Molecular Neurobiology

, Volume 55, Issue 2, pp 1620–1629 | Cite as

Evaluation of Possible Consequences of Zika Virus Infection in the Developing Nervous System

  • Lais Takata Walter
  • Guilherme Shigueto Vilar Higa
  • Juliane Midori Ikebara
  • Danila Vedovello
  • Felipe Scassi Salvador
  • Silvia Honda Takada
  • Erika Reime Kinjo
  • Benjamin J. Whalley
  • Márcia Aparecida Sperança
  • Alexandre Hiroaki Kihara


The Zika virus (ZIKV) outbreak that occurred in the northeast of Brazil in 2015 led to alarming numbers of babies born with microcephaly in this region. Since then, several studies have evaluated the relationship between ZIKV infection and development of the malformation although the specific mechanistic interaction between ZIKV and human physiological processes that ultimately manifest as microcephaly remains debated. Importantly, most current studies did not consider the specificities of the biology and life cycle of ZIKV. As a consequence, specificities of the infection on the developing central nervous system (CNS) were frequently disregarded. In order to begin to address this important gap in our knowledge, we have collated and critically reviewed the existing evidence in this area to identify any emerging consensus on this topic and thereafter describe possible mechanisms by which ZIKV infection could interfere with specific processes of CNS development, such as neuronal proliferation, and the complex interactions of immature neurons with radial glial cells. With this, we were able to present the current knowledge on this important topic in the neurobiology field.


Neurodevelopment Disease Infection Virulence Microcephaly 



AHK is grateful for grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (2014/16711-6) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (308608/2014-3).

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the Flavivirus life cycle. Nat Rev Microbiol 3(1):13–22CrossRefPubMedGoogle Scholar
  2. 2.
    Sips GJ, Wilschut J, Smit JM (2012) Neuroinvasive Flavivirus infections. Rev Med Virol 22(2):69–87CrossRefPubMedGoogle Scholar
  3. 3.
    Kuno G et al (1998) Phylogeny of the genus Flavivirus. J Virol 72(1):73–83PubMedPubMedCentralGoogle Scholar
  4. 4.
    Chambers TJ et al (1990) Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688CrossRefPubMedGoogle Scholar
  5. 5.
    Huang YJ et al (2014) Flavivirus-mosquito interactions. Viruses 6(11):4703–4730CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nicholson BL, White KA (2014) Functional long-range RNA-RNA interactions in positive-strand RNA viruses. Nat Rev Microbiol 12(7):493–504CrossRefPubMedGoogle Scholar
  7. 7.
    Shives KD et al (2014) West Nile virus-induced activation of mammalian target of rapamycin complex 1 supports viral growth and viral protein expression. J Virol 88(16):9458–9471CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Harris, E., et al., Molecular biology of Flaviviruses. Novartis Found Symp, 2006. 277: p. 23–39; discussion 40, 71–3, 251–3.Google Scholar
  9. 9.
    Faye O et al (2014) Molecular evolution of Zika virus during its emergence in the 20(th) century. PLoS Negl Trop Dis 8(1):e2636CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ye J et al (2013) Immune evasion strategies of flaviviruses. Vaccine 31(3):461–471CrossRefPubMedGoogle Scholar
  11. 11.
    Mackenzie JM et al (1998) Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology 245(2):203–215CrossRefPubMedGoogle Scholar
  12. 12.
    Teo CS, Chu JJ (2014) Cellular vimentin regulates construction of dengue virus replication complexes through interaction with NS4A protein. J Virol 88(4):1897–1913CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Adibi, J.J., et al., Teratogenic effects of the Zika virus and the role of the placenta. Lancet, 2016.Google Scholar
  14. 14.
    Lazear, H.M., et al., A mouse model of Zika virus pathogenesis. Cell Host Microbe, 2016.Google Scholar
  15. 15.
    Hamel R et al (2015) Biology of Zika virus infection in human skin cells. J Virol 89(17):8880–8896CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Quicke KM et al (2016) Zika virus infects human placental macrophages. Cell Host Microbe 20(1):83–90CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tappe, D., et al., Cytokine kinetics of Zika virus-infected patients from acute to reconvalescent phase. Med Microbiol Immunol, 2015.Google Scholar
  18. 18.
