenerative change in the rat hippocampus. Hippocampus 19:1019–1029PubMedCrossRefGoogle Scholar
  175. 175.
    McCullough MJ, Gyorkos AM, Spitsbergen JM (2013) Short-term exercise increases GDNF protein levels in the spinal cord of young and old rats. Neuroscience 240:258–268PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Tajiri N, Yasuhara T, Shingo T, Kondo A, Yuan W, Kadota T, Wang F, Baba T et al (2010) Exercise exerts neuroprotective effects on Parkinson’s disease model of rats. Brain Res 1310:200–207PubMedCrossRefGoogle Scholar
  177. 177.
    Lau YS, Patki G, Das-Panja K, Le WD, Ahmad SO (2011) Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson’s disease with moderate neurodegeneration. Eur J Neurosci 33:1264–1274PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Horita Y, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD (2006) Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat. J Neurosci Res 84:1495–1504PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Kuric E, Wieloch T, Ruscher K (2013) Dopamine receptor activation increases glial cell line-derived neurotrophic factor in experimental stroke. Exp Neurol 247:202–208PubMedCrossRefGoogle Scholar
  180. 180.
    Hiney JK, Srivastava V, Nyberg CL, Ojeda SR, Dees WL (1996) Insulin-like growth factor I of peripheral origin acts centrally to accelerate the initiation of female puberty. Endocrinology 137:3717–3728PubMedCrossRefGoogle Scholar
  181. 181.
    Daftary SS, Gore AC (2005) IGF-1 in the brain as a regulator of reproductive neuroendocrine function. Exp Biol Med 230:292–306CrossRefGoogle Scholar
  182. 182.
    Voss MW, Erickson KI, Prakash RS, Chaddock L, Kim JS, Alves H, Szabo A, Phillips SM et al (2013) Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav Immun 28:90–99PubMedCrossRefGoogle Scholar
  183. 183.
    Olfert IM, Baum O, Hellsten Y, Egginton S (2016) Advances and challenges in skeletal muscle angiogenesis. Am J Physiol Heart Circ Physiol 310(3):H326–H336PubMedCrossRefGoogle Scholar
  184. 184.
    Baum O, Da Silva-Azevedo L, Willerding G, Wockel A, Planitzer G, Gossrau R, Pries AR, Zakrzewicz A (2004) Endothelial NOS is main mediator for shear stress-dependent angiogenesis in skeletal muscle after prazosin administration. Am J Physiol Heart Circ Physiol 287:H2300–H2308PubMedCrossRefGoogle Scholar
  185. 185.
    Benoit H, Jordan M, Wagner H, Wagner PD (1999) Effect of NO, vasodilator prostaglandins, and adenosine on skeletal muscle angiogenic growth factor gene expression. J Appl Physiol 86:1513–1518PubMedCrossRefGoogle Scholar
  186. 186.
    Gliemann L, Gunnarsson TP, Hellsten Y, Bangsbo J (2015) 10-20-30 training increases performance and lowers blood pressure and VEGF in runners. Scand J Med Sci Sports 25:e479–e489PubMedCrossRefGoogle Scholar
  187. 187.
    Uchida C, Nwadozi E, Hasanee A, Olenich S, Olfert IM, Haas TL (2015) Muscle-derived vascular endothelial growth factor regulates microvascular remodelling in response to increased shear stress in mice. Acta Physiol (Oxf) 214:349–360CrossRefGoogle Scholar
  188. 188.
    Gorman JL, Liu ST, Slopack D, Shariati K, Hasanee A, Olenich S, Olfert IM, Haas TL (2014) Angiotensin II evokes angiogenic signals within skeletal muscle through co-ordinated effects on skeletal myocytes and endothelial cells. PLoS One 9:e85537PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Gray JM, Vecchiarelli HA, Morena M, Lee TT, Hermanson DJ, Kim AB, McLaughlin RJ, Hassan KI et al (2015) Corticotropin-releasing hormone drives anandamide hydrolysis in the amygdala to promote anxiety. J Neurosci 35(9):3879–3892PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Diorio D, Viau V, Meaney MJ (1993) The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J Neurosci 13(9):3839–3847PubMedGoogle Scholar
  191. 191.
    Fleshner M, Deak T, Spencer RL, Laudenslager ML, Watkins LR, Maier SF (1995) A long-term increase in basal levels of corticosterone and a decrease in corticosteroid-binding globulin after acute stressor exposure. Endocrinology 136:5336–5342PubMedCrossRefGoogle Scholar
  192. 192.
    Roozendaal B, Okuda S, de Quervain DJ, McGaugh JL (2006) Glucocorticoids interact with emotion-induced noradrenergic activation in influencing different memory functions. Neuroscience 138(3):901–910PubMedCrossRefGoogle Scholar
  193. 193.
    Peavy GM, Lange KL, Salmon DP, Patterson TL, Goldman S, Gamst AC, Mills PJ, Khandrika S et al (2007) The effects of prolonged stress and APOE genotype on memory and cortisol in older adults. Biol Psychiatry 62(5):472–478PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Jones BC, Sarrieau A, Reed CL, Azar MR, Mormede P (1998) Contribution of sex and genetics to neuroendocrine adaptation to stress in mice. Psychoneuroendocrinology 23:505–517PubMedCrossRefGoogle Scholar
  195. 195.
