Advertisement

Molecular Neurobiology

, Volume 55, Issue 3, pp 2085–2101 | Cite as

Resveratrol and Brain Mitochondria: a Review

  • Fernanda Rafaela Jardim
  • Fernando Tonon de Rossi
  • Marielle Xavier Nascimento
  • Renata Gabriele da Silva Barros
  • Paula Agrizzi Borges
  • Isabella Cristina Prescilio
  • Marcos Roberto de OliveiraEmail author
Article

Abstract

Resveratrol (3,4',5-trihydroxystilbene; C14H12O3) is a polyphenolic phytoalexin found in grapes, berries, peanuts, and wines. Resveratrol has been viewed as an antioxidant, anti-inflammatory, anti-apoptotic, and anticancer agent. Moreover, it has been reported that resveratrol modulates mitochondrial function, redox biology, and dynamics in both in vitro and in vivo experimental models. Resveratrol also attenuates mitochondrial impairment induced by certain stressors. Resveratrol upregulates, for example, mitochondria-located antioxidant enzymes, decreasing the production of reactive species by these organelles. Resveratrol also triggers mitochondrial biogenesis, ameliorating the mitochondria-related bioenergetics status in mammalian cells. In the present work, we discuss about the effects of resveratrol on brain mitochondria. Brain cells (both neuronal and glial) are susceptible to mitochondrial dysfunction due to their high demand for adenosine triphosphate (ATP). Additionally, brain cells consume oxygen (O2) at very high rates, leading to a proportionally high mitochondrial production of reactive species. Therefore, strategies focusing on the maintenance of mitochondrial function in these cell types are of pharmacological interest in the case of neurodegenerative diseases, which involve mitochondrial impairment and increased generation of reactive species, leading to neuroinflammation and cell death. The mechanism by which resveratrol protects mitochondrial function and dynamics is not completely understood, and further research would be necessary in order to investigate exactly how resveratrol affects mitochondria-related parameters. Furthermore, it is particularly important because resveratrol is able to induce cytotoxicity depending on its dosage.

Keywords

Resveratrol Brain Mitochondria Redox biology Mitochondrial biogenesis Mitochondrial dynamics 

Notes

Acknowledgements

None to declare.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Shakibaei M, Harikumar KB, Aggarwal BB (2009) Resveratrol addiction: to die or not to die. Mol Nutr Food Res 53:115–128. doi: 10.1002/mnfr.200800148 PubMedCrossRefGoogle Scholar
  2. 2.
    Hsieh TC, Wu JM (2010) Resveratrol: biological and pharmaceutical properties as anticancer molecule. Biofactors 36:360–369PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kalantari H, Das DK (2010) Physiological effects of resveratrol. Biofactors 36:401–406PubMedCrossRefGoogle Scholar
  4. 4.
    Schnekenburger M, Dicato M, Diederich M (2014) Plant-derived epigenetic modulators for cancer treatment and prevention. Biotechnol Adv 32:1123–1132. doi: 10.1016/j.biotechadv.2014.03.009 PubMedCrossRefGoogle Scholar
  5. 5.
    Chan S, Kantham S, Rao VM, Palanivelu MK, Pham HL, Shaw PN, McGeary RP, Ross BP (2016) Metal chelation, radical scavenging and inhibition of Aβ42 fibrillation by food constituents in relation to Alzheimer's disease. Food Chem 199:185–194. doi: 10.1016/j.foodchem.2015.11.118 PubMedCrossRefGoogle Scholar
  6. 6.
    Blanquer-Rosselló MD, Hernández-López R, Roca P, Oliver J, Valle A (2016) Resveratrol induces mitochondrial respiration and apoptosis in SW620 colon cancer cells. Biochim Biophys Acta. doi: 10.1016/j.bbagen.2016.10.009 PubMedGoogle Scholar
  7. 7.
    Kopp P (1998) Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the ʻFrench paradoxʼ? Eur J Endocrinol 138:619–620PubMedCrossRefGoogle Scholar
  8. 8.
    Yap S, Qin C, Woodman OL (2010) Effects of resveratrol and flavonols on cardiovascular function: physiological mechanisms. Biofactors 36:350–359PubMedCrossRefGoogle Scholar
  9. 9.
    Albani D, Polito L, Signorini A, Forloni G (2010) Neuroprotective properties of resveratrol in different neurodegenerative disorders. Biofactors 36:370–376PubMedCrossRefGoogle Scholar
  10. 10.
    Anandhan A, Tamilselvam K, Vijayraja D, Ashokkumar N, Rajasankar S, Manivasagam T (2010) Resveratrol attenuates oxidative stress and improves behaviour in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) challenged mice. Ann Neurosci 17:113–119. doi: 10.5214/ans.0972-7531.1017304 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Sun AY, Wang Q, Simonyi A, Sun GY (2010) Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol 41:375–383. doi: 10.1007/s12035-010-8111-y PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    de Oliveira MR, Nabavi SF, Manayi A, Daglia M, Hajheydari Z, Nabavi SM (2016) Resveratrol and the mitochondria: from triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta 1860:727–745. doi: 10.1016/j.bbagen.2016.01.017 PubMedCrossRefGoogle Scholar
  13. 13.
    Ahmed T, Javed S, Javed S, Tariq A, Šamec D, Tejada S, Nabavi SF, Braidy N et al (2016) Resveratrol and Alzheimer's disease: mechanistic insights. Mol Neurobiol. doi: 10.1007/s12035-016-9839-9 Google Scholar
  14. 14.
    Simonyi A, Wang Q, Miller RL, Yusof M, Shelat PB, Sun AY, Sun GY (2005) Polyphenols in cerebral ischemia: novel targets for neuroprotection. Mol Neurobiol 31:135–147PubMedCrossRefGoogle Scholar
  15. 15.
    Lin CJ, Chen TH, Yang LY, Shih CM (2014) Resveratrol protects astrocytes against traumatic brain injury through inhibiting apoptotic and autophagic cell death. Cell Death Dis 5:e1147. doi: 10.1038/cddis.2014.123 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Deng H, Mi MT (2016) Resveratrol attenuates Aβ25-35 caused neurotoxicity by inducing autophagy through the TyrRS-PARP1-SIRT1 signaling pathway. Neurochem Res 41:2367–2379. doi: 10.1007/s11064-016-1950-9 PubMedCrossRefGoogle Scholar
  17. 17.
    Venigalla M, Sonego S, Gyengesi E, Sharman MJ, Münch G (2016) Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer's disease. Neurochem Int 95:63–74. doi: 10.1016/j.neuint.2015.10.011 PubMedCrossRefGoogle Scholar
  18. 18.
    Zeng W, Zhang W, Lu F, Gao L, Gao G (2016) Resveratrol attenuates MPP+-induced mitochondrial dysfunction and cell apoptosis via AKT/GSK-3β pathway in SN4741 cells. Neurosci Lett. doi: 10.1016/j.neulet.2016.11.054 Google Scholar
  19. 19.
    Sharma M, Gupta YK (2002) Chronic treatment with trans-resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci 71:2489–2498PubMedCrossRefGoogle Scholar
  20. 20.
    Schmatz R, Mazzanti CM, Spanevello R, Stefanello N, Gutierres J, Corrêa M, da Rosa MM, Rubin MA et al (2009) Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur J Pharmacol 610:42–48. doi: 10.1016/j.ejphar.2009.03.032 PubMedCrossRefGoogle Scholar
  21. 21.