    Stettler, K., et al., Specificity, cross-reactivity and function of antibodies elicited by Zika virus infection. Science, 2016.Google Scholar
  19. 19.
    Priyamvada L et al (2016) Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus. Proc Natl Acad Sci U S A 113(28):7852–7857CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dejnirattisai, W., et al., Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat Immunol, 2016.Google Scholar
  21. 21.
    Barba-Spaeth G et al (2016) Structural basis of potent Zika-dengue virus antibody cross-neutralization. Nature 536(7614):48–53CrossRefPubMedGoogle Scholar
  22. 22.
    Whitehead SS et al (2007) Prospects for a dengue virus vaccine. Nat Rev Microbiol 5(7):518–528CrossRefPubMedGoogle Scholar
  23. 23.
    Murphy BR, Whitehead SS (2011) Immune response to dengue virus and prospects for a vaccine. Annu Rev Immunol 29:587–619CrossRefPubMedGoogle Scholar
  24. 24.
    Diamond MS (2003) Evasion of innate and adaptive immunity by flaviviruses. Immunol Cell Biol 81(3):196–206CrossRefPubMedGoogle Scholar
  25. 25.
    Noronha, L., et al., Zika virus damages the human placental barrier and presents marked fetal neurotropism. Mem Inst Oswaldo Cruz, 2016.Google Scholar
  26. 26.
    Bayer, A., et al., Type III interferons produced by human placental trophoblasts confer protection against Zika virus infection. Cell Host Microbe, 2016.Google Scholar
  27. 27.
    Miner JJ et al (2016) Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 165(5):1081–1091CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Aliota MT et al (2016) Characterization of lethal Zika virus infection in AG129 mice. PLoS Negl Trop Dis 10(4):e0004682CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Robbins JR, Bakardjiev AI (2012) Pathogens and the placental fortress. Curr Opin Microbiol 15(1):36–43CrossRefPubMedGoogle Scholar
  30. 30.
    Delorme-Axford E, Sadovsky Y, Coyne CB (2014) The placenta as a barrier to viral infections. Annu Rev Virol 1(1):133–146CrossRefPubMedGoogle Scholar
  31. 31.
    Shao Q et al (2016) Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage. Development 143(22):4127–4136CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mercuri E et al (2000) Head growth in infants with hypoxic-ischemic encephalopathy: correlation with neonatal magnetic resonance imaging. Pediatrics 106(2 Pt 1):235–243CrossRefPubMedGoogle Scholar
  33. 33.
    Petraglia F, Imperatore A, Challis JR (2010) Neuroendocrine mechanisms in pregnancy and parturition. Endocr Rev 31(6):783–816CrossRefPubMedGoogle Scholar
  34. 34.
    Witteveen JS et al (2013) Lack of serotonin reuptake during brain development alters rostral raphe-prefrontal network formation. Front Cell Neurosci 7:143CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Vitalis T, Parnavelas JG (2003) The role of serotonin in early cortical development. Dev Neurosci 25(2–4):245–256CrossRefPubMedGoogle Scholar
  36. 36.
    Vitalis T, Ansorge MS, Dayer AG (2013) Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes. Front Cell Neurosci 7:93CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Montiel JF, Kaune H, Maliqueo M (2013) Maternal-fetal unit interactions and eutherian neocortical development and evolution. Front Neuroanat 7:22CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Fietz SA et al (2012) Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self-renewal. Proc Natl Acad Sci U S A 109(29):11836–11841CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Yawno T et al (2009) Role of neurosteroids in regulating cell death and proliferation in the late gestation fetal brain. Neuroscience 163(3):838–847CrossRefPubMedGoogle Scholar
  40. 40.
    Nicol MB, Hirst JJ, Walker D (1999) Effects of pregnanolone on behavioural parameters and the responses to GABA(a) receptor antagonists in the late gestation fetal sheep. Neuropharmacology 38(1):49–63CrossRefPubMedGoogle Scholar
  41. 41.
    Cucullo L (2009) Prenatal development of the human blood-brain barrier. In: Janigro D (ed) Mammalian brain development. Humana Press, New York, pp. 53–75Google Scholar
  42. 42.