    Nock B, Cicero TJ, Wich M (1998) Chronic exposure to morphine decreases physiologically active corticosterone in both male and female rats but by different mechanisms. J Pharmacol Exp Ther 286:875–882PubMedGoogle Scholar
  196. 196.
    Tinnikov AA (1999) Responses of serum corticosterone and corticosteroid-binding globulin to acute and prolonged stress in the rat. Endocrine 11:145–150PubMedCrossRefGoogle Scholar
  197. 197.
    Brown DA, Johnson MS, Armstrong CJ, Lynch JM, Caruso NM, Ehlers LB, Fleshner M, Spencer RL et al (2007) Short-term treadmill running in the rat: what kind of stressor is it? J Appl Physiol 103(6):1979–1985PubMedCrossRefGoogle Scholar
  198. 198.
    Gerges NZ, Stringer JL, Alkadhi KA (2001) Combination of hypothyroidism and stress abolishes early LTP in the CA1 but not dentate gyrus of hippocampus of adult rats. Brain Res 922(2):250–260PubMedCrossRefGoogle Scholar
  199. 199.
    Patki G, Li L, Allam F, Solanki N, Dao AT, Alkadhi K, Salim S (2014) Moderate treadmill exercise rescues anxiety and depression-like behavior as well as memory impairment in a rat model of posttraumatic stress disorder. Physiol Behav 130:47–53PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Patki G, Solanki N, Atrooz F, Ansari A, Allam F, Jannise B, Maturi J, Salim S (2014) Novel mechanistic insights into treadmill exercise based rescue of social defeat-induced anxiety-like behavior and memory impairment in rats. Physiol Behav 130:135–144PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Solanki N, Alkadhi I, Atrooz F, Patki G, Salim S (2015) Grape powder prevents cognitive, behavioral, and biochemical impairments in a rat model of posttraumatic stress disorder. Nutr Res 35(1):65–75PubMedCrossRefGoogle Scholar
  202. 202.
    Moraska A, Deak T, Spencer RL, Roth D, Fleshner M (2000) Treadmill running produces both positive and negative physiological adaptations in Sprague-Dawley rats. Am J Physiol Regul Integr Comp Physiol 279(4):R1321–R1329PubMedCrossRefGoogle Scholar
  203. 203.
    Gunduz-Cinar O, Hill MN, McEwen BS, Holmes A (2013) Amygdala FAAH and anandamide: mediating protection and recovery from stress. Trends Pharmacol Sci 34:637–644PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Reich CG, Taylor ME, McCarthy MM (2009) Differential effects of chronic unpredictable stress on hippocampal CB1 receptors in male and female rats. Behav Brain Res 203:264–269PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Hill MN, McLaughlin R, Pan B, Fitzgerald ML, Roberts CJ, Lee TT, Karatsoreos IN, Mackie K et al (2011) Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response. J Neurosci 31:10506–10515PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Hill MN, Titterness AK, Morrish AC, Carrier EJ, Lee TT, Gil-Mohapel J, Gorzalka BB, Hillard CJ et al (2010) Endogenous cannabinoid signaling is required for voluntary exercise-induced enhancement of progenitor cell proliferation in the hippocampus. Hippocampus 20:513–523PubMedPubMedCentralGoogle Scholar
  207. 207.
    Gouarné C, Groussard C, Gratas-Delamarche A, Delamarche P, Duclos M (2005) Overnight urinary cortisol and cortisone add new insights into adaptation to training. Med Sci Sports Exerc 37(7):1157–1167PubMedCrossRefGoogle Scholar
  208. 208.
    Wüst S, Wolf J, Hellhammer DH, Federenko I, Schommer N, Kirschbaum C (2000) The cortisol awakening response—normal values and confounds. Noise Health 2(7):79–88PubMedGoogle Scholar
  209. 209.
    Heijnen S, Hommel B, Kibele A, Colzato LS (2016) Neuromodulation of aerobic exercise—a review. Front Psychol 6:1890PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Vollert C, Zagaar M, Hovatta I, Taneja M, Vu A, Dao A, Levine A, Alkadhi K et al (2011) Exercise prevents sleep deprivation-associated anxiety-like behavior in rats: potential role of oxidative stress mechanisms. Behav Brain Res 224(2):233–240PubMedCrossRefGoogle Scholar
  211. 211.
    Um HS, Kang EB, Koo JH, Kim HT, Jin-Lee KEJ, Yang CH, An GY, Cho IH et al (2011) Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer’s disease. Neurosci Res 69(2):161–173PubMedCrossRefGoogle Scholar
  212. 212.
    Fuss J, Ben Abdallah NM, Vogt MA, Touma C, Pacifici PG, Palme R, Witzemann V, Hellweg R et al (2010) Voluntary exercise induces anxiety-like behavior in adult C57BL/6J mice correlating with hippocampal neurogenesis. Hippocampus 20(3):364–376PubMedGoogle Scholar
  213. 213.