    Bagatini PB, Xavier LL, Bertoldi K, Moysés F, Lovatel G, Neves LT, Barbosa S, Saur L et al (2017) An evaluation of aversive memory and hippocampal oxidative status in streptozotocin-induced diabetic rats treated with resveratrol. Neurosci Lett 636:184–189. doi: 10.1016/j.neulet.2016.10.059 PubMedCrossRefGoogle Scholar
  22. 22.
    Gocmez SS, Gacar N, Utkan T, Gacar G, Scarpace PJ, Tumer N (2016) Protective effects of resveratrol on aging-induced cognitive impairment in rats. Neurobiol Learn Mem 131:131–136. doi: 10.1016/j.nlm.2016.03.022 PubMedCrossRefGoogle Scholar
  23. 23.
    Wang R, Zhang Y, Li J, Zhang C (2016) Resveratrol ameliorates spatial learning memory impairment induced by Aβ1-42 in rats. Neuroscience. doi: 10.1016/j.neuroscience.2016.08.051 Google Scholar
  24. 24.
    Hurley LL, Tizabi Y (2013) Neuroinflammation, neurodegeneration, and depression. Neurotox Res 23:131–144. doi: 10.1007/s12640-012-9348-1 PubMedCrossRefGoogle Scholar
  25. 25.
    Wang X, Xie Y, Zhang T, Bo S, Bai X, Liu H, Li T, Liu S et al (2016) Resveratrol reverses chronic restraint stress-induced depression-like behaviour: involvement of BDNF level, ERK phosphorylation and expression of Bcl-2 and Bax in rats. Brain Res Bull 125:134–143. doi: 10.1016/j.brainresbull.2016.06.014 PubMedCrossRefGoogle Scholar
  26. 26.
    Ge JF, Xu YY, Qin G, Cheng JQ, Chen FH (2016) Resveratrol ameliorates the anxiety- and depression-like behavior of subclinical hypothyroidism rat: possible involvement of the HPT axis, HPA axis, and Wnt/β-catenin pathway. Front Endocrinol (Lausanne) 7:44. doi: 10.3389/fendo.2016.00044 Google Scholar
  27. 27.
    Liu S, Li T, Liu H, Wang X, Bo S, Xie Y, Bai X, Wu L et al (2016) Resveratrol exerts antidepressant properties in the chronic unpredictable mild stress model through the regulation of oxidative stress and mTOR pathway in the rat hippocampus and prefrontal cortex. Behav Brain Res 302:191–199. doi: 10.1016/j.bbr.2016.01.037 PubMedCrossRefGoogle Scholar
  28. 28.
    Tizabi Y (2016) Duality of antidepressants and neuroprotectants. Neurotox Res 30:1–13. doi: 10.1007/s12640-015-9577-1 PubMedCrossRefGoogle Scholar
  29. 29.
    Wang Q, Xu J, Rottinghaus GE, Simonyi A, Lubahn D, Sun GY, Sun AY (2002) Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res 958:439–447PubMedCrossRefGoogle Scholar
  30. 30.
    Dinuzzo M, Mangia S, Maraviglia B, Giove F (2012) The role of astrocytic glycogen in supporting the energetics of neuronal activity. Neurochem Res 37:2432–2438. doi: 10.1007/s11064-012-0802-5 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Falkowska A, Gutowska I, Goschorska M, Nowacki P, Chlubek D, Baranowska-Bosiacka I (2015) Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. Int J Mol Sci 16:25959–25981. doi: 10.3390/ijms161125939 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    de Oliveira MR (2016) The dietary components carnosic acid and carnosol as neuroprotective agents: a mechanistic view. Mol Neurobiol 53:6155–6168PubMedCrossRefGoogle Scholar
  33. 33.
    Valero T (2014) Mitochondrial biogenesis: pharmacological approaches. Curr Pharm Des 20:5507–5509PubMedCrossRefGoogle Scholar
  34. 34.
    Gibellini L, Bianchini E, De Biasi S, Nasi M, Cossarizza A, Pinti M (2015) Natural compounds modulating mitochondrial functions. Evid Based Complement Alternat Med 2015:527209. doi: 10.1155/2015/527209 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Tellone E, Galtieri A, Russo A, Giardina B, Ficarra S (2015) Resveratrol: a focus on several neurodegenerative diseases. Oxidative Med Cell Longev 2015:392169. doi: 10.1155/2015/392169 CrossRefGoogle Scholar
  36. 36.
    Papa S, Martino PL, Capitanio G, Gaballo A, De Rasmo D, Signorile A, Petruzzella V (2012) The oxidative phosphorylation system in mammalian mitochondria. Adv Exp Med Biol 942:3–37. doi: 10.1007/978-94-007-2869-1_1 PubMedCrossRefGoogle Scholar
  37. 37.
    Chaban Y, Boekema EJ, Dudkina NV (2014) Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. Biochim Biophys Acta 1837:418–426. doi: 10.1016/j.bbabio.2013.10.004 PubMedCrossRefGoogle Scholar
  38. 38.
    Russell AP, Foletta VC, Snow RJ, Wadley GD (2014) Skeletal muscle mitochondria: a major player in exercise, health and disease. Biochim Biophys Acta 1840:1276–1284. doi: 10.1016/j.bbagen.2013.11.016 PubMedCrossRefGoogle Scholar
  39. 39.
    Zhou L, Chen P, Peng Y, Ouyang R (2016) Role of oxidative stress in the neurocognitive dysfunction of obstructive sleep apnea syndrome. Oxidative Med Cell Longev 2016:9626831Google Scholar
  40. 40.
    Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39:73–82PubMedCrossRefGoogle Scholar
  41. 41.
    Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27:325–355PubMedCrossRefGoogle Scholar
  42. 42.
    Naoi M, Maruyama W, Shamoto-Nagai M, Yi H, Akao Y, Tanaka M (2005) Oxidative stress in mitochondria: decision to survival and death of neurons in neurodegenerative disorders. Mol Neurobiol 31:81–93PubMedCrossRefGoogle Scholar
  43. 43.
    Kasote DM, Hegde MV, Katyare SS (2013) Mitochondrial dysfunction in psychiatric and neurological diseases: cause(s), consequence(s), and implications of antioxidant therapy. Biofactors 39:392–406PubMedCrossRefGoogle Scholar
  44. 44.
    Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer's disease. Mol Neurobiol 53:6078–6090. doi: 10.1007/s12035-015-9515-5 PubMedCrossRefGoogle Scholar
  45. 45.
    Hu H, Tan CC, Tan L, Yu JT (2016) A mitocentric view of Alzheimer's disease. Mol Neurobiol. doi: 10.1007/s12035-016-0117-7 PubMedCentralGoogle Scholar
  46. 46.
    Balog J, Mehta SL, Vemuganti R (2016) Mitochondrial fission and fusion in secondary brain damage after CNS insults. J Cereb Blood Flow Metab 36:2022–2033PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Bergman O, Ben-Shachar D (2016) Mitochondrial oxidative phosphorylation system (OXPHOS) deficits in schizophrenia: possible interactions with cellular processes. Can J Psychiatr 61:457–469. doi: 10.1177/0706743716648290 CrossRefGoogle Scholar
  48. 48.
    Zulian A, Schiavone M, Giorgio V, Bernardi P (2016) Forty years later: mitochondria as therapeutic targets in muscle diseases. Pharmacol Res 113(Pt A):563–573. doi: 10.1016/j.phrs.2016.09.043 PubMedCrossRefGoogle Scholar
  49. 49.
    Luo C, Ikegaya Y, Koyama R (2016) Microglia and neurogenesis in the epileptic dentate gyrus. Neurogenesis (Austin) 3:e1235525CrossRefGoogle Scholar
  50. 50.