    Neal JW (2014) Flaviviruses are neurotropic, but how do they invade the CNS? J Infect 69(3):203–215CrossRefPubMedGoogle Scholar
  43. 43.
    McGavern DB, Kang SS (2011) Illuminating viral infections in the nervous system. Nat Rev Immunol 11(5):318–329CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Dahm T et al (2016) Neuroinvasion and inflammation in viral central nervous system infections. Mediat Inflamm 2016:8562805CrossRefGoogle Scholar
  45. 45.
    Spooner RA et al (2006) Retrograde transport pathways utilised by viruses and protein toxins. Virol J 3:26CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ramos-Castaneda J et al (1997) A 65-kDa trypsin-sensible membrane cell protein as a possible receptor for dengue virus in cultured neuroblastoma cells. J Neurovirol 3(6):435–440CrossRefPubMedGoogle Scholar
  47. 47.
    Chu JJ, Ng ML (2003) Characterization of a 105-kDa plasma membrane associated glycoprotein that is involved in West Nile virus binding and infection. Virology 312(2):458–469CrossRefPubMedGoogle Scholar
  48. 48.
    Das S et al (2009) Heat shock protein 70 on Neuro2a cells is a putative receptor for Japanese encephalitis virus. Virology 385(1):47–57CrossRefPubMedGoogle Scholar
  49. 49.
    Cugola, F.R., et al., The Brazilian Zika virus strain causes birth defects in experimental models. Nature, 2016.Google Scholar
  50. 50.
    Dang, J., et al., Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell, 2016.Google Scholar
  51. 51.
    Garcez, P.P., et al., Zika virus impairs growth in human neurospheres and brain organoids. Science, 2016.Google Scholar
  52. 52.
    Li, C., et al., Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell, 2016.Google Scholar
  53. 53.
    Wu, K.Y., et al., Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice. Cell Res, 2016.Google Scholar
  54. 54.
    Garcez, P.P., et al., Combined proteome and transcriptome analyses reveal that Zika virus circulating in Brazil alters cell cycle and neurogenic programmes in human neurospheres. 2016, PeerJ Preprints.Google Scholar
  55. 55.
    Nowakowski TJ et al (2016) Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells. Cell Stem Cell 18(5):591–596CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hanners, N.W., et al., Western Zika virus in human fetal neural progenitors persists long term with partial cytopathic and limited immunogenic effects. Cell Reports, 2016.Google Scholar
  57. 57.
    Tang, H., et al., Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell, 2016.Google Scholar
  58. 58.
    Garcez PP et al (2016) Zika virus impairs growth in human neurospheres and brain organoids. Science 352(6287):816–818CrossRefPubMedGoogle Scholar
  59. 59.
    Dowall SD et al (2016) A susceptible mouse model for Zika virus infection. PLoS Negl Trop Dis 10(5):e0004658CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Bell TM, Field EJ, Narang HK (1971) Zika virus infection of the central nervous system of mice. Arch Gesamte Virusforsch 35(2):183–193CrossRefPubMedGoogle Scholar
  61. 61.
    Driggers RW et al (2016) Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N Engl J Med 374(22):2142–2151CrossRefPubMedGoogle Scholar
  62. 62.
    Culjat, M., et al., Clinical and imaging findings in an infant with Zika embryopathy. Clin Infect Dis, 2016.Google Scholar
  63. 63.
    Hazin AN et al (2016) Computed tomographic findings in microcephaly associated with Zika virus. N Engl J Med 374(22):2193–2195CrossRefPubMedGoogle Scholar
  64. 64.
    Moron AF et al (2016) Microcephaly associated with maternal Zika virus infection. BJOG 123(8):1265–1269CrossRefPubMedGoogle Scholar
  65. 65.
    Szelenyi J (2001) Cytokines and the central nervous system. Brain Res Bull 54(4):329–338CrossRefPubMedGoogle Scholar
  66. 66.
    Probert L (2015) TNF and its receptors in the CNS: the essential, the desirable and the deleterious effects. Neuroscience 302:2–22CrossRefPubMedGoogle Scholar
  67. 67.
    Benedict CA, Norris PS, Ware CF (2002) To kill or be killed: viral evasion of apoptosis. Nat Immunol 3(11):1013–1018CrossRefPubMedGoogle Scholar
  68. 68.