    Schaaf M, Sibug RM, Duurland R, Fluttert MF, Oitzl MS, De Kloet ER, Vreugdenhil E (1999) Corticosterone effects on BDNF mRNA expression in the rat hippocampus during morris water maze training. Stress 3:173–183PubMedCrossRefGoogle Scholar
  214. 214.
    Woolley CS, Gould E, McEwen BS (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 531:225–231PubMedCrossRefGoogle Scholar
  215. 215.
    Aleisa AM, Alzoubi KH, Gerges NZ, Alkadhi KA (2006) Nicotine blocks stress-induced impairment of spatial memory and long-term potentiation of the hippocampal CA1 region. Int J Neuropsychopharmacol 9:417–426PubMedCrossRefGoogle Scholar
  216. 216.
    Aleisa AM, Alzoubi KH, Gerges NZ, Alkadhi KA (2006) Chronic psychosocial stress-induced impairment of hippocampal LTP: possible role of BDNF. Neurobiol Dis 22:453–462PubMedCrossRefGoogle Scholar
  217. 217.
    Kim DM, Leem YH (2016) Chronic stress-induced memory deficits are reversed by regular exercise via AMPK-mediated BDNF induction. Neuroscience 324:271–285PubMedCrossRefGoogle Scholar
  218. 218.
    Cotman C, Berchtold N (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25(6):295–301PubMedCrossRefGoogle Scholar
  219. 219.
    Gerber M, Brand S, Herrmann C, Colledge F, Holsboer-Trachsler E, Pühse U (2014) Increased objectively assessed vigorous-intensity exercise is associated with reduced stress, increased mental health and good objective and subjective sleep in young adults. Physiol Behav 135:17–24PubMedCrossRefGoogle Scholar
  220. 220.
    Zschucke E, Renneberg B, Dimeo F, Wüstenberg T, Ströhle A (2015) The stress-buffering effect of acute exercise: evidence for HPA axis negative feedback. Psychoneuroendocrinology 51:414–425PubMedCrossRefGoogle Scholar
  221. 221.
    Jacubowski A, Abeln V, Vogt T, Yi B, Choukèr A, Fomina E, Strüder HK, Schneider S (2015) The impact of long-term confinement and exercise on central and peripheral stress markers. Physiol Behav 152(Pt A):106–111PubMedCrossRefGoogle Scholar
  222. 222.
    Broman-Fulks JJ, Berman ME, Rabian BA, Webster MJ (2004) Effects of aerobic exercise on anxiety sensitivity. Behav Res Ther 42(2):125–136PubMedCrossRefGoogle Scholar
  223. 223.
    Broman-Fulks JJ, Storey KM (2008) Evaluation of a brief aerobic exercise intervention for high anxiety sensitivity. Anxiety Stress Coping 21(2):117–128PubMedCrossRefGoogle Scholar
  224. 224.
    Bartley CA, Hay M, Bloch MH (2013) Meta-analysis: aerobic exercise for the treatment of anxiety disorders. Prog Neuro-Psychopharmacol Biol Psychiatry 45C:34–39CrossRefGoogle Scholar
  225. 225.
    Sciolino NR, Dishman RK, Holmes PV (2012) Voluntary exercise offers anxiolytic potential and amplifies galanin gene expression in the locus coeruleus of the rat. Behav Brain Res 233:191–200PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Pietrelli A, Lopez-Costa J, Goñi R, Brusco A, Basso N (2012) Aerobic exercise prevents age-dependent cognitive decline and reduces anxiety-related behaviors in middle-aged and old rats. Neuroscience 202:252–266PubMedCrossRefGoogle Scholar
  227. 227.
    Salim S, Sarraj N, Taneja M, Saha K, Tejada-Simon MV, Chugh G (2010) Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats. Behav Brain Res 208(2):545–552PubMedCrossRefGoogle Scholar
  228. 228.
    Uysal N, Sisman AR, Dayi A, Aksu I, Cetin F, Gencoglu C, Tas A, Buyuk E (2011) Maternal exercise decreases maternal deprivation induced anxiety of pups and correlates to increased prefrontal cortex BDNF and VEGF. Neurosci Lett 505:273–278PubMedCrossRefGoogle Scholar
  229. 229.
    Schoenfeld TJ, Rada P, Pieruzzini PR, Hsueh B, Gould E (2013) Physical exercise prevents stress-induced activation of granule neurons and enhances local inhibitory mechanisms in the dentate gyrus. J Neurosci 33:7770–7777PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Radak Z, Chung HY, Goto S (2005) Exercise and hormesis: oxidative stress-related adaptation for successful aging. Biogerontology 6:71–75PubMedCrossRefGoogle Scholar
  231. 231.
    Ristow M, Zarse K (2010) How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 45(6):410–418PubMedCrossRefGoogle Scholar
  232. 232.
    Goto S, Radak Z, Nyakas C, Chung HY, Naito H, Takahashi R, Nakamoto H, Abea R (2004) Regular exercise: an effective means to reduce oxidative stress in old rats. Ann N Y Acad Sci 1019:471–474PubMedCrossRefGoogle Scholar
  233. 233.
    Rietjens SJ, Beelen M, Koopman R, VAN Loon LJ, Bast A, Haenen GR (2007) A single session of resistance exercise induces oxidative damage in untrained men. Med Sci Sports Exerc 39(12):2145–2151PubMedCrossRefGoogle Scholar
  234. 234.