    Gonçalves JT, Schafer ST, Gage FH (2016) Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell 167:897–914. doi: 10.1016/j.cell.2016.10.021 PubMedCrossRefGoogle Scholar
  51. 51.
    Raefsky SM, Mattson MP (2016) Adaptive responses of neuronal mitochondria to bioenergetic challenges: roles in neuroplasticity and disease resistance. Free Radic Biol Med 102:203–216. doi: 10.1016/j.freeradbiomed.2016.11.045 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Mattson MP (2007) Mitochondrial regulation of neuronal plasticity. Neurochem Res 32:707–715PubMedCrossRefGoogle Scholar
  53. 53.
    Atamna H, Mackey J, Dhahbi JM (2012) Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction. Biofactors 38:158–166PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Gruber J, Fong S, Chen CB, Yoong S, Pastorin G, Schaffer S, Cheah I, Halliwell B (2013) Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing. Biotechnol Adv 31:563–592. doi: 10.1016/j.biotechadv.2012.09.005 PubMedCrossRefGoogle Scholar
  55. 55.
    de Oliveira MR, Ferreira GC, Schuck PF, Dal Bosco SM (2015) Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Chem Biol Interact 242:396–406. doi: 10.1016/j.cbi.2015.11.003 PubMedCrossRefGoogle Scholar
  56. 56.
    de Oliveira MR, Nabavi SF, Habtemariam S, Erdogan Orhan I, Daglia M, Nabavi SM (2015) The effects of baicalein and baicalin on mitochondrial function and dynamics: a review. Pharmacol Res 100:296–308. doi: 10.1016/j.phrs.2015.08.021 PubMedCrossRefGoogle Scholar
  57. 57.
    de Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF (2016) Quercetin and the mitochondria: a mechanistic view. Biotechnol Adv 34:532–549. doi: 10.1016/j.biotechadv.2015.12.014 PubMedCrossRefGoogle Scholar
  58. 58.
    de Oliveira MR, Jardim FR, Setzer WN, Nabavi SM, Nabavi SF (2016) Curcumin, mitochondrial biogenesis, and mitophagy: exploring recent data and indicating future needs. Biotechnol Adv 34:813–826. doi: 10.1016/j.biotechadv.2016.04.004 PubMedCrossRefGoogle Scholar
  59. 59.
    Oliveira MR, Nabavi SF, Daglia M, Rastrelli L, Nabavi SM (2016) Epigallocatechin gallate and mitochondria—a story of life and death. Pharmacol Res 104:70–85. doi: 10.1016/j.phrs.2015.12.027 PubMedCrossRefGoogle Scholar
  60. 60.
    de Oliveira MR, Peres A, Ferreira GC, Schuck PF, Gama CS, Bosco SM (2016) Carnosic acid protects mitochondria of human neuroblastoma SH-SY5Y cells exposed to paraquat through activation of the Nrf2/HO-1Axis. Mol Neurobiol. doi: 10.1007/s12035-016-0100-3 Google Scholar
  61. 61.
    de Oliveira MR, Peres A, Ferreira GC, Schuck PF, Bosco SM (2016) Carnosic acid affords mitochondrial protection in chlorpyrifos-treated Sh-Sy5y cells. Neurotox Res 30:367–379. doi: 10.1007/s12640-016-9620-x PubMedCrossRefGoogle Scholar
  62. 62.
    de Oliveira MR, Ferreira GC, Schuck PF (2016) Protective effect of carnosic acid against paraquat-induced redox impairment and mitochondrial dysfunction in SH-SY5Y cells: role for PI3K/Akt/Nrf2 pathway. Toxicol in Vitro 32:41–54. doi: 10.1016/j.tiv.2015.12.005 PubMedCrossRefGoogle Scholar
  63. 63.
    Ueta CB, Gomes KS, Ribeiro MA, Mochly-Rosen D, Ferreira JC (2016) Disruption of mitochondrial quality control in peripheral artery disease: new therapeutic opportunities. Pharmacol Res 115:96–106. doi: 10.1016/j.phrs.2016.11.016 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Sandoval-Acuña C, Ferreira J, Speisky H (2014) Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch Biochem Biophys 559:75–90. doi: 10.1016/j.abb.2014.05.017 PubMedCrossRefGoogle Scholar
  65. 65.
    Jiang T, Sun Q, Chen S (2016) Oxidative stress: a major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson's disease and Alzheimer's disease. Prog Neurobiol 147:1–19. doi: 10.1016/j.pneurobio.2016.07.005 PubMedCrossRefGoogle Scholar
  66. 66.
    Zhang Y, Xu H (2016) Translational regulation of mitochondrial biogenesis. Biochem Soc Trans 44:1717–1724. doi: 10.1042/BST20160071C PubMedCrossRefGoogle Scholar
  67. 67.
    Lee H, Yoon Y (2016) Mitochondrial fission and fusion. Biochem Soc Trans 44:1725–1735. doi: 10.1042/BST20160129 PubMedCrossRefGoogle Scholar
  68. 68.
    Green DR, Galluzzi L, Kroemer G (2014) Metabolic control of cell death. Science 345:1250256. doi: 10.1126/science.1250256 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Picard M, Wallace DC, Burelle Y (2016) The rise of mitochondria in medicine. Mitochondrion 30:105–116. doi: 10.1016/j.mito.2016.07.003 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950. doi: 10.1152/physrev.00026.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N, Uchida K, Arimura K et al (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85:357–363PubMedCrossRefGoogle Scholar
  72. 72.
    Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    de Oliveira MR, Jardim FR (2016) Cocaine and mitochondria-related signaling in the brain: a mechanistic view and future directions. Neurochem Int 92:58–66. doi: 10.1016/j.neuint.2015.12.006 PubMedCrossRefGoogle Scholar
  74. 74.
    de Oliveira MR (2015) Vitamin A and retinoids as mitochondrial toxicants. Oxidative Med Cell Longev 2015:140267. doi: 10.1155/2015/140267 CrossRefGoogle Scholar
  75. 75.
    Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830:3143–3153. doi: 10.1016/j.bbagen.2012.09.008 PubMedCrossRefGoogle Scholar
  76. 76.
    Flynn JM, Melov S (2013) SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radic Biol Med 62:4–12. doi: 10.1016/j.freeradbiomed.2013.05.027 PubMedCrossRefGoogle Scholar
  77. 77.
    Morris G, Anderson G, Dean O, Berk M, Galecki P, Martin-Subero M, Maes M (2014) The glutathione system: a new drug target in neuroimmune disorders. Mol Neurobiol 50:1059–1084. doi: 10.1007/s12035-014-8705-x PubMedCrossRefGoogle Scholar
  78. 78.
    Barrera G, Gentile F, Pizzimenti S, Canuto RA, Daga M, Arcaro A, Cetrangolo GP, Lepore A et al (2016) Mitochondrial dysfunction in cancer and neurodegenerative diseases: spotlight on fatty acid oxidation and lipoperoxidation products. Antioxidants (Basel) 5:7. doi: 10.3390/antiox5010007 CrossRefGoogle Scholar
  79. 79.
    Edmondson DE (2014) Hydrogen peroxide produced by mitochondrial monoamine oxidase catalysis: biological implications. Curr Pharm Des 20:155–160PubMedCrossRefGoogle Scholar
  80. 80.
    Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26:1–14PubMedCrossRefGoogle Scholar
  81. 81.