    Griffin DE (2003) Immune responses to RNA-virus infections of the CNS. Nat Rev Immunol 3(6):493–502CrossRefPubMedGoogle Scholar
  69. 69.
    Blazquez AB et al (2014) Stress responses in Flavivirus-infected cells: activation of unfolded protein response and autophagy. Front Microbiol 5:266CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Dreux M, Chisari FV (2010) Viruses and the autophagy machinery. Cell Cycle 9(7):1295–1307CrossRefPubMedGoogle Scholar
  71. 71.
    Tetro, J.A., Zika and microcephaly: causation, correlation, or coincidence? Microbes Infect, 2016.Google Scholar
  72. 72.
    Jheng JR, Ho JY, Horng JT (2014) ER stress, autophagy, and RNA viruses. Front Microbiol 5:388CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115(10):2656–2664CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Hetz C, Mollereau B (2014) Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 15(4):233–249CrossRefPubMedGoogle Scholar
  75. 75.
    Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7(12):1013–1030CrossRefPubMedGoogle Scholar
  76. 76.
    Marino G et al (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15(2):81–94CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Verfaillie T et al (2010) Linking ER stress to autophagy: potential implications for cancer therapy. Int J Cell Biol 2010:930509CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kim J et al (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Liang, Q., et al., Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell, 2016.Google Scholar
  80. 80.
    Maiuri MC et al (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8(9):741–752CrossRefPubMedGoogle Scholar
  81. 81.
    Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27(48):6194–6206CrossRefPubMedGoogle Scholar
  82. 82.
    Bhandary B et al (2012) An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 14(1):434–456CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4(7):552–565CrossRefPubMedGoogle Scholar
  84. 84.
    Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27(50):6434–6451CrossRefPubMedGoogle Scholar
  85. 85.
    Feng Y et al (2014) The machinery of macroautophagy. Cell Res 24(1):24–41CrossRefPubMedGoogle Scholar
  86. 86.
    Urrego D et al (2014) Potassium channels in cell cycle and cell proliferation. Philos Trans R Soc Lond Ser B Biol Sci 369(1638):20130094CrossRefGoogle Scholar
  87. 87.
    Herrup K, Yang Y (2007) Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat Rev Neurosci 8(5):368–378CrossRefPubMedGoogle Scholar
  88. 88.
    Bloom J, Cross FR (2007) Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8(2):149–160CrossRefPubMedGoogle Scholar
  89. 89.
    Hindley C, Philpott A (2012) Co-ordination of cell cycle and differentiation in the developing nervous system. Biochem J 444(3):375–382CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Elias LA, Wang DD, Kriegstein AR (2007) Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448(7156):901–907CrossRefPubMedGoogle Scholar
  91. 91.
    Elias LA, Kriegstein AR (2008) Gap junctions: multifaceted regulators of embryonic cortical development. Trends Neurosci 31(5):243–250CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Naus CC, Aftab Q, Sin WC (2016) Common mechanisms linking connexin43 to neural progenitor cell migration and glioma invasion. Semin Cell Dev Biol 50:59–66CrossRefPubMedGoogle Scholar
  93. 93.
    Dermietzel R et al (1989) Differential expression of three gap junction proteins in developing and mature brain tissues. Proc Natl Acad Sci U S A 86(24):10148–10152CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Yamamoto T et al (1992) Differential anatomical and cellular patterns of connexin43 expression during postnatal development of rat brain. Brain Res Dev Brain Res 66(2):165–180CrossRefPubMedGoogle Scholar
  95. 95.
    Cina C et al (2007) Expression of connexins in embryonic mouse neocortical development. J Comp Neurol 504(3):298–313CrossRefPubMedGoogle Scholar
  96. 96.
    Matsuuchi L, Naus CC (2013) Gap junction proteins on the move: connexins, the cytoskeleton and migration. Biochim Biophys Acta 1828(1):94–108CrossRefPubMedGoogle Scholar
  97. 97.
    McLeod TL, Bechberger JF, Naus CC (2001) Determination of a potential role of the CCN family of growth regulators in connexin43 transfected C6 glioma cells. Cell Commun Adhes 8(4–6):441–445CrossRefPubMedGoogle Scholar
  98. 98.