    Teixeira AM, Reckziegel P, Muller L, Pereira RP, Roos DH, Rocha JB, Burger ME (2009) Intense exercise potentiates oxidative stress in striatum of reserpine-treated animals. Pharmacol Biochem Behav 92:231–235PubMedCrossRefGoogle Scholar
  235. 235.
    Ogonovszky H, Berkes I, Kumagai S, Kaneko T, Tahara S, Goto S, Radák Z (2005) The effects of moderate-, strenuous- and over-training on oxidative stress markers, DNA repair, and memory, in rat brain. Neurochem Int 46(8):635–640PubMedCrossRefGoogle Scholar
  236. 236.
    Park SY, Kwak YS (2016) Impact of aerobic and anaerobic exercise training on oxidative stress and antioxidant defense in athletes. J Exerc Rehabil 12(2):113–117PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Reddy KV, Anuradha D, Kumar TC, Reddanna P (1995) Induction of Ya1 subunit of rat hepatic glutathione S-transferases by exercise-induced oxidative stress. Arch Biochem Biophys 323:6–10PubMedCrossRefGoogle Scholar
  238. 238.
    Ozkaya YG, Agar A, Yargiçoglu P, Hacioglu G, Bilmen-Sarikçioglu S, Ozen I, Alicigüzel Y (2002) The effect of exercise on brain antioxidant status of diabetic rats. Diabetes Metab 28(5):377–384PubMedGoogle Scholar
  239. 239.
    Um HS, Kang EB, Leem YH, Cho IH, Yang CH, Chae KR, Hwang DY, Cho JY (2008) Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer’s disease in an NSE/APPsw-transgenic model. Int J Mol Med 22:529–539PubMedGoogle Scholar
  240. 240.
    Somani SM, Ravi R, Rybak LP (1995) Effect of exercise training on antioxidant system in brain regions of rat. Pharmacol Biochem Behav 50:635–639PubMedCrossRefGoogle Scholar
  241. 241.
    Szabo Z, Ying Z, Radak Z, Gomez-Pinilla F (2010) Voluntary exercise may engage proteasome function to benefit the brain after trauma. Brain Res 1341:25–31PubMedCrossRefGoogle Scholar
  242. 242.
    Cheng TL, Lin YY, Su CT, Hu CC, Yang AL (2016) Improvement of acetylcholine-induced vasodilation by acute exercise in ovariectomized hypertensive rats. Chin J Physiol. 59(3)Google Scholar
  243. 243.
    Alkadhi K, Zagaar M, Alhaider I, Salim S, Aleisa A (2013) Neurobiological consequences of sleep deprivation. Curr Neuropharmacol 11(3):231–249PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Sweatt JD, Hawkins KE (2016) The molecular neurobiology of the sleep-deprived, fuzzy brain. Sci Signal 9(425):fs7. doi: 10.1126/scisignal.aaf6196 PubMedCrossRefGoogle Scholar
  245. 245.
    Belenky G, Wesensten NJ, Thorne DR, Thomas ML, Sing HC, Redmond DP, Russo MB, Balkin TJ (2003) Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study. J Sleep Res 12:1–12PubMedCrossRefGoogle Scholar
  246. 246.
    Christie MA, McKenna JT, Connolly NP, McCarley RW, Strecker RE (2008) 24 hours of sleep deprivation in the rat increases sleepiness and decreases vigilance: introduction of the rat-psychomotor vigilance task. J Sleep Res 17:376–384PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Walker MP (2008) Cognitive consequences of sleep and sleep loss. Sleep Med 9(Suppl 1):S29–S34PubMedCrossRefGoogle Scholar
  248. 248.
    Orzeł-Gryglewska J (2010) Consequences of sleep deprivation. Int J Occup Med Environ Health 23(1):95–114PubMedCrossRefGoogle Scholar
  249. 249.
    Bonnet MH, Balkin TJ, Dinges DF, Roehrs T, Rogers NL, Wesensten NJ (2005) The use of stimulants to modify performance during sleep loss: a review by the sleep deprivation and Stimulant Task Force of the American Academy of Sleep Medicine. Sleep 28:1163–1187PubMedCrossRefGoogle Scholar
  250. 250.
    Alhaider IA, Aleisa AM, Tran TT, Alzoubi KH, Alkadhi KA (2010) Chronic caffeine treatment prevents sleep deprivation-induced impairment of cognitive function and synaptic plasticity. Sleep 33(4):437–444PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Caspersen CJ, Powell KE, Christenson GM (1985) Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 100:126–131PubMedPubMedCentralGoogle Scholar
  252. 252.
    Horowitz JF (2007) Exercise-induced alterations in muscle lipid metabolism improve insulin sensitivity. Exerc Sport Sci Rev 35:192–196PubMedCrossRefGoogle Scholar
  253. 253.
    Alhaider IA, Aleisa AM, Tran TT, Alkadhi KA (2011) Sleep deprivation prevents stimulation-induced increases of levels of P-CREB and BDNF: protection by caffeine. Mol Cell Neurosci 46(4):742–751PubMedCrossRefGoogle Scholar
  254. 254.