    Pinho RA, Andrades ME, Oliveira MR, Pirola AC, Zago MS, Silveira PC, Dal-Pizzol F, Moreira JC (2006) Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise. Cell Biol Int 30:848–853PubMedCrossRefGoogle Scholar
  82. 82.
    Andrades M, Ritter C, de Oliveira MR, Streck EL, Fonseca Moreira JC, Dal-Pizzol F (2011) Antioxidant treatment reverses organ failure in rat model of sepsis: role of antioxidant enzymes imbalance, neutrophil infiltration, and oxidative stress. J Surg Res 167:e307–e313. doi: 10.1016/j.jss.2009.08.005 PubMedCrossRefGoogle Scholar
  83. 83.
    Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658PubMedCrossRefGoogle Scholar
  84. 84.
    Gutteridge JM (1994) Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. Ann N Y Acad Sci 738:201–213PubMedCrossRefGoogle Scholar
  85. 85.
    Ghafourifar P, Cadenas E (2005) Mitochondrial nitric oxide synthase. Trends Pharmacol Sci 26:190–195PubMedCrossRefGoogle Scholar
  86. 86.
    Finocchietto PV, Franco MC, Holod S, Gonzalez AS, Converso DP, Antico Arciuch VG, Serra MP, Poderoso JJ et al (2009) Mitochondrial nitric oxide synthase: a masterpiece of metabolic adaptation, cell growth, transformation, and death. Exp Biol Med (Maywood) 234:1020–1028. doi: 10.3181/0902-MR-81 CrossRefGoogle Scholar
  87. 87.
    Valez V, Cassina A, Batinic-Haberle I, Kalyanaraman B, Ferrer-Sueta G, Radi R (2013) Peroxynitrite formation in nitric oxide-exposed submitochondrial particles: detection, oxidative damage and catalytic removal by Mn-porphyrins. Arch Biochem Biophys 529:45–54. doi: 10.1016/j.abb.2012.10.012 PubMedCrossRefGoogle Scholar
  88. 88.
    Campolo N, Bartesaghi S, Radi R (2014) Metal-catalyzed protein tyrosine nitration in biological systems. Redox Rep 19:221–231. doi: 10.1179/1351000214Y.0000000099 PubMedCrossRefGoogle Scholar
  89. 89.
    Alvarez B, Radi R (2003) Peroxynitrite reactivity with amino acids and proteins. Amino Acids 25:295–311PubMedCrossRefGoogle Scholar
  90. 90.
    Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775PubMedCrossRefGoogle Scholar
  91. 91.
    De Oliveira MR, Oliveira MW, Da Rocha RF, Moreira JC (2009) Vitamin A supplementation at pharmacological doses induces nitrosative stress on the hypothalamus of adult Wistar rats. Chem Biol Interact 180:407–413. doi: 10.1016/j.cbi.2009.02.006 PubMedCrossRefGoogle Scholar
  92. 92.
    de Oliveira MR, da Rocha RF, Stertz L, Fries GR, de Oliveira DL, Kapczinski F, Moreira JC (2011) Total and mitochondrial nitrosative stress, decreased brain-derived neurotrophic factor (BDNF) levels and glutamate uptake, and evidence of endoplasmic reticulum stress in the hippocampus of vitamin A-treated rats. Neurochem Res 36:506–517. doi: 10.1007/s11064-010-0372-3 PubMedCrossRefGoogle Scholar
  93. 93.
    Swomley AM, Butterfield DA (2015) Oxidative stress in Alzheimer disease and mild cognitive impairment: evidence from human data provided by redox proteomics. Arch Toxicol 89:1669–1680. doi: 10.1007/s00204-015-1556-z PubMedCrossRefGoogle Scholar
  94. 94.
    Yao D, Gu Z, Nakamura T, Shi ZQ, Ma Y, Gaston B, Palmer LA, Rockenstein EM et al (2004) Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci U S A 101:10810–10814PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Gu Z, Nakamura T, Yao D, Shi ZQ, Lipton SA (2005) Nitrosative and oxidative stress links dysfunctional ubiquitination to Parkinson's disease. Cell Death Differ 12:1202–1204PubMedCrossRefGoogle Scholar
  96. 96.
    Pal R, Miranda M, Narayan M (2011) Nitrosative stress-induced Parkinsonian Lewy-like aggregates prevented through polyphenolic phytochemical analog intervention. Biochem Biophys Res Commun 404:324–329. doi: 10.1016/j.bbrc.2010.11.117 PubMedCrossRefGoogle Scholar
  97. 97.
    Sorolla MA, Rodríguez-Colman MJ, Vall-llaura N, Tamarit J, Ros J, Cabiscol E (2012) Protein oxidation in Huntington disease. Biofactors 38:173–185PubMedCrossRefGoogle Scholar
  98. 98.
    Tasset I, Sánchez-López F, Agüera E, Fernández-Bolaños R, Sánchez FM, Cruz-Guerrero A, Gascón-Luna F, Túnez I (2012) NGF and nitrosative stress in patients with Huntington's disease. J Neurol Sci 315:133–136. doi: 10.1016/j.jns.2011.12.014 PubMedCrossRefGoogle Scholar
  99. 99.
    Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10(Suppl):S2–S9. doi: 10.1038/nm1067 PubMedCrossRefGoogle Scholar
  100. 100.
    Anderson G, Maes M, Berk M (2013) Schizophrenia is primed for an increased expression of depression through activation of immuno-inflammatory, oxidative and nitrosative stress, and tryptophan catabolite pathways. Prog Neuro-Psychopharmacol Biol Psychiatry 42:101–114. doi: 10.1016/j.pnpbp.2012.07.016 CrossRefGoogle Scholar
  101. 101.
    Moylan S, Berk M, Dean OM, Samuni Y, Williams LJ, O'Neil A, Hayley AC, Pasco JA et al (2014) Oxidative & nitrosative stress in depression: why so much stress? Neurosci Biobehav Rev 45:46–62. doi: 10.1016/j.neubiorev.2014.05.007 PubMedCrossRefGoogle Scholar
  102. 102.
    Morris G, Walder K, Puri BK, Berk M, Maes M (2016) The deleterious effects of oxidative and nitrosative stress on palmitoylation, membrane lipid rafts and lipid-based cellular signalling: new drug targets in neuroimmune disorders. Mol Neurobiol 53:4638–4658. doi: 10.1007/s12035-015-9392-y PubMedCrossRefGoogle Scholar
  103. 103.
    Delhalle S, Deregowski V, Benoit V, Merville MP, Bours V (2002) NF-kappaB-dependent MnSOD expression protects adenocarcinoma cells from TNF-alpha-induced apoptosis. Oncogene 21:3917–3924PubMedCrossRefGoogle Scholar
  104. 104.
    Esteras N, Dinkova-Kostova AT, Abramov AY (2016) Nrf2 activation in the treatment of neurodegenerative diseases: a focus on its role in mitochondrial bioenergetics and function. Biol Chem 397:383–400. doi: 10.1515/hsz-2015-0295 PubMedCrossRefGoogle Scholar
  105. 105.
    Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39:199–218. doi: 10.1016/j.tibs.2014.02.002 PubMedCrossRefGoogle Scholar
  106. 106.
    Piantadosi CA, Suliman HB (2012) Transcriptional control of mitochondrial biogenesis and its interface with inflammatory processes. Biochim Biophys Acta 1820:532–541. doi: 10.1016/j.bbagen.2012.01.003 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Denzer I, Münch G, Friedland K (2016) Modulation of mitochondrial dysfunction in neurodegenerative diseases via activation of nuclear factor erythroid-2-related factor 2 by food-derived compounds. Pharmacol Res 103:80–94. doi: 10.1016/j.phrs.2015.11.019 PubMedCrossRefGoogle Scholar
  108. 108.
    Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL (2013) The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol 1:45–49. doi: 10.1016/j.redox.2012.10.001 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F (2013) Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol 100:30–47. doi: 10.1016/j.pneurobio.2012.09.003 PubMedCrossRefGoogle Scholar
  110. 110.
    Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25:6680–6684PubMedCrossRefGoogle Scholar
  111. 111.
    Lin CY, Chen JH, Fu RH, Tsai CW (2014) Induction of Pi form of glutathione S-transferase by carnosic acid is mediated through PI3K/Akt/NF-κB pathway and protects against neurotoxicity. Chem Res Toxicol 27:1958–1966. doi: 10.1021/tx5003063 PubMedCrossRefGoogle Scholar
  112. 112.
    Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295. doi: 10.1074/jbc.R900010200 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Ghosh S, Dass JF (2016) Study of pathway cross-talk interactions with NF-κB leading to its activation via ubiquitination or phosphorylation: a brief review. Gene 584:97–109. doi: 10.1016/j.gene.2016.03.008 PubMedCrossRefGoogle Scholar
  115. 115.
    Hock MB, Kralli A (2009) Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 71:177–203. doi: 10.1146/annurev.physiol.010908.163119 PubMedCrossRefGoogle Scholar
  116. 116.
    Jornayvaz FR, Shulman GI (2010) Regulation of mitochondrial biogenesis. Essays Biochem 47:69–84. doi: 10.1042/bse0470069 PubMedCrossRefGoogle Scholar
  117. 117.
    Ungvari Z, Sonntag WE, de Cabo R, Baur JA, Csiszar A (2011) Mitochondrial protection by resveratrol. Exerc Sport Sci Rev 39:128–132. doi: 10.1097/JES.0b013e3182141f80 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Scarpulla RC (2011) Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta 1813:1269–1278. doi: 10.1016/j.bbamcr.2010.09.019 PubMedCrossRefGoogle Scholar
  119. 119.
    Schreiber SN, Emter R, Hock MB, Knutti D, Cardenas J, Podvinec M, Oakeley EJ, Kralli A (2004) The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A 101:6472–6477PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Virbasius CA, Virbasius JV, Scarpulla RC (1993) NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes Dev 7:2431–2445PubMedCrossRefGoogle Scholar
  121. 121.
    Schreiber SN, Knutti D, Brogli K, Uhlmann T, Kralli A (2003) The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor alpha (ERRalpha). J Biol Chem 278:9013–9018PubMedCrossRefGoogle Scholar
  122. 122.
    Anderson R, Prolla T (2009) PGC-1alpha in aging and anti-aging interventions. Biochim Biophys Acta 1790:1059–1066. doi: 10.1016/j.bbagen.2009.04.005 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Gleyzer N, Vercauteren K, Scarpulla RC (2005) Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 25:1354–1366PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Fisher RP, Clayton DA (1988) Purification and characterization of human mitochondrial transcription factor 1. Mol Cell Biol 8:3496–3509PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Canugovi C, Maynard S, Bayne AC, Sykora P, Tian J, de Souza-Pinto NC, Croteau DL, Bohr VA (2010) The mitochondrial transcription factor A functions in mitochondrial base excision repair. DNA Repair (Amst) 9:1080–1089. doi: 10.1016/j.dnarep.2010.07.009 CrossRefGoogle Scholar
  126. 126.
    Ekstrand MI, Falkenberg M, Rantanen A, Park CB, Gaspari M, Hultenby K, Rustin P, Gustafsson CM et al (2004) Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 13:935–944PubMedCrossRefGoogle Scholar
  127. 127.
    Picca A, Lezza AM (2015) Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: useful insights from aging and calorie restriction studies. Mitochondrion 25:67–75. doi: 10.1016/j.mito.2015.10.001 PubMedCrossRefGoogle Scholar
  128. 128.
    Nemoto S, Fergusson MM, Finkel T (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J Biol Chem 280:16456–16460PubMedCrossRefGoogle Scholar
  129. 129.
    Sugden MC, Caton PW, Holness MJ (2010) PPAR control: it's SIRTainly as easy as PGC. J Endocrinol 204:93–104. doi: 10.1677/JOE-09-0359 PubMedCrossRefGoogle Scholar
  130. 130.
    Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060. doi: 10.1038/nature07813 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Paoli A, Bianco A, Damiani E, Bosco G (2014) Ketogenic diet in neuromuscular and neurodegenerative diseases. Biomed Res Int 2014:474296. doi: 10.1155/2014/474296 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Wang KZ, Zhu J, Dagda RK, Uechi G, Cherra SJ 3rd, Gusdon AM, Balasubramani M, Chu CT (2014) ERK-mediated phosphorylation of TFAM downregulates mitochondrial transcription: implications for Parkinson's disease. Mitochondrion 17:132–140. doi: 10.1016/j.mito.2014.04.008 PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Banerjee K, Munshi S, Frank DE, Gibson GE (2015) Abnormal glucose metabolism in Alzheimer's disease: relation to autophagy/mitophagy and therapeutic approaches. Neurochem Res 40:2557–2569. doi: 10.1007/s11064-015-1631-0 PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    de Olivera MR (2016) Evidence for genistein as a mitochondriotropic molecule. Mitochondrion 29:35–44. doi: 10.1016/j.mito.2016.05.005 CrossRefGoogle Scholar
  135. 135.
    Schmitt CA, Heiss EH, Dirsch VM (2010) Effect of resveratrol on endothelial cell function: molecular mechanisms. Biofactors 36:342–349PubMedCrossRefGoogle Scholar
  136. 136.
    Dragone T, Cianciulli A, Calvello R, Porro C, Trotta T, Panaro MA (2014) Resveratrol counteracts lipopolysaccharide-mediated microglial inflammation by modulating a SOCS-1 dependent signaling pathway. Toxicol in Vitro 28:1126–1135. doi: 10.1016/j.tiv.2014.05.005 PubMedCrossRefGoogle Scholar
  137. 137.
    Sun D, Yue Q, Guo W, Li T, Zhang J, Li G, Liu Z, Sun J (2015) Neuroprotection of resveratrol against neurotoxicity induced by methamphetamine in mouse mesencephalic dopaminergic neurons. Biofactors 41:252–260PubMedCrossRefGoogle Scholar
  138. 138.
    Lopez MS, Dempsey RJ, Vemuganti R (2015) Resveratrol neuroprotection in stroke and traumatic CNS injury. Neurochem Int 89:75–82. doi: 10.1016/j.neuint.2015.08.009 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Wang Y, Jiang Y, Fan X, Tan H, Zeng H, Wang Y, Chen P, Huang M et al (2015) Hepato-protective effect of resveratrol against acetaminophen-induced liver injury is associated with inhibition of CYP-mediated bioactivation and regulation of SIRT1-p53 signaling pathways. Toxicol Lett 236:82–89. doi: 10.1016/j.toxlet.2015.05.001 PubMedCrossRefGoogle Scholar
  140. 140.
    Steiner N, Balez R, Karunaweera N, Lind JM, Münch G, Ooi L (2016) Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264.7 macrophages and C8-B4 microglia. Neurochem Int 5:46–54. doi: 10.1016/j.neuint.2015.10.013 CrossRefGoogle Scholar
  141. 141.