    Giepmans BN et al (2001) Gap junction protein connexin-43 interacts directly with microtubules. Curr Biol 11(17):1364–1368CrossRefPubMedGoogle Scholar
  99. 99.
    Xu X et al (2001) Modulation of mouse neural crest cell motility by N-cadherin and connexin 43 gap junctions. J Cell Biol 154(1):217–230CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Cina C et al (2009) Involvement of the cytoplasmic C-terminal domain of connexin43 in neuronal migration. J Neurosci 29(7):2009–2021CrossRefPubMedGoogle Scholar
  101. 101.
    Nadarajah B et al (1997) Differential expression of connexins during neocortical development and neuronal circuit formation. J Neurosci 17(9):3096–3111PubMedGoogle Scholar
  102. 102.
    Fushiki S et al (2003) Changes in neuronal migration in neocortex of connexin43 null mutant mice. J Neuropathol Exp Neurol 62(3):304–314CrossRefPubMedGoogle Scholar
  103. 103.
    Wiencken-Barger AE et al (2007) A role for Connexin43 during neurodevelopment. Glia 55(7):675–686CrossRefPubMedGoogle Scholar
  104. 104.
    Liu X et al (2010) Gap junctions/hemichannels modulate interkinetic nuclear migration in the forebrain precursors. J Neurosci 30(12):4197–4209CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Oyamada M, Oyamada Y, Takamatsu T (2005) Regulation of connexin expression. Biochim Biophys Acta 1719(1–2):6–23CrossRefPubMedGoogle Scholar
  106. 106.
    Melian EB et al (2010) NS1' of flaviviruses in the Japanese encephalitis virus serogroup is a product of ribosomal frameshifting and plays a role in viral neuroinvasiveness. J Virol 84(3):1641–1647CrossRefPubMedGoogle Scholar
  107. 107.
    Song, H., et al., Zika virus NS1 structure reveals diversity of electrostatic surfaces among flaviviruses. Nat Struct Mol Biol, 2016.Google Scholar
  108. 108.
    Zhu Z et al (2016) Comparative genomic analysis of pre-epidemic and epidemic zika virus strains for virological factors potentially associated with the rapidly expanding epidemic. Emerg Microbes Infect 5:e22CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Eyer L et al (2016) Nucleoside inhibitors of Zika virus. J Infect Dis 214(5):707–711CrossRefPubMedGoogle Scholar
  110. 110.
    Carneiro BM et al (2016) The green tea molecule EGCG inhibits Zika virus entry. Virology 496:215–218CrossRefPubMedGoogle Scholar
  111. 111.
    Barrows NJ et al (2016) A screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host Microbe 20(2):259–270CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Morrison C (2016) DNA vaccines against Zika virus speed into clinical trials. Nat Rev Drug Discov 15(8):521–522CrossRefPubMedGoogle Scholar
  113. 113.
    Abbink, P., et al., Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science, 2016.Google Scholar
  114. 114.
    Zhao H et al (2016) Structural basis of Zika virus-specific antibody protection. Cell 166(4):1016–1027CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Dai L et al (2016) Structures of the Zika virus envelope protein and its complex with a flavivirus broadly protective antibody. Cell Host Microbe 19(5):696–704CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Lais Takata Walter
    • 1
  • Guilherme Shigueto Vilar Higa
    • 1
    • 2
  • Juliane Midori Ikebara
    • 1
  • Danila Vedovello
    • 3
  • Felipe Scassi Salvador
    • 4
  • Silvia Honda Takada
    • 1
  • Erika Reime Kinjo
    • 1
  • Benjamin J. Whalley
    • 5
  • Márcia Aparecida Sperança
    • 3
  • Alexandre Hiroaki Kihara
    • 1
    • 2
  1. 1.Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e CogniçãoUniversidade Federal do ABCSão Bernardo do CampoBrazil
  2. 2.Departamento de Fisiologia e Biofísica, Instituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
  3. 3.Centro de Ciências Naturais e HumanasUniversidade Federal do ABCSão Bernardo do CampoBrazil
  4. 4.Laboratório de VirologiaInstituto de Medicina Tropical da Universidade de São PauloSão PauloBrazil
  5. 5.School of Chemistry, Food and Nutritional Sciences, and PharmacyUniversity of Reading, WhiteknightsBerkshireUK

Personalised recommendations