    Aleisa AM, Helal G, Alhaider IA, Alzoubi KH, Srivareerat M, Tran TT, Al-Rejaie SS, Alkadhi KA (2011) Acute nicotine treatment prevents REM sleep deprivation-induced learning and memory impairment in rat. Hippocampus 21(8):899–909PubMedGoogle Scholar
  255. 255.
    Aleisa AM, Alzoubi KH, Alkadhi KA (2011) Post-learning REM sleep deprivation impairs long-term memory: reversal by acute nicotine treatment. Neurosci Lett 499:28–31PubMedCrossRefGoogle Scholar
  256. 256.
    Salari M, Sheibani V, Saadati H, Pourrahimi A, Khaksarihadad M, Esmaeelpour K, Khodamoradi M (2015) The compensatory effect of regular exercise on long-term memory impairment in sleep deprived female rats. Behav Process 119:50–57CrossRefGoogle Scholar
  257. 257.
    Ablin JN, Clauw DJ, Lyden AK, Ambrose K, Williams DA, Gracely RH, Glass JM (2013) Effects of sleep restriction and exercise deprivation on somatic symptoms and mood in healthy adults. Clin Exp Rheumatol 31(6 Suppl 79):S53–S59PubMedGoogle Scholar
  258. 258.
    Ritsche K, Nindl BC, Wideman L (2014) Exercise-induced growth hormone during acute sleep deprivation. Physiol Rep 2(10)Google Scholar
  259. 259.
    Mejri MA, Yousfi N, Hammouda O, Tayech A, Ben Rayana MC, Driss T, Chaouachi A, Souissi N (2016) One night of partial sleep deprivation increased biomarkers of muscle and cardiac injuries during acute intermittent exercise. J Sports Med Phys Fitness. Feb 11Google Scholar
  260. 260.
    Mejri MA, Yousfi N, Mhenni T, Tayech A, Hammouda O, Driss T, Chaouachi A, Souissi N (2016) Does one night of partial sleep deprivation affect the evening performance during intermittent exercise in taekwondo players? J Exerc Rehabil 12(1):47–53PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Saadati H, Sheibani V, Esmaeili-Mahani S, Hajali V, Mazhari S (2014) Prior regular exercise prevents synaptic plasticity impairment in sleep deprived female rats. Brain Res Bull 108:100–105PubMedCrossRefGoogle Scholar
  262. 262.
    Greenwood BN, Foley TE, Day HE, Campisi J, Hammack SH, Campeau S, Maier SF, Fleshner M (2003) Freewheel running prevents learned helplessness/behavioral depression: role of dorsal raphe serotonergic neurons. J Neurosci 23:2889–2898PubMedGoogle Scholar
  263. 263.
    Dao AT, Zagaar MA, Levine AT, Alkadhi KA (2016) Comparison of the effect of exercise on late-phase LTP of the dentate gyrus and CA1 of Alzheimer’s disease model. Mol Neurobiol 53(10):6859–6868PubMedCrossRefGoogle Scholar
  264. 264.
    Anderson BJ, Rapp DN, Baek DH, McCloskey DP, Coburn-Litvak PS, Robinson JK (2000) Exercise influences spatial learning in the radial arm maze. Physiol Behav 70:425–429PubMedCrossRefGoogle Scholar
  265. 265.
    Alhaider IA, Aleisa AM, Tran TT, Alkadhi KA (2010) Caffeine prevents sleep loss-induced deficits in long-term potentiation and related signaling molecules in the dentate gyrus. Eur J Neurosci 31(8):1368–1376PubMedCrossRefGoogle Scholar
  266. 266.
    Zagaar M, Dao A, Levine A, Alhaider I, Alkadhi K (2013) Regular exercise prevents sleep deprivation associated impairment of long-term memory and synaptic plasticity in the CA1 area of the hippocampus. Sleep 36(5):751–761PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    Alkadhi KA, Alhaider IA (2016) Caffeine and REM sleep deprivation: effect on basal levels of signaling molecules in area CA1. Mol Cell Neurosci 71:125–131PubMedCrossRefGoogle Scholar
  268. 268.
    Wang JH, Kelly PT (1997) Postsynaptic calcineurin activity downregulates synaptic transmission by weakening intracellular Ca2+ signaling mechanisms in hippocampal CA1 neurons. J Neurosci 17:4600–4611PubMedGoogle Scholar
  269. 269.
    Chennaoui M, Gomez-Merino D, Drogou C, Geoffroy H, Dispersyn G, Langrume C, Ciret S, Gallopin T et al (2015) Effects of exercise on brain and peripheral inflammatory biomarkers induced by total sleep deprivation in rats. J Inflamm (Lond) 12:56. doi: 10.1186/s12950-015-0102-3. eCollection CrossRefGoogle Scholar
  270. 270.
    Coogan AN, Schutová B, Husung S, Furczyk K, Baune BT, Kropp P, Häßler F, Thome J (2013) The circadian system in Alzheimer’s disease: disturbances, mechanisms, and opportunities. Biol Psychiatry 74(5):333–339PubMedCrossRefGoogle Scholar
  271. 271.