    Arun S, Liu L, Donmez G (2016) Mitochondrial biology and neurological diseases. Curr Neuropharmacol 14:143–154PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Erdogan CS, Vang O (2016) Challenges in analyzing the biological effects of resveratrol. Nutrients 8:353. doi: 10.3390/nu8060353 PubMedCentralCrossRefGoogle Scholar
  143. 143.
    Morbidelli L (2016) Polyphenol-based nutraceuticals for the control of angiogenesis: analysis of the critical issues for human use. Pharmacol Res 111:384–393. doi: 10.1016/j.phrs.2016.07.011 PubMedCrossRefGoogle Scholar
  144. 144.
    Weiskirchen S, Weiskirchen R (2016) Resveratrol: how much wine do you have to drink to stay healthy? Adv Nutr 7:706–718. doi: 10.3945/an.115.011627 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Rowlands BD, Lau CL, Ryall JG, Thomas DS, Klugmann M, Beart PM, Rae CD (2015) Silent information regulator 1 modulator resveratrol increases brain lactate production and inhibits mitochondrial metabolism, whereas SRT1720 increases oxidative metabolism. J Neurosci Res 93:1147–1156. doi: 10.1002/jnr.23570 PubMedCrossRefGoogle Scholar
  146. 146.
    Varoni EM, Lo Faro AF, Sharifi-Rad J, Iriti M (2016) Anticancer molecular mechanisms of resveratrol. Front Nutr 3:8. doi: 10.3389/fnut.2016.00008 PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Kairisalo M, Bonomo A, Hyrskyluoto A, Mudò G, Belluardo N, Korhonen L, Lindholm D (2011) Resveratrol reduces oxidative stress and cell death and increases mitochondrial antioxidants and XIAP in PC6.3-cells. Neurosci Lett 488:263–266. doi: 10.1016/j.neulet.2010.11.042 PubMedCrossRefGoogle Scholar
  148. 148.
    Sheu SJ, Liu NC, Ou CC, Bee YS, Chen SC, Lin HC, Chan JY (2013) Resveratrol stimulates mitochondrial bioenergetics to protect retinal pigment epithelial cells from oxidative damage. Invest Ophthalmol Vis Sci 54:6426–6438. doi: 10.1167/iovs.13-12024 PubMedCrossRefGoogle Scholar
  149. 149.
    Mudò G, Mäkelä J, Di Liberto V, Tselykh TV, Olivieri M, Piepponen P, Eriksson O, Mälkiä A et al (2012) Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease. Cell Mol Life Sci 69:1153–1165. doi: 10.1007/s00018-011-0850-z PubMedCrossRefGoogle Scholar
  150. 150.
    Narayanan SV, Dave KR, Saul I, Perez-Pinzon MA (2015) Resveratrol preconditioning protects against cerebral ischemic injury via nuclear erythroid 2-related factor 2. Stroke 46:1626–1632. doi: 10.1161/STROKEAHA.115.008921 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Bellaver B, Bobermin LD, Souza DG, Rodrigues MD, de Assis AM, Wajner M, Gonçalves CA, Souza DO et al (2016) Signaling mechanisms underlying the glioprotective effects of resveratrol against mitochondrial dysfunction. Biochim Biophys Acta 1862:1827–1838. doi: 10.1016/j.bbadis.2016.06.018 PubMedCrossRefGoogle Scholar
  152. 152.
    Robb EL, Winkelmolen L, Visanji N, Brotchie J, Stuart JA (2008) Dietary resveratrol administration increases MnSOD expression and activity in mouse brain. Biochem Biophys Res Commun 372:254–259. doi: 10.1016/j.bbrc.2008.05.028 PubMedCrossRefGoogle Scholar
  153. 153.
    Zhao H, Niu Q, Li X, Liu T, Xu Y, Han H, Wang W, Fan N et al (2012) Long-term resveratrol consumption protects ovariectomized rats chronically treated with D-galactose from developing memory decline without effects on the uterus. Brain Res 1467:67–80. doi: 10.1016/j.brainres.2012.05.040 PubMedCrossRefGoogle Scholar
  154. 154.
    Manczak M, Mao P, Calkins MJ, Cornea A, Reddy AP, Murphy MP, Szeto HH, Park B et al (2010) Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer's disease neurons. J Alzheimers Dis 20:S609–S631. doi: 10.3233/JAD-2010-100564 PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Yu L, Yang SJ (2010) AMP-activated protein kinase mediates activity-dependent regulation of peroxisome proliferator-activated receptor gamma coactivator-1alpha and nuclear respiratory factor 1 expression in rat visual cortical neurons. Neuroscience 169:23–38. doi: 10.1016/j.neuroscience.2010.04.063 PubMedCrossRefGoogle Scholar
  156. 156.
    Chen S, Fan Q, Li A, Liao D, Ge J, Laties AM, Zhang X (2013) Dynamic mobilization of PGC-1α mediates mitochondrial biogenesis for the protection of RGC-5 cells by resveratrol during serum deprivation. Apoptosis 18:786–799. doi: 10.1007/s10495-013-0837-3 PubMedCrossRefGoogle Scholar
  157. 157.
    Cao K, Zheng A, Xu J, Li H, Liu J, Peng Y, Long J, Zou X et al (2014) AMPK activation prevents prenatal stress-induced cognitive impairment: modulation of mitochondrial content and oxidative stress. Free Radic Biol Med 75:156–166. doi: 10.1016/j.freeradbiomed.2014.07.029 PubMedCrossRefGoogle Scholar
  158. 158.
    Peng K, Tao Y, Zhang J, Wang J, Ye F, Dan G, Zhao Y, Cai Y et al (2016) Resveratrol regulates mitochondrial biogenesis and fission/fusion to attenuate rotenone-induced neurotoxicity. Oxidative Med Cell Longev 2016:6705621. doi: 10.1155/2016/6705621 CrossRefGoogle Scholar
  159. 159.
    Valenti D, de Bari L, de Rasmo D, Signorile A, Henrion-Caude A, Contestabile A, Vacca RA (2016) The polyphenols resveratrol and epigallocatechin-3-gallate restore the severe impairment of mitochondria in hippocampal progenitor cells from a Down syndrome mouse model. Biochim Biophys Acta 1862:1093–1104. doi: 10.1016/j.bbadis.2016.03.003 PubMedCrossRefGoogle Scholar
  160. 160.
    Naia L, Rosenstock TR, Oliveira AM, Oliveira-Sousa SI, Caldeira GL, Carmo C, Laço MN, Hayden MR et al (2016) Comparative mitochondrial-based protective effects of resveratrol and nicotinamide in Huntington's disease models. Mol Neurobiol. doi: 10.1007/s12035-016-0048-3 PubMedGoogle Scholar
  161. 161.
    Mancuso R, del Valle J, Modol L, Martinez A, Granado-Serrano AB, Ramirez-Núñez O, Pallás M, Portero-Otin M et al (2014) Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics 11:419–432. doi: 10.1007/s13311-013-0253-y PubMedPubMedCentralGoogle Scholar
  162. 162.
    Palomera-Avalos V, Griñán-Ferré C, Puigoriol-Ilamola D, Camins A, Sanfeliu C, Canudas AM, Pallàs M (2016) Resveratrol protects SAMP8 brain under metabolic stress: focus on mitochondrial function and Wnt pathway. Mol Neurobiol. doi: 10.1007/s12035-016-9770-0 Google Scholar
  163. 163.
    Kairisalo M, Korhonen L, Blomgren K, Lindholm D (2007) X-linked inhibitor of apoptosis protein increases mitochondrial antioxidants through NF-kappaB activation. Biochem Biophys Res Commun 364:138–144PubMedCrossRefGoogle Scholar
  164. 164.
