Molecular Neurobiology

, Volume 55, Issue 3, pp 1966–1976 | Cite as

Homocysteine Induces Glial Reactivity in Adult Rat Astrocyte Cultures

  • Aline Longoni
  • Bruna Bellaver
  • Larissa Daniele Bobermin
  • Camila Leite Santos
  • Yasmine Nonose
  • Janaina Kolling
  • Tiago M. dos Santos
  • Adriano M. de Assis
  • André Quincozes-Santos
  • Angela T. S. Wyse


Astrocytes are dynamic glial cells associated to neurotransmitter systems, metabolic functions, antioxidant defense, and inflammatory response, maintaining the brain homeostasis. Elevated concentrations of homocysteine (Hcy) are involved in the pathogenesis of age-related neurodegenerative disorders, such as Parkinson and Alzheimer diseases. In line with this, our hypothesis was that Hcy could promote glial reactivity in a model of cortical primary astrocyte cultures from adult Wistar rats. Thus, cortical astrocytes were incubated with different concentrations of Hcy (10, 30, and 100 μM) during 24 h. After the treatment, we analyzed cell viability, morphological parameters, antioxidant defenses, and inflammatory response. Hcy did not induce any alteration in cell viability; however, it was able to induce cytoskeleton rearrangement. The treatment with Hcy also promoted a significant decrease in the activities of Na+, K+ ATPase, superoxide dismutase (SOD), and glutathione peroxidase (GPx), as well as in the glutathione (GSH) content. Additionally, Hcy induced an increase in the pro-inflammatory cytokine release. In an attempt to elucidate the putative mechanisms involved in the Hcy-induced glial reactivity, we measured the nuclear factor kappa B (NFκB) transcriptional activity and heme oxygenase 1 (HO-1) expression, which were activated and inhibited by Hcy, respectively. In summary, our findings provide important evidences that Hcy modulates critical astrocyte parameters from adult rats, which might be associated to the aging process.


Homocysteine Cortical adult astrocytes Oxidative stress Inflammatory response NFκB Heme oxygenase 1 



This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Financiadora de Estudos e Projetos (FINEP)—Instituto Brasileiro de Neurociências (IBN Net) 01.06.0842-00, Federal University of Rio Grande do Sul (UFRGS), and Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteçãao (INCTEN/CNPq).

Compliance with Ethical Standards

Our work has followed the National Institute of Health Guide for the Care and Use of Laboratory Animals “Guide for the Care and Use of Laboratory Animals” (NIH publication No. 80-23, revised 1996), and experiments were approved by the local Ethics Commission (CEUA/UFRGS), under the project number 26073.