    Alvaro PK, Roberts RM, Harris JK (2013) A systematic review assessing bidirectionality between sleep disturbances, anxiety, and depression. Sleep 36(7):1059–1068PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Thune-Boyle IC, Iliffe S, Cerga-Pashoja A, Lowery D, Warner J (2012) The effect of exercise on behavioral and psychological symptoms of dementia: towards a research agenda. Int Psychogeriatr 24:1046–1057PubMedCrossRefGoogle Scholar
  273. 273.
    Maruszak A, Zekanowski C (2011) Mitochondrial dysfunction and Alzheimer’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry 35:320–330CrossRefGoogle Scholar
  274. 274.
    Ye X, Tai W, Zhang D (2012) The early events of Alzheimer’s disease pathology: from mitochondrial dysfunction to BDNF axonal transport deficits. Neurobiol Aging 33(1122):e1121–e1110Google Scholar
  275. 275.
    Bo H, Kang W, Jiang N, Wang X, Zhang Y, Ji LL (2014) Exercise-induced neuroprotection of hippocampus in APP/PS1 transgenic mice via upregulation of mitochondrial 8-oxoguanine DNA glycosylase. Oxidative Med Cell Longev 2014:834502. doi: 10.1155/2014/834502 CrossRefGoogle Scholar
  276. 276.
    Bertram S, Brixius K, Brinkmann C (2016) Exercise for the diabetic brain: how physical training may help prevent dementia and Alzheimer’s disease in T2DM patients. Endocrine 53(2):350–363PubMedCrossRefGoogle Scholar
  277. 277.
    Gibson GE, Sheu KF, Blass JP (1998) Abnormalities of mitochondrial enzymes in Alzheimer disease. J Neural Transm 105:855–870PubMedCrossRefGoogle Scholar
  278. 278.
    Gibson GE, Vestling M, Zhang H, Szolosi S, Alkon D, Lannfelt L, Gandy S, Cowburn RF (1997) Abnormalities in Alzheimer’s disease fibroblasts bearing the APP670/671 mutation. Neurobiol Aging 18:573–580PubMedCrossRefGoogle Scholar
  279. 279.
    Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26:9057–9068PubMedCrossRefGoogle Scholar
  280. 280.
    Valla J, Schneider L, Niedzielko T, Coon KD, Caselli R, Sabbagh MN, Ahern GL, Baxter L et al (2006) Impaired platelet mitochondrial activity in Alzheimer’s disease and mild cognitive impairment. Mitochondrion 6:323–330PubMedPubMedCentralCrossRefGoogle Scholar
  281. 281.
    Wang X, Su B, Fujioka H, Zhu X (2008b) Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am J Pathol 173:470–482PubMedPubMedCentralCrossRefGoogle Scholar
  282. 282.
    Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum Mol Genet 20:4515–4529PubMedPubMedCentralCrossRefGoogle Scholar
  283. 283.
    Sheng B, Wang X, Su B, Lee HG, Casadesus G, Perry G, Zhu X (2012) Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem 120:419–429PubMedCrossRefGoogle Scholar
  284. 284.
    Santos RX, Correia SC, Wang X, Perry G, Smith MA, Moreira PI, Zhu X (2010) A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer’s disease. J Alzheimers Dis 20(Suppl 2):S401–S412PubMedPubMedCentralCrossRefGoogle Scholar
  285. 285.
    Garcia-Escudero V, Martin-Maestro P, Perry G, Avila J (2013) Deconstructing mitochondrial dysfunction in Alzheimer disease. Oxidative Med Cell Longev 2013:162152. doi: 10.1155/2013/162152 CrossRefGoogle Scholar
  286. 286.
    Colloby SJ, Elder GJ, Rabee R, O’Brien JT, Taylor JP (2016) Structural grey matter changes in the substantia innominata in Alzheimer’s disease and dementia with Lewy bodies: a DARTEL-VBM study. Int J Geriatr Psychiatry. doi: 10.1002/gps.4500 PubMedCentralGoogle Scholar
  287. 287.
    Johnson LR, Rush JW, Turk JR, Price EM, Laughlin MH (2001) Short-term exercise training increases ACh-induced relaxation and eNOS protein in porcine pulmonary arteries. J Appl Physiol 90:1102–1110PubMedCrossRefGoogle Scholar
  288. 288.
    Vianney JM, Miller DA, Spitsbergen JM (2014) Effects of acetylcholine and electrical stimulation on glial cell line-derived neurotrophic factor production in skeletal muscle cells. Brain Res 1588:47–54PubMedPubMedCentralCrossRefGoogle Scholar
  289. 289.
    Ranganath C, Hsieh LT (2016) The hippocampus: a special place for time. Ann N Y Acad Sci 1369(1):93–110PubMedCrossRefGoogle Scholar
  290. 290.
    Tan RH, Wong S, Kril JJ, Piguet O, Hornberger M, Hodges JR, Halliday GM (2014) Beyond the temporal pole: limbic memory circuit in the semantic variant of primary progressive aphasia. Brain 137(Pt 7):2065–2076PubMedCrossRefGoogle Scholar
  291. 291.
    Braak H, Del Tredici K (2015) The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain 138(Pt 10):2814–2833PubMedCrossRefGoogle Scholar
  292. 292.