    Jang JH, Surh YJ (2003) Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radic Biol Med 34:1100–1110PubMedCrossRefGoogle Scholar
  165. 165.
    Miao L, St Clair DK (2009) Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 47:344–356. doi: 10.1016/j.freeradbiomed.2009.05.018 PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Lu Z, Xu X, Hu X, Fassett J, Zhu G, Tao Y, Li J, Huang Y et al (2010) PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload. Antioxid Redox Signal 13:1011–1022. doi: 10.1089/ars.2009.2940 PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Nijland PG, Witte ME, van het Hof B, van der Pol S, Bauer J, Lassmann H, van der Valk P, de Vries HE et al (2014) Astroglial PGC-1alpha increases mitochondrial antioxidant capacity and suppresses inflammation: implications for multiple sclerosis. Acta Neuropathol Commun 2:170. doi: 10.1186/s40478-014-0170-2 PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Quincozes-Santos A, Bobermin LD, Tramontina AC, Wartchow KM, Tagliari B, Souza DO, Wyse AT, Gonçalves CA (2014) Oxidative stress mediated by NMDA, AMPA/KA channels in acute hippocampal slices: neuroprotective effect of resveratrol. Toxicol in Vitro 28:544–551. doi: 10.1016/j.tiv.2013.12.021 PubMedCrossRefGoogle Scholar
  169. 169.
    Wang R, Liu YY, Liu XY, Jia SW, Zhao J, Cui D, Wang L (2014) Resveratrol protects neurons and the myocardium by reducing oxidative stress and ameliorating mitochondria damage in a cerebral ischemia rat model. Cell Physiol Biochem 34:854–864. doi: 10.1159/000366304 PubMedCrossRefGoogle Scholar
  170. 170.
    Henry-Mowatt J, Dive C, Martinou JC, James D (2004) Role of mitochondrial membrane permeabilization in apoptosis and cancer. Oncogene 23:2850–2860PubMedCrossRefGoogle Scholar
  171. 171.
    Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 159:993–1002. doi: 10.1016/j.neuroscience.2009.01.017 PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Guo C, Yang L, Wan CX, Xia YZ, Zhang C, Chen MH, Wang ZD, Li ZR et al (2016) Anti-neuroinflammatory effect of Sophoraflavanone G from Sophora alopecuroides in LPS-activated BV2 microglia by MAPK, JAK/STAT and Nrf2/HO-1 signaling pathways. Phytomedicine 23:1629–1637. doi: 10.1016/j.phymed.2016.10.007 PubMedCrossRefGoogle Scholar
  173. 173.
    Kim CS, Choi HS, Joe Y, Chung HT, Yu R (2016) Induction of heme oxygenase-1 with dietary quercetin reduces obesity-induced hepatic inflammation through macrophage phenotype switching. Nutr Res Pract 10:623–628PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Choi YK, Park JH, Baek YY, Won MH, Jeoung D, Lee H, Ha KS, Kwon YG et al (2016) Carbon monoxide stimulates astrocytic mitochondrial biogenesis via L-type Ca2+ channel-mediated PGC-1α/ERRα activation. Biochem Biophys Res Commun 479:297–304. doi: 10.1016/j.bbrc.2016.09.063 PubMedCrossRefGoogle Scholar
  175. 175.
    Yu J, Shi J, Wang D, Dong S, Zhang Y, Wang M, Gong L, Fu Q et al (2016) Heme oxygenase-1/carbon monoxide-regulated mitochondrial dynamic equilibrium contributes to the attenuation of endotoxin-induced acute lung injury in rats and in lipopolysaccharide-activated macrophages. Anesthesiology 125:1190–1201PubMedCrossRefGoogle Scholar
  176. 176.
    Holmström KM, Baird L, Zhang Y, Hargreaves I, Chalasani A, Land JM, Stanyer L, Yamamoto M et al (2013) Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol Open 2:761–770. doi: 10.1242/bio.20134853 PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    de Oliveira MR, Fürstenau CR, de Souza IC, da Costa Ferreira G (2016) Tanshinone I attenuates the effects of a challenge with H2O2 on the functions of tricarboxylic acid cycle and respiratory chain in SH-SY5Y cells. Mol Neurobiol doi. doi: 10.1007/s12035-016-0267-7 Google Scholar
  178. 178.
    de Oliveira MR, Schuck PF, Bosco SM (2016) Tanshinone I induces mitochondrial protection through an Nrf2-dependent mechanism in paraquat-treated human neuroblastoma SH-SY5Y cells. Mol Neurobiol. doi: 10.1007/s12035-016-0009-x Google Scholar
  179. 179.
    de Oliveira MR, Peres A, Gama CS, Bosco SM (2016) Pinocembrin provides mitochondrial protection by the activation of the Erk1/2-Nrf2 signaling pathway in SH-SY5Y neuroblastoma cells exposed to paraquat. Mol Neurobiol. doi: 10.1007/s12035-016-0135-5 Google Scholar
  180. 180.
    Cerveny KL, Tamura Y, Zhang Z, Jensen RE, Sesaki H (2007) Regulation of mitochondrial fusion and division. Trends Cell Biol 17:563–569. doi: 10.1016/j.tcb.2007.08.006 PubMedCrossRefGoogle Scholar
  181. 181.
    Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884. doi: 10.1038/nrm3013 PubMedCrossRefGoogle Scholar
  182. 182.
    Morris-Blanco KC, Cohan CH, Neumann JT, Sick TJ, Perez-Pinzon MA (2014) Protein kinase C epsilon regulates mitochondrial pools of Nampt and NAD following resveratrol and ischemic preconditioning in the rat cortex. J Cereb Blood Flow Metab 34:1024–1032. doi: 10.1038/jcbfm.2014.51 PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Peng Y, Liu J, Shi L, Tang Y, Gao D, Long J, Liu J (2016) Mitochondrial dysfunction precedes depression of AMPK/AKT signaling in insulin resistance induced by high glucose in primary cortical neurons. J Neurochem 137:701–713. doi: 10.1111/jnc.13563 PubMedCrossRefGoogle Scholar
  184. 184.
    Valenti D, Tullo A, Caratozzolo MF, Merafina RS, Scartezzini P, Marra E, Vacca RA (2010) Impairment of F1F0-ATPase, adenine nucleotide translocator and adenylate kinase causes mitochondrial energy deficit in human skin fibroblasts with chromosome 21 trisomy. Biochem J 431:299–310. doi: 10.1042/BJ20100581 PubMedCrossRefGoogle Scholar
  185. 185.
    Valenti D, Manente GA, Moro L, Marra E, Vacca RA (2011) Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of the cAMP/PKA signalling pathway. Biochem J 435:679–688. doi: 10.1042/BJ20101908 PubMedCrossRefGoogle Scholar
  186. 186.
    Bozzo F, Mirra A, Carrì MT (2017) Oxidative stress and mitochondrial damage in the pathogenesis of ALS: new perspectives. Neurosci Lett 636:3–8. doi: 10.1016/j.neulet.2016.04.065 PubMedCrossRefGoogle Scholar
  187. 187.
    Carrì MT, D'Ambrosi N, Cozzolino M (2016) Pathways to mitochondrial dysfunction in ALS pathogenesis. Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2016.07.055 PubMedGoogle Scholar
  188. 188.