  1. 1.
    Kruger WD, Gupta S (2016) The effect of dietary modulation of sulfur amino acids on cystathionine beta synthase-deficient mice. Ann N Y Acad Sci 1363:80–90. doi: 10.1111/nyas.12967 CrossRefPubMedGoogle Scholar
  2. 2.
    Jin Y, Brennan L (2008) Effects of homocysteine on metabolic pathways in cultured astrocytes. Neurochem Int 52(8):1410–1415. doi: 10.1016/j.neuint.2008.03.001 CrossRefPubMedGoogle Scholar
  3. 3.
    Bonetti F, Brombo G, Zuliani G (2016) The relationship between hyperhomocysteinemia and neurodegeneration. Neurodegenerative disease management 6(2):133–145. doi: 10.2217/nmt-2015-0008 CrossRefPubMedGoogle Scholar
  4. 4.
    Scherer EB, Loureiro SO, Vuaden FC, da Cunha AA, Schmitz F, Kolling J, Savio LE, Bogo MR et al (2014) Mild hyperhomocysteinemia increases brain acetylcholinesterase and proinflammatory cytokine levels in different tissues. Mol Neurobiol 50(2):589–596. doi: 10.1007/s12035-014-8660-6 CrossRefPubMedGoogle Scholar
  5. 5.
    Scherer EB, Cunha AA, Kolling J, da Cunha MJ, Schmitz F, Sitta A, Lima DD, Magro DD et al (2011) Chronic mild hyperhomocysteinemia induces oxidative damage in cerebral cortex of rats. J Inherit Metab Dis 34:S113–S113Google Scholar
  6. 6.
    Longoni A, Kolling J, Dos Santos TM, Dos Santos JP, da Silva JS, Pettenuzzo L, Goncalves CA, de Assis AM et al (2016) 1,25-Dihydroxyvitamin D3 exerts neuroprotective effects in an ex vivo model of mild hyperhomocysteinemia. Int J Dev Neurosci 48:71–79. doi: 10.1016/j.ijdevneu.2015.11.005 CrossRefPubMedGoogle Scholar
  7. 7.
    Verkhratsky A, Nedergaard M, Hertz L (2015) Why are astrocytes important? Neurochem Res 40(2):389–401. doi: 10.1007/s11064-014-1403-2 CrossRefPubMedGoogle Scholar
  8. 8.
    Sofroniew MV (2015) Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 16(5):249–263. doi: 10.1038/nrn3898 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wilson JX (1997) Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol 75(10–11):1149–1163CrossRefPubMedGoogle Scholar
  10. 10.
    Illarionova NB, Brismar H, Aperia A, Gunnarson E (2014) Role of Na,K-ATPase alpha1 and alpha2 isoforms in the support of astrocyte glutamate uptake. PLoS One 9(6):e98469. doi: 10.1371/journal.pone.0098469 CrossRefPubMedGoogle Scholar
  11. 11.
    Arvin B, Neville LF, Barone FC, Feuerstein GZ (1996) The role of inflammation and cytokines in brain injury. Neurosci Biobehav Rev 20(3):445–452CrossRefPubMedGoogle Scholar
  12. 12.
    Souza DG, Bellaver B, Souza DO, Quincozes-Santos A (2013) Characterization of adult rat astrocyte cultures. PLoS One 8(3):e60282. doi: 10.1371/journal.pone.0060282 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Araujo JA, Zhang M, Yin F (2012) Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front Pharmacol 3:119. doi: 10.3389/fphar.2012.00119 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Willis D, Moore AR, Frederick R, Willoughby DA (1996) Heme oxygenase: a novel target for the modulation of the inflammatory response. Nat Med 2(1):87–90CrossRefPubMedGoogle Scholar
  15. 15.
    Wakabayashi N, Slocum SL, Skoko JJ, Shin S, Kensler TW (2010) When NRF2 talks, who’s listening? Antioxid Redox Signal 13(11):1649–1663. doi: 10.1089/ars.2010.3216 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Loureiro SO, Romao L, Alves T, Fonseca A, Heimfarth L, Moura Neto V, Wyse AT, Pessoa-Pureur R (2010) Homocysteine induces cytoskeletal remodeling and production of reactive oxygen species in cultured cortical astrocytes. Brain Res 1355:151–164. doi: 10.1016/j.brainres.2010.07.071 CrossRefPubMedGoogle Scholar
  17. 17.
    Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 202(1–2):13–23CrossRefPubMedGoogle Scholar
  18. 18.
    Herrmann W, Obeid R (2011) Homocysteine: a biomarker in neurodegenerative diseases. Clin Chem Lab Med 49(3):435–441. doi: 10.1515/CCLM.2011.084 PubMedGoogle Scholar
  19. 19.
    Obeid R, Herrmann W (2006) Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett 580(13):2994–3005. doi: 10.1016/j.febslet.2006.04.088 CrossRefPubMedGoogle Scholar
  20. 20.