    Cheng YF, Wang C, Lin HB, Li YF, Huang Y, Xu JP, Zhang HT (2010) Inhibition of phosphodiesterase-4 reverses memory deficits produced by Aβ25-35 or Aβ1-40 peptide in rats. Psychopharmacology 212(2):181–191PubMedCrossRefGoogle Scholar
  293. 293.
    Esfandiary E, Karimipour M, Mardani M, Ghanadian M, Alaei HA, Mohammadnejad D, Esmaeili A (2015) Neuroprotective effects of Rosa damascena extract on learning and memory in a rat model of amyloid-β-induced Alzheimer’s disease. Adv Biomed Res 24:131. doi: 10.4103/2277-9175.161512 Google Scholar
  294. 294.
    Petrasek T, Skurlova M, Maleninska K, Vojtechova I, Kristofikova Z, Matuskova H, Sirova J, Vales K et al (2016) A rat model of Alzheimer’s disease based on Abeta42 and pro-oxidative substances exhibits cognitive deficit and alterations in glutamatergic and cholinergic neurotransmitter systems. Front Aging Neurosci 8:83. doi: 10.3389/fnagi.2016.00083 PubMedPubMedCentralCrossRefGoogle Scholar
  295. 295.
    Dao AT, Zagaar MA, Levine AT, Salim S, Eriksen JL, Alkadhi KA (2013) Treadmill exercise prevents learning and memory impairment in Alzheimer’s disease-like pathology. Curr Alzheimer Res 10(5):507–515PubMedPubMedCentralCrossRefGoogle Scholar
  296. 296.
    Kim BK, Shin MS, Kim CJ, Baek SB, Ko YC, Kim YP (2014) Treadmill exercise improves short-term memory by enhancing neurogenesis in amyloid beta-induced Alzheimer disease rats. J Exerc Rehabil 10(1):2–8PubMedPubMedCentralCrossRefGoogle Scholar
  297. 297.
    Wang XH, Li L, Hölscher C, Pan YF, Chen XR, Qi JS (2010) Val8-glucagon-like peptide-1 protects against Aβ1-40-induced impairment of hippocampal late-phase long-term potentiation and spatial learning in rats. Neuroscience 70(4):1239–1248CrossRefGoogle Scholar
  298. 298.
    Ishii M, Iadecola C (2015) Metabolic and non-cognitive manifestations of Alzheimer’s disease: the hypothalamus as both culprit and target of pathology. Cell Metab 22(5):761–776PubMedPubMedCentralCrossRefGoogle Scholar
  299. 299.
    Raudino F (2013) Non-cognitive symptoms and related conditions in the Alzheimer’s disease: a literature review. Neurol Sci 34(8):1275–1282PubMedCrossRefGoogle Scholar
  300. 300.
    Knight EM, Brown TM, Gumusgoz S, Smith JC, Waters EJ, Allan SM, Lawrence CB (2013) Age-related changes in core body temperature and activity in triple-transgenic Alzheimer’s disease (3xTgAD) mice. Dis Model Mech 6:160–170PubMedCrossRefGoogle Scholar
  301. 301.
    Jiang X, Chai GS, Wang ZH, Hu Y, Li XG, Ma ZW, Wang Q, Wang JZ et al (2015) CaMKII-dependent dendrite ramification and spine generation promote spatial training-induced memory improvement in a rat model of sporadic Alzheimer’s disease. Neurobiol Aging 36(2):867–876PubMedCrossRefGoogle Scholar
  302. 302.
    Vidoni ED, Van Sciver A, Johnson DK, He J, Honea R, Haines B, Goodwin J, Laubinger MP et al (2012) A community-based approach to trials of aerobic exercise in aging and Alzheimer’s disease. Contemp Clin Trials 33(6):1105–1116PubMedPubMedCentralCrossRefGoogle Scholar
  303. 303.
    Brown BM, Peiffer JJ, Taddei K et al (2013) Physical activity and amyloid-beta plasma and brain levels: results from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing. Mol Psychiatry 18:875–881PubMedCrossRefGoogle Scholar
  304. 304.
    Okonkwo OC, Schultz SA, Oh JM, Larson J, Edwards D, Cook D, Koscik R, Gallagher CL et al (2014) Physical activity attenuates age-related biomarker alterations in preclinical AD. Neurology 83(19):1753–1760PubMedPubMedCentralCrossRefGoogle Scholar
  305. 305.
    Wirth M, Villeneuve S, La Joie R, Marks SM, Jagust WJ (2014) Gene-environment interactions: lifetime cognitive activity, APOE genotype, and β-amyloid burden. J Neurosci 34(25):8612–8617PubMedPubMedCentralCrossRefGoogle Scholar
  306. 306.
    Zhang Z, Wu H, Huang H (2016) Epicatechin plus treadmill exercise are neuroprotective against moderate-stage amyloid precursor protein/presenilin 1 mice. Pharmacogn Mag 12(Suppl 2):S139–S146PubMedPubMedCentralGoogle Scholar
  307. 307.
    Maliszewska-Cyna E, Xhima K, Aubert I (2016) A comparative study evaluating the impact of physical exercise on disease progression in a mouse model of Alzheimer’s disease. J Alzheimers Dis 53(1):243–257PubMedCrossRefGoogle Scholar
  308. 308.