    Moreno-Ortega AJ, Al-Achbili LM, Alonso E, de Los Ríos C, García AG, Ruiz-Nuño A, Cano-Abad MF (2016) Neuroprotective effect of the novel compound ITH33/IQM9.21 against oxidative stress and Na(+) and Ca(2+) overload in motor neuron-like NSC-34 cells. Neurotox Res 30:380–391. doi: 10.1007/s12640-016-9623-7 PubMedCrossRefGoogle Scholar
  189. 189.
    Zhou ZD, Saw WT, Tan EK (2016) Mitochondrial CHCHD-containing proteins: physiologic functions and link with neurodegenerative diseases. Mol Neurobiol. doi: 10.1007/s12035-016-0099-5 Google Scholar
  190. 190.
    Wang Q, Liu Y, Zou X, Wang Q, An M, Guan X, He J, Tong Y et al (2008) The hippocampal proteomic analysis of senescence-accelerated mouse: implications of Uchl3 and mitofilin in cognitive disorder and mitochondria dysfunction in SAMP8. Neurochem Res 33:1776–1782. doi: 10.1007/s11064-008-9628-6 PubMedCrossRefGoogle Scholar
  191. 191.
    Eckert GP, Schiborr C, Hagl S, Abdel-Kader R, Müller WE, Rimbach G, Frank J (2013) Curcumin prevents mitochondrial dysfunction in the brain of the senescence-accelerated mouse-prone 8. Neurochem Int 62:595–602. doi: 10.1016/j.neuint.2013.02.014 PubMedCrossRefGoogle Scholar
  192. 192.
    Wu FJ, Xue Y, Liu XF, Xue CH, Wang JF, Du L, Takahashi K, Wang YM (2014) The protective effect of eicosapentaenoic acid-enriched phospholipids from sea cucumber Cucumaria frondosa on oxidative stress in PC12 cells and SAMP8 mice. Neurochem Int 64:9–17. doi: 10.1016/j.neuint.2013.10.015 PubMedCrossRefGoogle Scholar
  193. 193.
    Feng Y, Cui Y, Gao JL, Li R, Jiang XH, Tian YX, Wang KJ, Li MH et al (2016) Neuroprotective effects of resveratrol against traumatic brain injury in rats: involvement of synaptic proteins and neuronal autophagy. Mol Med Rep 13:5248–5254. doi: 10.3892/mmr.2016.5201 PubMedCrossRefGoogle Scholar
  194. 194.
    Zhang Y, Cao X, Zhu W, Liu Z, Liu H, Zhou Y, Cao Y, Liu C et al (2016) Resveratrol enhances autophagic flux and promotes ox-LDL degradation in HUVECs via upregulation of SIRT1. Oxidative Med Cell Longev 2016:7589813. doi: 10.1155/2016/7589813 Google Scholar
  195. 195.
    Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, Jankovic J, Pan T (2011) Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease. Neurosignals 19:163–174. doi: 10.1159/000328516 PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Lotharius J, Brundin P (2002) Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3:932–942PubMedCrossRefGoogle Scholar
  197. 197.
    Olanow CW, Brundin P (2013) Parkinson's disease and alpha synuclein: is Parkinson's disease a prion-like disorder? Mov Disord 28:31–40. doi: 10.1002/mds.25373 PubMedCrossRefGoogle Scholar
  198. 198.
    Zhang QS, Heng Y, Yuan YH, Chen NH (2016) Pathological α-synuclein exacerbates the progression of Parkinson's disease through microglial activation. Toxicol Lett 265:30–37. doi: 10.1016/j.toxlet.2016.11.002 PubMedCrossRefGoogle Scholar
  199. 199.
    Mack JM, Schamne MG, Sampaio TB, Pértile RA, Fernandes PA, Markus RP, Prediger RD (2016) Melatoninergic system in Parkinson's disease: from neuroprotection to the management of motor and nonmotor symptoms. Oxidative Med Cell Longev 2016:3472032CrossRefGoogle Scholar
  200. 200.
    Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283:9089–9100. doi: 10.1074/jbc.M710012200 PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Reeve AK, Park TK, Jaros E, Campbell GR, Lax NZ, Hepplewhite PD, Krishnan KJ, Elson JL et al (2012) Relationship between mitochondria and α-synuclein: a study of single substantia nigra neurons. Arch Neurol 69:385–393. doi: 10.1001/archneurol.2011.2675 PubMedCrossRefGoogle Scholar
  202. 202.
    Di Maio R, Barrett PJ, Hoffman EK, Barrett CW, Zharikov A, Borah A, Hu X, McCoy J et al (2016) α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson's disease. Sci Transl Med 8:342ra78. doi: 10.1126/scitranslmed.aaf3634 PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Ingelsson M (2016) Alpha-synuclein oligomers-neurotoxic molecules in Parkinson's disease and other Lewy body disorders. Front Neurosci 10:408. doi: 10.3389/fnins.2016.00408 PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Redmann M, Darley-Usmar V, Zhang J (2016) The role of autophagy, mitophagy and lysosomal functions in modulating bioenergetics and survival in the context of redox and Proteotoxic damage: implications for neurodegenerative diseases. Aging Dis 7:150–162PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Jeong JK, Moon MH, Bae BC, Lee YJ, Seol JW, Kang HS, Kim JS, Kang SJ et al (2012) Autophagy induced by resveratrol prevents human prion protein-mediated neurotoxicity. Neurosci Res 73:99–105. doi: 10.1016/j.neures.2012.03.005 PubMedCrossRefGoogle Scholar
  206. 206.
    Lin TK, Chen SD, Chuang YC, Lin HY, Huang CR, Chuang JH, Wang PW, Huang ST et al (2014) Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy. Int J Mol Sci 15:1625–1646. doi: 10.3390/ijms15011625 PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Carchman EH, Rao J, Loughran PA, Rosengart MR, Zuckerbraun BS (2011) Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice. Hepatology 53:2053–2062. doi: 10.1002/hep.24324 PubMedCrossRefGoogle Scholar
  208. 208.
    Dong C, Zheng H, Huang S, You N, Xu J, Ye X, Zhu Q, Feng Y et al (2015) Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis. Exp Cell Res 337:146–159. doi: 10.1016/j.yexcr.2015.04.005 PubMedCrossRefGoogle Scholar
  209. 209.
    Surolia R, Karki S, Kim H, Yu Z, Kulkarni T, Mirov SB, Carter AB, Rowe SM et al (2015) Heme oxygenase-1-mediated autophagy protects against pulmonary endothelial cell death and development of emphysema in cadmium-treated mice. Am J Physiol Lung Cell Mol Physiol 309:L280–L292. doi: 10.1152/ajplung.00097.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Belounis A, Nyalendo C, Le Gall R, Imbriglio TV, Mahma M, Teira P, Beaunoyer M, Cournoyer S et al (2016) Autophagy is associated with chemoresistance in neuroblastoma. BMC Cancer 16:891PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Noonan J, Zarrer J, Murphy BM (2016) Targeting autophagy in glioblastoma. Crit Rev Oncog 21:241–252PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Fernanda Rafaela Jardim
    • 1
  • Fernando Tonon de Rossi
    • 2
  • Marielle Xavier Nascimento
    • 2
  • Renata Gabriele da Silva Barros
    • 2
  • Paula Agrizzi Borges
    • 2
  • Isabella Cristina Prescilio
    • 2
  • Marcos Roberto de Oliveira
    • 2
    Email author
  1. 1.Departamento de Perícias Laboratoriais, Forensic Toxicology Division, Postmortem Toxicology SectorInstituto Geral de Perícias (IGP, Forensic Institute)Porto AlegreBrazil
  2. 2.Department of Chemistry, ICETFederal University of Mato Grosso (UFMT)CuiabáBrazil

Personalised recommendations