    Szadejko K, Szabat K, Ludwichowska A, Slawek J (2013) Homocysteine and its role in pathogenesis of Parkinson’s disease and other neurodegenerative disorders. Przegl Lek 70(7):443–447PubMedGoogle Scholar
  21. 21.
    Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2016) Hippocampal astrocyte cultures from adult and aged rats reproduce changes in glial functionality observed in the aging brain. Mol Neurobiol. doi: 10.1007/s12035-016-9880-8 Google Scholar
  22. 22.
    Quincozes-Santos A, Nardin P, de Souza DF, Gelain DP, Moreira JC, Latini A, Goncalves CA, Gottfried C (2009) The janus face of resveratrol in astroglial cells. Neurotox Res 16(1):30–41. doi: 10.1007/s12640-009-9042-0 CrossRefPubMedGoogle Scholar
  23. 23.
    Wyse AT, Streck EL, Barros SV, Brusque AM, Zugno AI, Wajner M (2000) Methylmalonate administration decreases Na+,K+-ATPase activity in cerebral cortex of rats. Neuroreport 11(10):2331–2334CrossRefPubMedGoogle Scholar
  24. 24.
    Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+ −stimulated ATPase activity. Anal Biochem 157(2):375–380CrossRefPubMedGoogle Scholar
  25. 25.
    Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474CrossRefPubMedGoogle Scholar
  26. 26.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefPubMedGoogle Scholar
  27. 27.
    Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333CrossRefPubMedGoogle Scholar
  28. 28.
    Hogg N (1999) The effect of cyst(e)ine on the auto-oxidation of homocysteine. Free Radic Biol Med 27(1–2):28–33CrossRefPubMedGoogle Scholar
  29. 29.
    Halliwell B (2011) Free radicals and antioxidants—quo vadis? Trends Pharmacol Sci 32(3):125–130. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  30. 30.
    Grisar T, Guillaume D, Delgado-Escueta AV (1992) Contribution of Na+,K(+)-ATPase to focal epilepsy: a brief review. Epilepsy Res 12(2):141–149CrossRefPubMedGoogle Scholar
  31. 31.
    Quincozes-Santos A, Bobermin LD, Tramontina AC, Wartchow KM, Tagliari B, Souza DO, Wyse AT, Goncalves CA (2014) Oxidative stress mediated by NMDA, AMPA/KA channels in acute hippocampal slices: neuroprotective effect of resveratrol. Toxicol in Vitro 28(4):544–551. doi: 10.1016/j.tiv.2013.12.021 CrossRefPubMedGoogle Scholar
  32. 32.
    Scherer EB, Loureiro SO, Vuaden FC, Schmitz F, Kolling J, Siebert C, Savio LE, Schweinberger BM et al (2013) Mild hyperhomocysteinemia reduces the activity and immunocontent, but does not alter the gene expression, of catalytic alpha subunits of cerebral Na+,K+-ATPase. Mol Cell Biochem 378(1–2):91–97. doi: 10.1007/s11010-013-1598-6 CrossRefPubMedGoogle Scholar
  33. 33.
    Sastry BS, Phillis JW (1977) Antagonism of biogenic amine-induced depression of cerebral cortical neurones by Na+, K+-ATPase in inhibitors. Can J Physiol Pharmacol 55(2):170–179CrossRefPubMedGoogle Scholar
  34. 34.
    Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L, Savaki H, Schwartz WJ, Sokoloff L (1980) Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 34(1):213–215CrossRefPubMedGoogle Scholar
  35. 35.
    Brennan MS, Matos MF, Li B, Hronowski X, Gao B, Juhasz P, Rhodes KJ, Scannevin RH (2015) Dimethyl fumarate and monoethyl fumarate exhibit differential effects on KEAP1, NRF2 activation, and glutathione depletion in vitro. PLoS One 10(3):e0120254. doi: 10.1371/journal.pone.0120254 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Steele ML, Fuller S, Patel M, Kersaitis C, Ooi L, Munch G (2013) Effect of Nrf2 activators on release of glutathione, cysteinylglycine and homocysteine by human U373 astroglial cells. Redox Biol 1:441–445. doi: 10.1016/j.redox.2013.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Syapin PJ (2008) Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br J Pharmacol 155(5):623–640. doi: 10.1038/bjp.2008.342 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Luo X, Xiao L, Yang H, Zhang R, Jiang M, Ni J, Lei T, Wang N (2014) Homocysteine downregulates gene expression of heme oxygenase-1 in hepatocytes. Nutr Metab (Lond) 11(1):55. doi: 10.1186/1743-7075-11-55 CrossRefGoogle Scholar
  39. 39.