    Chen WW, Zhang X, Huang WJ (2016) Role of physical exercise in Alzheimer’s disease. Biomed Rep 4(4):403–407PubMedPubMedCentralCrossRefGoogle Scholar
  309. 309.
    Alkadhi KA, Dao AT (2017) Exercise decreases levels of BACE-1 and APP in the hippocampus of Aβ rat model of Alzheimer’s diseaseGoogle Scholar
  310. 310.
    Yu F, Xu B, Song C, Ji L, Zhang X (2013) Treadmill exercise slows cognitive deficits in aging rats by antioxidation and inhibition of amyloid production. Neuroreport 24(6):342–347PubMedCrossRefGoogle Scholar
  311. 311.
    Diegues JC, Pauli JR, Luciano E, de Almeida Leme JA, de Moura LP, Dalia RA, de Araújo MB, Sibuya CY et al (2014) Spatial memory in sedentary and trained diabetic rats: molecular mechanisms. Hippocampus 24(6):703–711PubMedCrossRefGoogle Scholar
  312. 312.
    Kang EB, Kwon IS, Koo JH, Kim EJ, Kim CH, Lee J, Yang CH, Lee YI et al (2013) Treadmill exercise represses neuronal cell death and inflammation during Aβ-induced ER stress by regulating unfolded protein response in aged presenilin 2 mutant mice. Apoptosis 18(11):1332–1347PubMedCrossRefGoogle Scholar
  313. 313.
    Young SN (2007) How to increase serotonin in the human brain without drugs. J Psychiatry Neurosci 32:394–399PubMedPubMedCentralGoogle Scholar
  314. 314.
    Sparling PB, Giuffrida A, Piomelli D, Rosskopf L, Dietrich A (2003) Exercise activates the endocannabinoid system. Neuroreport 14:2209–2211PubMedCrossRefGoogle Scholar
  315. 315.
    Hill MN, Bierer LM, Makotkine I, Golier JA, Galea S, McEwen BS, Hillard CJ, Yehuda R (2013) Reductions in circulating endocannabinoid levels in individuals with post-traumatic stress disorder following exposure to the World Trade Center attacks. Psychoneuroendocrinology 38(12):2952–2961PubMedCrossRefGoogle Scholar
  316. 316.
    Dietrich MO, Andrews ZB, Horvath TL (2008) Exercise-induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation. J Neurosci 28:10766–10771PubMedPubMedCentralCrossRefGoogle Scholar
  317. 317.
    Hawley JA, Holloszy JO (2009) Exercise: it’s the real thing! Nutr Rev 67(3):172–178PubMedCrossRefGoogle Scholar
  318. 318.
    Fan W, Atkins AR, Yu RT, Downes M, Evans RM (2013) Road to exercise mimetics: targeting nuclear receptors in skeletal muscle. J Mol Endocrinol 51(3):T87–T100PubMedPubMedCentralCrossRefGoogle Scholar
  319. 319.
    Kobilo T, Guerrieri D, Zhang Y, Collica SC, Becker KG, van Praag H (2014) AMPK agonist AICAR improves cognition and motor coordination in young and aged mice. Learn Mem 21(2):119–126PubMedPubMedCentralCrossRefGoogle Scholar
  320. 320.
    Kobilo T, Yuan C, van Praag H (2011) Endurance factors improve hippocampal neurogenesis and spatial memory in mice. Learn Mem 18(2):103–107PubMedPubMedCentralCrossRefGoogle Scholar
  321. 321.
    Guerrieri D, van Praag H (2015) Exercise-mimetic AICAR transiently benefits brain function. Oncotarget 6(21):18293–18313PubMedPubMedCentralCrossRefGoogle Scholar
  322. 322.
    Dong JQ, Rossulek M, Somayaji VR, Baltrukonis D, Liang Y, Hudson K, Hernandez-Illas M, Calle RA (2015) Pharmacokinetics and pharmacodynamics of PF-05231023, a novel long-acting FGF21 mimetic, in a first-in-human study. Br J Clin Pharmacol 80(5):1051–1063PubMedPubMedCentralCrossRefGoogle Scholar
  323. 323.
    Evans JL, Goldfine ID (2016) A new road for treating the vascular complications of diabetes: so let’s step on the gas. Diabetes 65(2):346–348PubMedCrossRefGoogle Scholar
  324. 324.
    Cerveró C, Montull N, Tarabal O, Piedrafita L, Esquerda JE, Calderó J (2016) Chronic treatment with the AMPK agonist AICAR prevents skeletal muscle pathology but fails to improve clinical outcome in a mouse model of severe spinal muscular atrophy. Neurotherapeutics 13(1):198–216PubMedCrossRefGoogle Scholar
  325. 325.
    Wall CE, Yu RT, Atkins AR, Downes M, Evans RM (2016) Nuclear receptors and AMPK: can exercise mimetics cure diabetes? J Mol Endocrinol 57(1):R49–R58PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Pharmacological and Pharmaceutical Sciences, College of PharmacyUniversity of HoustonHoustonUSA

Personalised recommendations