    Tan M, Ouyang Y, Jin M, Chen M, Liu P, Chao X, Chen Z, Chen X et al (2013) Downregulation of Nrf2/HO-1 pathway and activation of JNK/c-Jun pathway are involved in homocysteic acid-induced cytotoxicity in HT-22 cells. Toxicol Lett 223(1):1–8. doi: 10.1016/j.toxlet.2013.08.011 CrossRefPubMedGoogle Scholar
  40. 40.
    Takahashi T, Morita K, Akagi R, Sassa S (2004) Heme oxygenase-1: a novel therapeutic target in oxidative tissue injuries. Curr Med Chem 11(12):1545–1561CrossRefPubMedGoogle Scholar
  41. 41.
    Sudduth TL, Powell DK, Smith CD, Greenstein A, Wilcock DM (2013) Induction of hyperhomocysteinemia models vascular dementia by induction of cerebral microhemorrhages and neuroinflammation. J Cereb Blood Flow Metab 33(5):708–715. doi: 10.1038/jcbfm.2013.1 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lazzerini PE, Capecchi PL, Selvi E, Lorenzini S, Bisogno S, Galeazzi M, Laghi Pasini F (2007) Hyperhomocysteinemia, inflammation and autoimmunity. Autoimmun Rev 6(7):503–509. doi: 10.1016/j.autrev.2007.03.008 CrossRefPubMedGoogle Scholar
  43. 43.
    da Cunha AA, Ferreira AG, Wyse AT (2010) Increased inflammatory markers in brain and blood of rats subjected to acute homocysteine administration. Metab Brain Dis 25(2):199–206. doi: 10.1007/s11011-010-9188-8 CrossRefPubMedGoogle Scholar
  44. 44.
    Santos CL, Bobermin LD, Souza DG, Bellaver B, Bellaver G, Arus BA, Souza DO, Goncalves CA et al (2015) Lipoic acid and N-acetylcysteine prevent ammonia-induced inflammatory response in C6 astroglial cells: the putative role of ERK and HO1 signaling pathways. Toxicol in Vitro 29(7):1350–1357. doi: 10.1016/j.tiv.2015.05.023 CrossRefPubMedGoogle Scholar
  45. 45.
    Efremova L, Chovancova P, Adam M, Gutbier S, Schildknecht S, Leist M (2016) Switching from astrocytic neuroprotection to neurodegeneration by cytokine stimulation. Arch Toxicol. doi: 10.1007/s00204-016-1702-2 PubMedGoogle Scholar
  46. 46.
    Soliman ML, Combs CK, Rosenberger TA (2013) Modulation of inflammatory cytokines and mitogen-activated protein kinases by acetate in primary astrocytes. J NeuroImmune Pharmacol 8(1):287–300. doi: 10.1007/s11481-012-9426-4 CrossRefPubMedGoogle Scholar
  47. 47.
    Jones KA, Thomsen C (2013) The role of the innate immune system in psychiatric disorders. Mol Cell Neurosci 53:52–62. doi: 10.1016/j.mcn.2012.10.002 CrossRefPubMedGoogle Scholar
  48. 48.
    Abraham E (2000) NF-kappaB activation. Crit Care Med 28(4 Suppl):N100–N104CrossRefPubMedGoogle Scholar
  49. 49.
    Alcaraz MJ, Vicente AM, Araico A, Dominguez JN, Terencio MC, Ferrandiz ML (2004) Role of nuclear factor-kappaB and heme oxygenase-1 in the mechanism of action of an anti-inflammatory chalcone derivative in RAW 264.7 cells. Br J Pharmacol 142(7):1191–1199. doi: 10.1038/sj.bjp.0705821 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Cuadrado A, Martin-Moldes Z, Ye J, Lastres-Becker I (2014) Transcription factors NRF2 and NF-kappaB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. J Biol Chem 289(22):15244–15258. doi: 10.1074/jbc.M113.540633 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bellezza I, Tucci A, Galli F, Grottelli S, Mierla AL, Pilolli F, Minelli A (2012) Inhibition of NF-kappaB nuclear translocation via HO-1 activation underlies alpha-tocopheryl succinate toxicity. J Nutr Biochem 23(12):1583–1591. doi: 10.1016/j.jnutbio.2011.10.012 CrossRefPubMedGoogle Scholar
  52. 52.
    Gori AM, Corsi AM, Fedi S, Gazzini A, Sofi F, Bartali B, Bandinelli S, Gensini GF et al (2005) A proinflammatory state is associated with hyperhomocysteinemia in the elderly. Am J Clin Nutr 82(2):335–341CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Aline Longoni
    • 1
  • Bruna Bellaver
    • 1
  • Larissa Daniele Bobermin
    • 1
  • Camila Leite Santos
    • 1
  • Yasmine Nonose
    • 1
  • Janaina Kolling
    • 1
  • Tiago M. dos Santos
    • 1
  • Adriano M. de Assis
    • 1
  • André Quincozes-Santos
    • 1
    • 2
  • Angela T. S. Wyse
    • 1
    • 2
  1. 1.Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Departamento de Bioquímica, ICBSUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations